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Corrections to scaling for watersheds, optimal path cracks, and bridge lines
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We study the corrections to scaling for the mass of the watershed, the bridge line, and the optimal path
crack in two and three dimensions (2D and 3D). We disclose that these models have numerically equivalent
fractal dimensions and leading correction-to-scaling exponents. We conjecture all three models to possess the
same fractal dimension, namely, df = 1.2168 ± 0.0005 in 2D and df = 2.487 ± 0.003 in 3D, and the same
exponent of the leading correction, � = 0.9 ± 0.1 and � = 1.0 ± 0.1, respectively. The close relations between
watersheds, optimal path cracks in the strong disorder limit, and bridge lines are further supported by either
heuristic or exact arguments.
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I. INTRODUCTION

The watershed, defined as the line separating adjacent
drainage basins (catchments), plays a fundamental role in
water management [1–3], landslides [4–7], and flood preven-
tion [7–9]. From observations of watersheds in nature, claims
about their fractality have already been made long ago [10].
More recently, watersheds were investigated in Refs. [11–13]
where their self-similarity was shown numerically for both
natural and artificial landscapes.

A fractal dimension consistent with the one of watersheds
was also found for optimal path cracks in the limit of strong
disorder. Optimal path cracking was introduced by Andrade
et al. [14–16] as a model for the evolution of successive optimal
paths under constant failure. It describes, e.g., the breakdown
of electrical or fluid flow through random media and has
important applications also in other fields of science and
technology, such as human transportation, fracture mechanics,
or polymers in random environments, where finding the
optimal path is a challenge [17–27].

The last of the three problems mentioned in the title, related
to ranked percolation (RP) was recently introduced by Schrenk
et al. [28] as a model where the creation of a spanning cluster
is systematically delayed. They found that the set of “bridge
bonds” (i.e., bonds that finally lead to spanning clusters) has
a fractal dimension very close to that of watersheds and of the
optimal path cracks in strong disorder (see Fig.1).

The appearance of the same fractal dimension in three
seemingly very different models calls on the one hand for
a theoretical explanation, and on the other hand for more
precise numerical estimates. On the theoretical side, we might
point out that the watershed (WS), the optimal path crack in
strong disorder (OPC), and the bridge line (BL) in RP are all
sets of sites or bonds that split the system into two distinct
parts and seem conceptually related (although not identical) to
classical percolation. Yet, despite these similarities and the
broad relevance of the models, no detailed studies of the
relation between them are available.
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Finally we should mention that relations to other physical
models have also been proposed, such as optimal paths
[16,29–32], the shortest path in loopless invasion percolation
[30], the infinite cluster in multiple invasion percolation [33],
and the surface of the infinite cluster in explosive percolation
[34,35].

In this paper we explore the relation between the main crack
(MC) of the optimal path crack in strong disorder [14–16]
and the bridge line of RP [28]. But we shall also explore the
relations between several definitions of watersheds [11–13],
since the exact definition of a watershed is not unique,
and different definitions turn out to be closely related to
different subsets of the other three problems. We present
improved estimates of the fractal dimensions, made possible
by studying in detail the corrections to scaling for two- and
three-dimensional (2D and 3D) systems with uncorrelated
disorder. Due to the numerical difficulty in obtaining sufficient
statistics, we omit a discussion of the surface of the infinite
cluster in discontinuous (explosive) percolation [34,35]. For
all models, the fractal dimension df is defined through the
scaling of the mass M , corresponding to the number of sites
or bonds in the object, with the linear system size L,

M ∼ Ldf . (1)

Due to the finite system size, corrections to scaling arise
[36–38] that may mask the true asymptotic behavior. Hence,
the estimated df can be improved by describing the size
dependence of the mass as

ML = Ldf CL, (2)

where the general form for the corrections to scaling CL is

CL = a00 + a01L
−1 + a02L

−2 + a03L
−3 + · · ·

+ a11L
−�1 + a12L

−�1−1 + a13L
−�1−2 + · · ·

+ a21L
−�2 + a22L

−�2−1 + a23L
−�2−2 + · · ·

+ an1L
−�n + · · · , (3)

with nonuniversal coefficients (aij ). The exponents fulfill
�1 < �2 < · · · < �n and are nonanalytic (noninteger). They
are usually independent of the geometry of the lattice and
depend only on the dimensionality [36,37]. Finding the same
nonanalytic corrections-to-scaling exponents for all three
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FIG. 1. (Color online) Mass M of the watershed (WS site or
bond), the main crack (MC), and the bridge line (BL) models as
functions of the system size N , defined as the number of sites (bonds)
in the system, in both two and three dimensions. The error bars are
much smaller than the symbols. The lines show the fractal dimensions
obtained in this work.

models will give another hint for the close relation between
them. But, in general, the precise estimation of corrections to
scaling is a difficult task. Numerical studies typically measure
the leading correction exponent, a subleading correction
exponent, or an effective exponent arising from the sum
of two or more correction-to-scaling terms [39]. Hence, a
reliable estimate of the leading correction exponent depends
on both the method and the precision of the data. Since in
practice it is not reasonable to attempt a fitting with many
terms of the form shown in Eq. (3), we truncate the sum of
correction terms as discussed in detail below. We first look
at the functional form of the corrections to scaling that can
be considered for the individual models given the available
statistics, using a simple fitting and checking which amplitudes
in Eq. (3) are small. Using this and truncating terms with an
exponent �3, we define our effective corrections-to-scaling
ansatz. By defining a fit quality, we identify the leading
correction exponent (highest maximum of the quality) and
obtain a highly accurate estimate for the fractal dimension
df . The improved estimate of df is the main focus of our
numerical study, rather than obtaining the corrections with
precision. We cross-check the results obtained with a careful
analysis of the local logarithmic slopes as suggested by Ziff and
Babalievski [40,41]. This method uses the fact that for large
enough system sizes the higher-order terms are negligible, such
that the local logarithmic slope of the corrections to scaling
should converge to the leading correction exponent.

