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Encoding universal computation in the ground states of Ising lattices
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We characterize the set of ground states that can be synthesized by classical two-body Ising Hamiltonians. We
then construct simple Ising planar blocks that simulate efficiently a universal set of logic gates and connections,
and hence any Boolean function. We therefore provide a new method of encoding universal computation in the
ground states of Ising lattices and a simpler alternative demonstration of the known fact that finding the ground
state of a finite Ising spin glass model is NP complete. We relate this with our previous result about emergent
properties in infinite lattices.
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I. INTRODUCTION

The physical Church-Turing thesis [1] provides a deep
connection between the science of computation and the
physical universe. It posits that the dynamics of any known
physical system can be simulated by a Turing machine [2],
a theoretical device that consists of a finite state machine
together with an infinite tape. Upon reflection, this is a
remarkable result, widely believed to be correct. An arbitrary
physical system is governed by a vast variety of different
forces, from Coulomb interactions to gravity, and there is no
reason, a priori, to suspect that all of these effects can be
replicated on one particular machine. This presents the idea
of universality: A physical system is universal if its dynamics
can be used to simulate any other physical system.

The prevalence of universality in commonly studied
systems is not only a theoretical curiosity, but also has
consequences of practical significance. Recent results in
computer science restrict our ability to predict the behavior
of such systems. Observations of universal systems led to
the strong Church-Turing thesis [3], which postulates that
a Turing machine together with a source of randomness is
computationally as powerful as any other existing universal
system. Formally speaking, we say that a task lies in P,
or is tractable, if the task can be performed efficiently by
a Turing machine; that is, the time required to perform it
scales as a polynomial of the size of the input [4]. This
thesis then postulates that any problem which lies outside P
cannot be solved with resources that scale polynomially with
respect to the size of the problem, regardless of the method of
computation used. While the existence of Shor’s algorithm in
quantum mechanics may provide an exception to this thesis [5],
it applies to all current classical models of computation.

This leads to deep insights into any universal system
that simulates a Turing machine efficiently. Suppose such a
system simulates a Turing machine operating on an intractable
problem as input. If one could efficiently compute every
physical property of this system, then one can use it to
solve the encoded problem and therefore violate the strong
Church-Turing thesis. Thus, such universal systems must
necessarily exhibit properties which no classical algorithm
can efficiently compute.

Many other universal systems have been proposed, for
example, logic circuits [6], the Game of Life [7], Rule

110 [8], and measurement based quantum computation [9].
In addition to these abstract mathematical constructs, many
surprisingly simple physical systems capable of universal
computation have also been discovered. These include billiard
balls [10], simple dynamical systems [11], and the dynamics
of three-dimensional majority voting cellular automata [12].

This motivates an interesting question: How simple can
a physical system be to still exhibit universality and thus
complex behavior? In particular, we explore what limits can
be placed on a class of Hamiltonians such that the evaluation
of their ground states still requires the capacity to perform
universal computation. We relate this to the ground state
decision problem: Given a Hamiltonian H and some number
E, does there exist a state with energy at most E?

Interestingly, the ground state decision problem is difficult
to solve even for the simple Ising lattice, which is a widely used
model to describe collective behavior in diverse systems, such
as magnetism [13], lattice gases [14], neural activity [15], and
even protein folding [16]. While an efficient solution is known
in the case of one dimension, Barahona showed in 1982 that the
computational task is generally NP complete in higher dimen-
sions [17] whenever some of the bonds are antiferromagnetic.
Here, NP denotes the class of nondeterministic polynomial
time problems; an abstract class of problems whose solutions
can be verified, but not necessarily found, in polynomial time.
Indeed, this connection has even allowed the engineering of
spin lattice Hamiltonians whose ground states help model and
study NP-complete problems [18].

The complexity of the ground state decision problem
suggested that such ground states could also embed universal
computation. Indeed, this was first proven with the adiabatical
model of quantum computation, where a simple Hamiltonian
with known ground state is adiabatically evolved to the
complex Hamiltonian whose ground state encodes the solution
to the computational problem [19,20]. To further simplify the
models and make them more suitable to be recreated in real
experiments, it has been proven that it is enough to consider
just two-body interactions in the Hamiltonian to obtain the
capability of universal computation [21–24].

In this paper we extend those studies in the classical
case and derive a general result on what ground state sets
can be synthesized by a m-body Hamiltonian on a system
of n spins. Using the circuit model of computation, we
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construct simple designer circuit blocks that can be combined
to encode a universal computer in the ground state of two-
body Ising Hamiltonians, in such a way that there is a
map between any given logic circuit to the ground states of
some Hamiltonian. This encoding, together with the strong
Church-Turing thesis, provides immediate implications on the
computational complexity of evaluating such ground states.
Furthermore, this allows us to provide a simple alternative
proof of Barahona’s result that the ground state decision
problem is NP complete [17].

We explore the connection of this result with the infinite
lattice case we studied in a previous work [25]. We showed
that there are undecidable properties in the infinite Ising model
that give rise to emergent properties in the physical Ising
lattice. Besides, the circuit blocks presented here simplify the
technical parts of that work.

This paper is organized as follows. Section II provides the
required background and notation. Section III introduces the
ground synthesis problem, while Sec. IV gives an alternate
proof of the universality of Ising ground states. Section V
explores the consequences in complexity of the computational
difficulty of the ground state problem and the the relation with
the infinite case and emergence. Section VI presents the main
conclusions.