The paper is organized as follows. In Sec. II we describe
the models. Section III introduces the corrections to scaling
and summarizes the results obtained. The relations between
the models are discussed in Sec. IV and conclusions are drawn
in Sec. V.

II. MODELS

In the following, we give a brief overview of the watershed,
optimal path cracking, and ranked percolation problems,
focusing on the role of percolation in the numerical procedures

used to determine the watershed, the main crack, and the
bridge line. For simplicity, the description is given for two-
dimensional systems (square lattices), where they lead to lines.
The extension of the discussed models to higher dimensions,
where they lead to (hyper)surfaces, is straightforward and has
been done in Refs. [13,15,28].

A. Watersheds

Watersheds are the lines separating adjacent drainage basins
and play a fundamental role in many fields [1–9]. Although the
intuitive notion of a watershed seems obvious, the choice of
a precise definition is rather subtle. Indeed, in the previous
literature (see [42] for a review) several definitions have
been used, none of which seems optimal. Moreover, as we
shall see, the choice of the most efficient algorithm for
simulating a watershed depends on the precise definition,
and different definitions—although corresponding to the same
“macroscopic” objects—are more or less directly related to
the other two problems discussed in this paper.

Following [11–13], we shall discuss in the present paper two
main definitions, the bond model and the site model, and in
addition a variant of the latter, the great wall model (called the
flooding method in [11]). As we shall see, the natural algorithm
for the bond model is one where we follow the runoff from
top to bottom, while the natural algorithms for the site models
“flood” the catchment areas from their outlets to the top.

We consider uncorrelated artificial landscapes mapped on
a square lattice of size L × L as digital elevation maps, where
each site i = (x,y) represents a small square area. The height
hi at each site i is drawn randomly from a common distribution
in such a way that hi > 0. The precise form of the distribution
is irrelevant, provided it is continuous so that, with probability
1, hj �= hi, ∀ j �= i. Boundary conditions are periodic in the
horizontal direction, but free vertically. Thus water can run
across the lateral sides in both directions (depending on which
of the neighboring sites is higher), while it can only flow
outwards from the top (y = L − 1) and bottom (y = 0). The
latter could be modeled more explicitly by adding two more
rows (with y = L and y = −1) where all sites have height
h = 0, and which act as sinks. The parts of the landscape
that drain to either of these two sinks are their catchment
basins, while the line separating the two catchment basins is
the watershed.

Water flows always from a higher site to a lower one, but
the bond and site models correspond to different assumptions
as to how this happens in detail. In the bond model, water
flows from any site only to its lowest neighbor, while it flows
to all neighbors in the site model. Thus, each site belongs in
the bond model to a unique catchment area, and the watershed
must be formed by bonds of the dual lattice which cut bonds
that join sites in different catchment basins. It is easy to see
that a watershed defined in this way must be a single connected
and unbranched path that has no loops except for the fact that
it is periodic in the horizontal direction (and is thus one big
loop). Moreover, determining the catchment basin for any site
is trivial: one just has to follow the unique runoff path.

In contrast, sites do not have unique runoff paths in the site
model. Let us call a site with more than one lower neighbor a
diversion site. At each diversion site, the runoff path branches,
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so that the total runoff pattern of any site is a tree. Moreover,
branches of this tree might end in both sinks, in which case
the site cannot be in either catchment basin. Such sites must
belong thus to the watershed, while sites which drain into one
unique sink form the catchment basins. Finally, two adjacent
sites i and j cannot be in different catchment basins (since
either hi < hj or hi > hj ). Therefore the entire watershed
must be formed by a single loopless and unbranched chain of
sites that is connected in the sense that adjacent sites must be
either nearest or next-nearest neighbors.

While it is in principle possible to follow the entire runoff
trees in the case of the site model, it is not very practical and
easy. Thus it is more efficient to determine the watershed by a
flooding algorithm, where the catchment areas are determined
by moving inward and upward from the sinks. Below we shall
describe two such algorithms that differ in details. On the
other hand, for the bond model it is very efficient and easy to
follow the runoff, as described in [11]. We first determine the
catchment basins for the sites on a search line (x = 0,y) with
y = 0,1,2, . . .. The first ones will drain to the bottom. After
we have found the first site draining to the top, we have also
the first bond in the watershed. Starting from this bond we can
then construct the entire watershed recursively, by following
the runoff paths from the sites adjacent to one of its end points.

For the site model we flood simultaneously two invasion
percolation clusters growing inward from the top and bottom
rows. Let us denote by Bt (h) and Bb(h) the boundaries of
these clusters, when the flood has height h. More precisely,
Bt (h) [Bb(h)] is the set of all sites i with height hi > h,
and with at least one neighbor j having hj < h and being
in the top (bottom) cluster. Starting with h = 0, we increase
h continuously, each time incorporating a boundary site into
the corresponding cluster, as soon as it gets flooded—provided
this site does not belong to both boundaries. A site belonging
to both boundaries obviously drains into both basins and is
thus part of the watershed.

When reaching the first site on the watershed, we have two
options. In one, we flood it like any other site, but take care that
any site draining into it must also be in the watershed. Thus,
when increasing h further, we have to distinguish between sites
that get flooded from neighbors that all belong to the top basin,
sites that get flooded only from neighbors that all belong to
the bottom basin, and sites that get flooded either from both or
from a site in the watershed. The first belong to the top basin,
the second to the bottom basin, and the third to the watershed.
The algorithm stops when the entire landscape is flooded. This
gives the site model proper, and is meant whenever we speak
of the “site model” in the following sections.

Alternatively, we can prevent sites on the watershed from
being flooded by increasing their height to a value larger
than any other hi in the entire landscape. In this way the
two floods are kept separated, and we can continue flooding
without any further modification. The algorithm stops when
the entire landscape is flooded except for the watershed sites.
These sites form then a connected wall (or dam), whence the
name great wall model. We will not present data obtained with
this algorithm directly, but it is most closely related to the
models discussed in the next two sections.

The mass M of the watershed is defined as the number of
bonds (sites) forming the watershed. Notice that we do not

consider the watershed as a three-dimensional object (with
height as the third dimension), but as two dimensional; see
Eq. (1).

B. Optimal path crack

The optimal path crack was introduced by Andrade et al.
[14–16] and is obtained in the following way. We start with
a square lattice of size L using free boundary conditions in
the vertical direction and periodic boundary conditions in the
horizontal one. A random energy is assigned to each site and
the energy of any path in the system is defined as the sum of the
energies of its sites. In particular, the optimal path is the one
among all paths connecting the top and bottom boundaries of
the system with the lowest total energy. Once the first optimal
path is determined, the site in the optimal path having the
highest energy is identified and removed. This is equivalent to
imposing an infinite energy onto this site. Next, the optimal
path is calculated among the remaining accessible sites of the
lattice, from which the highest-energy site is again removed.
The process continues iteratively until the system is disrupted
and no further path can be found. The set of removed sites
then defines the optimal path crack. The OPC is dependent on
the type of disorder, but in the limit of strong disorder, it is
localized in a single line, denoted as the main crack, with mass
M given by the number of cracked sites. From this point on,
we consider the OPC only in the limit of strong disorder and,
for simplicity, just refer to it as main crack.

In the strong disorder limit, the model is equivalent to the
great wall model, with h corresponding to the random energy
and the main crack corresponding to the great wall.

C. Ranked percolation

Ranked percolation is a percolation model introduced by
Schrenk et al. [28] in which the creation of a spanning cluster
is suppressed. In this model bonds or sites are occupied
randomly, except for bridges that are bonds or sites which,
when occupied, would create a spanning cluster, i.e., a cluster
connecting the top and bottom edges of the system. In the
following, we focus solely on the case where bridges are
never occupied (in the more general model of [28] they
have a probability pb of being occupied that is smaller than
the probability for other bonds or sites; in this notation, the
present simulations correspond to pb = 0). While the original
studies were done for bond percolation, we consider here site
percolation. As in the bond case, we start with an empty square
lattice of size L × L, choose sites uniformly at random, and
occupy them. If two neighboring sites are occupied, they are
considered to be connected and to belong to the same cluster. In
contrast to standard site percolation, whenever the occupation
of a site would lead to a spanning cluster, this bridge site
is blocked. The process proceeds until all sites are occupied
or blocked and the system is disrupted into two parts. The
separating bridge line is formed by the set of bridge sites.

Cieplak, Maritan, and Banavar [29] have studied this line in
a different context and argued that the occupation procedure is
equivalent to the following: Randomly assign an energy to each
site, rank order them by increasing energy, and occupy them
according to their rank—except when the site to be occupied
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TABLE I. Number of samples used to obtain the average mass of the bridge line (BL), the watershed (WS site and bond), and the main
crack (MC) models for different system sizes L in two- and three-dimensional systems. For the numerical analysis of corrections to scaling it
is important to use high-precision data. Therefore, we focused on obtaining the best possible statistics for the lattice sizes listed here, instead
of increasing the number of different system sizes .

BL WS site WS bond MC

L 2D 3D 2D 3D 2D 3D 2D 3D

4 1.01 × 1011 1.00 × 1010 2.51 × 108 1.61 × 1010 1.61 × 1010 1.61 × 1010 1.00 × 108 1.00 × 108

8 1.20 × 1010 1.00 × 109 1.37 × 108 2.01 × 109 8.05 × 109 2.01 × 109 1.00 × 108 1.00 × 108

16 1.13 × 1010 1.00 × 109 1.06 × 108 2.51 × 108 2.01 × 109 2.51 × 108 1.00 × 108 1.00 × 106

32 3.09 × 109 1.34 × 108 7.19 × 107 3.14 × 107 5.03 × 108 3.14 × 107 5.90 × 107 1.00 × 104

64 9.74 × 108 1.67 × 107 4.31 × 107 3.93 × 106 1.25 × 108 3.93 × 106 1.00 × 105 450
128 1.01 × 109 2.09 × 106 3.48 × 107 1.96 × 106 1.03 × 109 4.91 × 105 1.00 × 105 146
256 8.57 × 108 2.62 × 105 2.14 × 107 2.45 × 105 2.59 × 108 1.22 × 105 30000
512 2.12 × 108 1.31 × 105 8.14 × 106 30720 6.48 × 107 1.22 × 105 10400
1024 2.68 × 107 4608 2.31 × 106 4.24 × 107 65536 1310
2048 1.95 × 106 5.39 × 105 1.03 × 107 146
4096 5.15 × 105 1.38 × 105 2.70 × 106

8192 1.28 × 105 33573 7.14 × 105

16384 56847 1.76 × 105

32768 33248

is a bridge site. In that case the site is not occupied ever.
Seen in this way, it transpires that ranked percolation is also
equivalent to the great wall model, except for the fact that sites
are flooded in different order and the algorithms suggested by
the two models are very different.

Finally, let us point out that the bond version of ranked
percolation is not strictly equivalent to the bond model defined
in Sec. II A, but corresponds to a bond model on a slightly
different lattice [28].

III. CORRECTIONS TO SCALING

We perform extensive numerical simulations of the de-
scribed models measuring the mass M of the watershed,
the bridge line, and the main crack models for different
(linear) system sizes L. For details about the considered
system sizes and the corresponding number of samples, see
Table I. The masses obtained are shown in Fig. 1 as a
function of the system size N , namely, N = Ld for sites and
N = dLd − (2d − 1)Ld−1 for bonds (the second term arises
due to the solid walls in the vertical direction), where d is the
dimensionality of the system. Although this is not visible in
Fig. 1, the masses of the BL and MC are equal within the error
bars. Those of the WS site and WS bond models are different
from the masses of the BL and MC models. Nevertheless, we
observe all of them to follow very similar scaling behaviors.
The true asymptotic behavior for the mass scaling, Eq. (1), is
masked by corrections to scaling arising due to finite system
size [36,37]. Hence, the estimate of the fractal dimension df

can be improved by considering these corrections explicitly;
see Eq. (3). In the following, we first analyze the general ansatz
to find the number of distinguishable correction exponents
and if there are vanishingly small amplitudes. This results
in simplified functional descriptions of the corrections to
scaling in 2D and 3D, which are then studied by two different

techniques in order to obtain highly accurate estimates of the
exponents.

A. Ansatz for corrections to scaling

To understand the structure of the data, we study least-
square fits of different truncated versions of Eq. (3) to the
corrections to scaling CL = M/Ldf in 2D, where df ≈ 1.217
has been chosen such that CL converges to a constant value for
large L (see Fig. 2). This choice of df is consistent with the
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FIG. 2. (Color online) Corrections to scaling CL = M/Ndf /d of
the watershed (WS site and bond), the main crack (MC), and the
bridge line (BL) models as functions of the system size N , defined
as the number of sites (bonds) in the system, in two dimensions.
The fractal dimension df ≈ 1.217, consistent with the more precise
estimate obtained later, has been chosen such that CL converges to a
constant value for large N . The error bars are typically much smaller
than the symbols. The lines show fits of truncated versions of Eq. (3)
to the data, which is divided here by a00 to show the matching of the
scaling behavior of the different models for large N .
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more precise estimates obtained later. Using different numbers
of exponents �n and varying numbers of expansions, we find
for all models that, with the current precision, we cannot
resolve correction terms of an order higher than 1/L2. In
the following, we therefore truncate the expansions by setting
aij = 0, ∀ j > 2. For the case of the WS site model, we obtain
reasonable fits down to fairly small L using a set of two
exponents (n = 2), yielding �1 ≈ 0.6 and �2 ≈ 0.9, while
a12 seems to be small and also the amplitudes of the analytic
terms seem to be small and unresolvable (a01 ≈ 0, a02 ≈ 0).
It is important to note that, despite these findings, �2 is still
compatible with unity. For WS bond, MC, and BL models we
obtain similar results, although a11 seems to be very small in all
the three models. As shown in Fig. 2, our fits match CL fairly
well for the models. Hence, defining ω ≡ �1 and � ≡ �2, the
(visible) corrections reduce to

C2D
L = a00 + a11L

−ω + a21L
−� + a22L

−�−1, (4)

with ω ≈ 0.6 and � ≈ 0.9, while a11 is large only for the WS
site model. The latter fact will be discussed in Sec. IV. We
note that we did not find evidence of logarithmic corrections.
Figure 2, showing the rescaled data, confirms that the the
corrections considered here capture the behavior of the data.

In 3D, we find by a similar study that the corrections to
scaling of all four models can reasonably well be described by
a single correction term such that we can write

C3D
L = a00 + a11L

−�, (5)

with � ≈ 0.9, but compatible with unity. A simple least-
squares fit of the ansatz given by Eq. (4) [Eq. (5) in 3D] to the
data to obtain the coefficients df , �, and/or ω directly can be
ambiguous. Dependent on the choice of the initial values for
the fit parameters (the coefficients and exponents), a fit could
even lead to an estimate of � or ω reflecting higher-order
corrections instead of the leading ones. To overcome this and
improve the accuracy, we discuss, in the following, a method
that explores the parameter space by varying the exponents in a
given range and analyzing the quality of the corresponding fits.
If one were to attempt to fit an ansatz containing at the same
time terms with variable exponents and analytic corrections to
the data [formally similar to Eq. (3)], interference among the
terms would be possible when the variable exponent is close
to unity. The fact that � is close to unity does not affect our
procedure, since the corrections given in Eqs. (4) and (5) do not
contain analytic terms explicitly. The results from this method
are then cross-checked with a second method, which allows
us to estimate the leading correction from the convergence of
the local logarithmic slopes in the reduced mass ML−df .

B. Fit quality method

The output of a fit of the ansatz in Eq. (4) or in Eq. (5) to the
data of the reduced mass ML−df can be sensitive to the initial
conditions. We, therefore, perform a more systematic study as
follows. To have a good control over the actual fitting, we use
Eqs. (2), (4), and (5) in the following form:

CL(α) = ML−α, (6a)

C2D
L (α) = a00 + a11L

−ω′ + a21L
−�′ + a22L

−�′−1, (6b)

C3D
L (α) = a00 + a11L

−�′
, (6c)

in 2D and 3D, respectively, with fixed values of α, ω′, and
�′ and estimate the quality Q = n/χ2, where n is the number
of degrees of freedom of the fit, i.e., the number of system
sizes used in the data (see Table I) minus the number of fit
parameters (here the number of resolvable amplitudes), and
χ2 is the (weighted) mean square deviation of the fit. The
quality Q is a function of α, ω′, and �′, but, as the terms of ω

have visible amplitudes only for the WS site model in 2D, we
drop hereafter the dependence of Q on ω′ and fix ω′ = 0.6.
Since ω′ is fixed, only one single correction exponent, �′, is
adjusted, avoiding fitting simultaneously multiple exponents.
Now, Q should be maximal for α = df and �′ = �, as the
leading correction gives the dominant contribution compared
to higher-order ones. As a matter of convenience, we use the
inverse of the quality 1/Q, which is minimal for α = df

and �′ = �. The procedure to obtain df and � for a given
model is to measure the inverse quality 1/Q(α,�′) of a fit
of the proper ansatz to the data. We first choose a value of
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FIG. 3. (Color online) (a) Inverse of the quality Q as a function of
�′ for different values of α, as obtained from fits of the ansatz Eq. (6)
to the reduced mass ML−α for the watershed on bonds in 2D with
sizes as indicated in Table I. The vertical lines give the position of
the global minimum in 1/Q (solid) and the estimated error (dashed).
(b) For the same system as in (a), the minimum value 1/Qloc as a
function of α is shown, where Qloc is obtained from curves 1/Q(�′)
for a given α, like those shown in (a). The vertical lines highlight the
value of α at the global minimum 1/Qmax (solid) and the estimate for
the error (dashed). The error bars are determined from the width of the
minima. The vertical lines show the estimate df = 1.2168 ± 0.0005
for the fractal dimension of the watershed on bonds and the horizontal
ones the corresponding leading correction � = 0.95 ± 0.05. These
exponents were obtained from the analysis of a single model (WS
bond). By combining the results for different models, we obtain more
accurate estimates for the exponents.
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FIG. 4. (Color online) Inverse of the quality at the minimum
1/Qloc as a function of α for the different models in 2D. The inset
shows for each model the inverse of the quality Q as a function of �′

with α fixed to its value at the global minimum 1/Qmax. The vertical
lines show the averages df = 1.2168 ± 0.0005 and � = 0.9 ± 0.1 of
the estimates for the fractal dimension and for the leading correction,
respectively.

α and then derive 1/Q as a function of the exponent of the
leading correction, scanning in the range 0 < �′ < 2 with a
step size δ�′ = 0.015. The curve obtained [see, for example,
Fig. 3(a) for the WS bond model] typically has a (local)
minimum 1/Qloc(α), which marks the best fit of the leading
correction �loc(α) for the chosen α. The error ��loc(α) is
estimated from the width of the minimum. In two dimensions,
analyzing these minima 1/Qloc(α) by varying α in the range
1.212 < α < 1.220 with steps of size δα = 0.000 25, yields
an estimate of the global minimum 1/Qmax and the fractal
dimension df . The error bar in df is also determined from
the width of the minimum [see, e.g., Fig. 3(b)]. We repeated
this analysis for the watershed on sites, the main crack, and
the bridge line (see Fig. 4) and the corresponding estimates
are summarized in Table II. The values obtained all agree
with each other within the error bars. The ones for the MC,
due to the low statistics, seem to differ more. Nevertheless,
based on the similarity of the numerical values, we estimate
by combining the results for all models that in 2D df =

TABLE II. The fractal dimension df and the exponent of the
leading correction � of the bridge line (BL) and the watershed (WS
sites and bonds) for 2D and 3D, as obtained from a similar analysis
as done in Fig. 3 for the WS bond case. The main crack (MC) result
is shown only for 2D.

Model d df �

WS bond 2 1.2168 ± 0.0005 0.95 ± 0.05
WS site 2 1.21705 ± 0.00075 0.91 ± 0.19
BL 2 1.2166 ± 0.0015 0.87 ± 0.08
MC 2 1.2166 ± 0.0045 0.86 ± 0.11
WS bond 3 2.4865 ± 0.0025 0.96 ± 0.10
WS site 3 2.4865 ± 0.0025 0.98 ± 0.09
BL 3 2.4878 ± 0.0025 1.06 ± 0.16
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FIG. 5. (Color online) Inverse of the quality at the minimum
1/Qloc as a function of α for the watershed on bonds, the watershed
on sites, and the bridge line in 3D. The inset shows for each model
the inverse of the quality Q as a function of �′ with α fixed to its
value at the global minimum 1/Qmax. The vertical lines show the
averages df = 2.487 ± 0.003 and � = 1.0 ± 0.1 for the estimates
for the fractal dimension and for the leading correction.

1.2168 ± 0.0005 and � = 0.9 ± 0.1 for all models. The values
and error bars have to be obtained by a reproducible procedure.
We used the intersection of the estimated intervals for all
models (Table II). The value obtained for � is close to unity,
which suggests that the leading correction (the second-leading
correction for the WS site) is likely to be the analytic correction
� = 1.

We applied a similar analysis to the data obtained in three-
dimensional systems, scanning �′ in the range 0 < �′ < 2
with a step size δ�′ = 0.015 and α in the range 2.450 < α <

2.535 with steps of size δα = 0.0025. As before, the detailed
analysis is done as is shown in Fig. 3). For the case of the main
crack in 3D, no conclusive results could be obtained with our
method, but the masses obtained are within their error bars
equivalent to those measured for the bridge line. We show in
Fig. 5 only the results obtained for the watershed on bonds
and on sites, and the bridge line. As in 2D, the estimates
obtained for df and � agree within the error bars. Therefore,
we estimate df = 2.487 ± 0.003 and � = 1.0 ± 0.1 for three
dimensions. As in 2D, the value of the leading correction is
likely to be the analytic one � = 1. Given this, for 2D and 3D,
we also analyzed the data fixing � = 1. The values obtained
for the fractal dimensions and their error bars are consistent
with the ones reported in Table II; therefore, the possibility of
� being analytical cannot be discarded.

The estimates of the fractal dimension for the different
models are in agreement with the ones found in previous works
for the watershed (1.211 ± 0.001 [11] and 2.48 ± 0.02 [13]),
the main crack (1.215 ± 0.005 and 2.46 ± 0.05 [14–16]),
the bridge line (1.215 ± 0.003 and 2.50 ± 0.02 [28–30]),
and the perimeter of the infinite cluster in discontinuous
percolation (1.23 ± 0.03 [34] and 2.5 ± 0.2 [35]). The value
1.211 ± 0.001 given in Ref. [11] for the fractal dimension of
the watershed in two dimensions seems to underestimate the
error bar.
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FIG. 6. (Color online) Estimated leading correction �est as
defined in Eqs. (7) and (8) from the mass data of the bridge line, the
watershed on bonds (sites), and the main crack in 2D. The value of α

is fixed to 1.2168, the fractal dimension estimated by the fit quality
method. For better visibility, the data of each model are shown with
connecting lines, and data points with ��est > 1 have been removed.
The values for the main crack are shown for comparison, but without
their error bars. The horizontal lines give the value (solid) and error
bar (dashed) for � as estimated by the fit quality method, as well as
the value for ω (dotted).

C. Local logarithmic slope

Another approach to estimate the leading correction-to-
scaling exponent � is to calculate the local logarithmic slope
of the reduced mass CL(α) = MLL−α , i.e.,

�est(L,α) = − log2

(
CL(α) − CL/2(α)

CL/2(α) − CL/4(α)

)
. (7)

Taking L relatively large such that higher-order corrections
are negligible, �est converges to � for α = df (see, e.g.,
Refs. [40,41]). Due to the uncertainty �ML in the average
of the mass ML, there are in the estimate of the local slope
systematic errors of the form

��2
est(L) =

∑
k={1, 2, 4}

(
d�est

dCL/k

�CL/k

)2

=
(

(�CL)2 + (�CL/2)2

(CL − CL/2)2

)

+
(

(�CL/2)2 + (�CL/4)2

(CL/2 − CL/4)2

)

+
(

(�CL/2)2

(CL − CL/2)(CL/2 − CL/4)

)
, (8)

where �CL = L−α�ML. We omitted here the α dependence.
This error heavily depends on the precision of the single mass
measurements and, therefore, statistics considerably higher
than for the fit quality method are needed, especially for the
larger system sizes. We focused mainly on improving the
statistics for the watershed on bonds and for the bridge line,
where larger systems can be addressed.

In Figs. 6 and 7 we show �est with α = 1.2168 and 2.487
for two- and three-dimensional systems, respectively. In both
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FIG. 7. (Color online) Estimated leading correction �est as
defined in Eqs. (7) and (8) from the mass data of the bridge line,
the watershed on bonds (sites), and the main crack in 3D. The value
of α is fixed to 2.487, the fractal dimension estimated by the fit quality
method. For better visibility, the data of each model are shown with
connecting lines, and data points with ��est > 1 have been removed.
The values for the main crack are shown for comparison, but without
their error bars. The horizontal lines give the value (solid) and error
bar (dashed) for � as estimated by the fit quality method.

figures, only values of �est with ��est < 1 are shown, except
those for the MC, which are shown for completeness, but
without their error bars. In the limit of large L, we find for
WS bond, MC, and BL data an agreement with the range
of values for � obtained from the fit quality method, which
corroborates our numerical results. For the WS site model in
2D �est is consistent with ω = 0.6, while in 3D it agrees with
the other models. We cross-checked also by applying other
methods like, e.g., the one used in Refs. [43,44] and found
results consistent with the ones presented here.

IV. RELATION BETWEEN THE MODELS

A. Bridges, cracks, and great walls

The numerical agreement between the bridges in ranked
percolation, the optimal path cracks in the strong disorder limit,
and the watersheds in the great wall model supports the claim,
made in Sec. II, that these models are completely equivalent.
More precisely, they correspond to different strategies for
finding the same object (the watershed, the bridge line, and
the optimal path cracks, respectively). Since these strategies
also use the random number generators in different ways, they
lead to different statistical errors, but they give identical scaling
laws and identical corrections to scaling.

The random occupation procedure in ranked percolation
[28] can be interpreted as ranking sites by increasing order in
the energy and iteratively occupying them according to their
position in the rank. At every step, each occupied site has a
lower energy than any unoccupied one. In strong disorder, the
energy of any path is dominated by that of the site with the
largest energy and, therefore, a path of occupied sites has
always lower energy than any path containing unoccupied
ones. Occupying the first bridge site would lead to a spanning
cluster (SC) and for the first time enable paths that connect
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the two opposite borders. The bridge site, as being the last
occupied one in such a path, has the largest energy of all sites
in it and characterizes the energy of the path. The optimal
path is one of those paths, as their energy is lower than any
other connecting path passing through unoccupied sites. This
means that the first optimal path is cracked at the bridge site.
Proceeding with the occupation of sites following the rank,
the next time connecting paths are obtained is when the next
bridge site is occupied. Again, the energy of the new optimal
path is dominated by the energy of the current bridge site. As
before, the crack appears at the bridge site. In this picture, the
optimal paths always crack at bridge sites, until the system
is completely disconnected. We, therefore, conjecture that the
bridge line and the optimal path crack are identical.

B. Interrelations between the three watershed models

As also seen from the different corrections to scaling, the
relationships between the three watershed models are less
trivial and, indeed, quite subtle.

1. Bond and great wall models

Both in the bond model and in the great wall model,
watersheds are topologically strictly one-dimensional closed
chains. Removing even a single bond (site) from them would
cut them open, and removing two nonadjacent bonds (sites)
would cut them into two disjoint pieces. Furthermore, one can
easily see that any bond in the bond watershed must be dual
to a bond adjacent to a site in the great wall, and that any such
site can have at most three adjacent bonds corresponding to
bonds in the bond watershed. This gives immediately

Mbond � 3Mgreatwall, (9)

and therefore also the rigorous inequality df, bond � df, greatwall.
We have no similar argument for the opposite inequality,

but our numerics suggest of course strongly that both fractal
dimensions are the same.

2. The site watershed model

Although one might have anticipated that the great wall
model is more similar to the site model than to the bond model,
the opposite is true. Indeed, the site model shows a strong
anomaly that makes its finite size corrections very different,
although it seems that it still has the same fractal dimension.
This anomaly is clearly seen in Fig. 8, where we compare the
cumulative mass distributions obtained for the BL, WS bond,
and WS site models of 2D systems with size L = 128. While
these distributions fall off rapidly (roughly as Gaussians) for
the BL and WS bond models, we see a very pronounced tail in
the case of the WS site model. Similar observations have been
made, e.g., in Ref. [45]. This tail still falls off fast enough to
have no effect on the fractal dimension, but it definitely calls
for an explanation.

Indeed, the watershed in the site model is not strictly one
dimensional in the topological sense, but can contain arbitrarily
“thick” regions where it is effectively two dimensional. These
regions correspond to lakes with a single outlet site, from
which the water can run off toward both sinks. Their existence
can also be deduced from the flooding algorithm used to
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FIG. 8. (Color online) Cumulative distribution P (ms > m) of the
masses obtained with the WS site, WS bond, and the BL model for
system size L = 128 in 2D. The tail of the WS site case follows a
power law with exponent −1.8.

construct the site model watershed: As explained in Sec. II,
any site upstream of a watershed site has to be also on the
watershed. An example of a very small system showing this
phenomenon is given in Fig. 9. As exemplified in this figure,
it follows from the algorithm that the great wall is always a
subset of the site model watershed. Thus one has the strict
inequalities

Msite � Mgreatwall, (10)

and df, site � df, greatwall. Again we cannot prove rigorously the
opposite inequality for the fractal dimensions, but again the
numerical evidence for equality is overwhelming.

The origin of the power-law tail lies deep in the definition of
the watershed on sites, namely, in the fact that entire branches
in the diverting runoff scheme can be part of the watershed. We
will explain this here for the representative system depicted

↑ ↑ B/W
3 5 8

B/W B/W
6 7 2 ↓

W
1 ↓ 9 4 ↓

FIG. 9. Representative system with L = 3, where each square
cell represents a site of the lattice. The numbers in the lower left
corner of each cell give the heights. Letters “B” and “W” indicate
that a site is part of the bridge line (i.e., the great wall) and of the site
watershed, respectively. Notice that the center site in the bottom row
is part of the site watershed (as it is upstream of the central site), but
is not part of the great wall, because the wall built at the center site
prevents water from flowing there. Arrows indicate the flow of water
from sites belonging to the two basins.
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in Fig. 9. First, we start with the BL, occupying the sites
in increasing order of the heights, so 1, 2, 3, . . . ,9. The first
percolating cluster we would obtain when 6 is occupied, which
is therefore a bridge site, and the same applies to 7 and 8,
while 9 just belongs to the bottom part. For the WS site, we
find that starting from 6 three branches develop, one to 1 and
the bottom sink, another to 2, passing to 4 and reaching the
bottom sink (passing 1 and directly from 4), and a third to
3 and the top sink. Hence, from 6 both sinks can be reached
and it is therefore part of the watershed. The same is true
for 8, two going to the top (3 and 5) and one to the bottom
(2). If we now start our runoff scheme from 9, we see that
initially it diverts into four branches, where three are part of
the basin of the bottom sink. But the branch going upward is
split at 7 into three sub-branches (to 2, 5, and 6), the branch
from 2 again reaches the bottom sink, but the one growing
from 5 is part of the top basin. Hence, 7 is part of both (or
neither) basin, so it is part of the watershed and, by definition,
also its parent 9 has to be considered part of the watershed.
Similarly, this can be deduced from the sub-branch to 6. The
watershed of this system, therefore, consists of the BL and an
overhang of one additional site. In general, such overhangs can
be larger than one site but all bridge sites are always part of the
watershed.

As we have conjectured, the main crack and the bridge
line are identical, such that discussing the relation of the WS
site and BL models is equivalent to discussing the relation of
the WS site and MC models. Considering the elevations of a
landscape to correspond to energies, e.g., potential energy, its
watershed and its optimal path crack can be compared. We
have defined that a site belongs to the watershed, when the
invasion percolation clusters grown from two lower nearest-
neighbor sites do reach the opposite borders (catchments). As
both clusters, by definition, do not cross the watershed, the
watershed site separating the two, has a larger height (energy)
than any site in both clusters. Therefore, for each watershed
site (also the overhangs) there are always paths which consist
solely of sites with lower energy than the watershed site,
connecting it to either border. In the strong disorder limit,
the energy of these paths is dominated by the largest local
energy, i.e., the energy of the watershed site. Hence, every
path connecting the two borders has at least the energy of
the site where it crosses the watershed, and the optimal path,
the one of lowest energy, crosses the watershed at its lowest
site. From the same arguments it follows that it is then the
watershed site which is removed by the OPC model. After
this, the next optimal path will cross the watershed at the
next site in increasing order in the energy and cracks at the
watershed as well. Until the final disruption of the system,
in strong disorder, every crack appears at the watershed site.
Hence, the MC is also a subset of the watershed.

From these findings it follows that the power-law tail in
the mass distribution for the WS site model arises due to the
existence of overhangs. We know from previous studies that
the finite-size cutoff of distributions which follow a power law
can heavily affect the scaling behavior of the moments of this
distribution [13]. The average mass M is the first moment of
the mass distribution P (ms) (the derivative of the distribution
shown in Fig. 8) and, therefore, its scaling behavior is affected
by the cutoff L2 of its power-law tail. As we based our analysis

of the corrections to scaling on M , CL might also be affected.
We observe the upper cutoff of the tail to scale with L2 and
the lower cutoff to scale with Ldf . Therefore, the functional
form of the tail of the cumulative distribution is given by
P (ms > m) ∝ m−1.8L1.8df . To quantify the contributions of
the overhangs to CL, we derive here, as it was done in Ref. [13],
the contribution of the power-law tail between its cutoffs Ctail

which scales as

Ctail ∼
∫ L2

L
df

msP (ms)dms,

Ctail ∼
∫ L2

L
df

ms

(
d

dm

∣∣∣∣
m=ms

P (ms > m)

)
dms,

(11)

Ctail ∼
∫ L2

L
df

ms

(
d

dm

∣∣∣∣
m=ms

m−1.8L1.8 df

)
dms,

Ctail ∼ Ldf (L−0.6 − const),

which leads to a contribution of order L−0.6 to the corrections
to scaling of the WS site model. Although it is only a
rough estimate, the similarity of this contribution to the value
we found for the leading correction (ω ≈ 0.6) is striking.
The other models have no such overhangs and therefore the
corresponding amplitude is very small. Together with the fact
that for these other models the amplitudes of the ω correction
are small, this suggests that this term in CL of the WS site
model arises only due to the overhangs. Apart from this we
find the corrections to scaling of all models to be in agreement
with each other. Furthermore, in 3D no such power-law tail is
observed for the watershed on sites and all models hence have
similar distributions of masses.

V. CONCLUSION

We obtained from a correction-to-scaling analysis, with
high precision, an estimate for the fractal dimension of the
watershed on bonds, the watershed on sites , the bridge line,
and the main crack. We found these fractal dimensions to be,
within the error bars, in agreement with each other. All models
have within error bars the same leading correction-to-scaling
exponent in 2D (second-leading exponent for the WS site
model) and in 3D. These results are also corroborated by
the analysis of the local logarithmic slopes in the limit
of large system sizes. We estimate for all models df =
1.2168 ± 0.0005 and � = 0.9 ± 0.1 in two dimensions and
df = 2.487 ± 0.003 and � = 1.0 ± 0.1 in three dimensions.
The equivalence between the models is also supported by
either heuristic or exact arguments. Furthermore, we give
an explanation for the origin of the leading correction for
the WS site model in 2D. The estimated values agree with
the fractal dimensions obtained in previous studies for the
watershed [11–13], the optimal path crack [14–16], and
the bridge line [28–30], as well as with the ones found for the
perimeter of the infinite cluster in discontinuous percolation
(1.23 ± 0.03 [34] and 2.5 ± 0.2 [35]). It would be interesting
to know if this perimeter also obeys the same corrections to
scaling as we have found.
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