II. BACKGROUND AND NOTATION

To explore how ground states can embed universal compu-
tation, we first address a related practical problem of ground
state synthesis; that is, given a set of desired states, is it
possible to engineer a Hamiltonian whose set of ground states
correspond to those in the desired set? In particular, when
reality dictates certain limits on the interactions available, what
are the corresponding restrictions on the possible ground states
that can be achieved? For example, denoting the state of each
spin by either 0 or 1, is it possible to find a Hamiltonian
with ground states given by {000,011,101,110}? If so, is it
possible to engineer this Hamiltonian from Ising interactions?
The solution to the above question gives us the tools to engineer
a set of states that are capable of encoding a universal circuit.

Let us first define the nomenclature used in this paper.
Denote the state of each spin by either 0 or 1. A system of
n spins is described by a binary number b = b1, . . . ,bn ∈ Zn

2,
where bi ∈ {0,1} denotes the state of the ith spin. Given a state
b, we make the following definitions.

(i) Weight. |b| is the number of 1’s in b.
(ii) 1 sites. Ones(b) is the set of indices whose correspond-

ing spins are 1. Ones(b) := {i : bi = 1}.
(iii) Descendants: a is a descendent of b if and only if

Ones(a) ⊆ Ones(b), that is, the 1 sites of a are subsets of
1 sites of b. We write this as a partial order, a � b. Dsc(b)
defines the set of all descendants of b, and Dsc(b,k) := {a :
a � b,|a| = k} are all descendants of b with weight k.

A Hamiltonian on this system is defined by a function H :
Zn

2 → R that maps each state of the system to a corresponding
energy. A general Hamiltonian is of the form

H (b1, . . . ,bn) =
∑
a∈Zn

2

cab
a1
1 b

a2
2 · · · ban

n , (1)

where a = a1a2 · · · an ∈ Zn
2, ai ∈ {0,1}, ca are arbitrary con-

stants, and the summation is taken over all binary strings of
length n. Since we can always choose a labeling of the spin
states such that one of the ground state corresponds to 0, we
assert that 0 is a ground state of H [i.e., H (0) = 0] without
loss of generality.

A Hamiltonian H is m-body if it does not contain
interactions involving m + 1 spins or greater, that is, ca =
0 ∀ a such that |a| > m. The general Ising model with an
external magnetic field is a two-body Hamiltonian of the
form [14]

H =
∑

cjkbjbk +
∑

Mjbj , (2)

where cjk are the interaction energies between spins j and k,
and Mj describes the external field at site j .

Interaction graphs provide a convenient tool to visualize
Ising Hamiltonians. Given a system of n spins, we associate
with it a graph of n vertices where each spin corresponds to a
single vertex. We draw an edge between two vertices vi and
vj if the interaction energy between them, cjk is nonzero. A
square Ising model of size N is described by an interaction
graph with vertices vj,k where j,k = 1, . . . ,N , with edge set
E = {(vj,k,vj+1,k),(vj,k,vj,k+1)} with j,k = 1, . . . ,N + 1.

The main idea of our approach is as follows. To embed a
binary function on two bits bout = f (b1,b2), we construct a
Hamiltonian Hf on b1,b2,bout with the ground state set

Gf = {00f (00),01f (01),10f (10),11f (11)}. (3)

We see that each element of Gf satisfies bout = f (b1,b2). We
define the spins in state b1 and b2 as input spins, and the bit in
state bout as the output spin. We say that the ground state Gf

encodes f .
We can then evaluate the action of f on particular input,

that is, f (x,y), by introducing the external biases on the input
spins that break the degeneracy of Hf such that the state
x,yf (x,y) has lower energy than the other elements of G. For
example, the Hamiltonian Hf (00) = Hf + b1 + b2 would have
the unique ground state {00f (00)}. Therefore, cooling such a
system to ground state would allow us to evaluate f (0,0), and
the computational task of solving for a ground state of this
system is at least as hard as evaluating f (0,0).

III. GROUND STATE SYNTHESIS

This motivates the problem of ground state synthesis; that is,
given a set of desired states, is it possible to engineer an m-body
Hamiltonian with a coinciding set of ground states and, if so,
how? The answer of this question can be directly applied to
designer ground states, a set of ground states Gf specifically
designed to encode a desired binary function f . Should we be
able to construct m-body Hamiltonians for arbitrary f , we can
establish the universality of the Ising model.

We can represent H (b) and cb as vectors in R2n, where
their components are indexed by all possible values of b ∈
{0,1}n. Equation (1) implies that H (b) = Lcb, where L is some
invertible linear map. Thus, the restriction of H to m-body
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interactions leads to a set of linear equations that constrain
H (b). More precisely, H is an m-body Hamiltonian if and
only if for each H (b) with |b| = k > m

H (b) =
m∑

p=1

ap

⎡
⎣ ∑

d∈Dsc(b,p)

H (d)

⎤
⎦ , (4)

where ap is given by the recurrence relation (see the Ap-
pendix):

ap =
{

1 p = m,

1 − ∑m−p

j=1 ap+j

(|b|−p

j

)
1 � p < m.

(5)

This leads immediately to constraints on the ground state
set G if it can be m synthesized.

Theorem 1. Suppose H is an m-body Hamiltonian on a
system of n spins. For each b with |b| = k > m, define the
sets A = {b} ∪ Dsc(b,m − 1) ∪ Dsc(b,m − 3) ∪ · · · and B =
Dsc(b,m) ∪ Dsc(b,m − 2) ∪ · · ·. Then the ground state set G
of H must satisfy

A ⊂ G ⇔ B ⊂ G (6)

for every b with k > m.
Proof. Observe that ap alternates signs for each value

of p in Eq. (5); thus, we can write Eq. (4) in the form∑
b∈A cbH (b) = ∑

b∈B cbH (b). If A ⊂ G, then the left-hand
side of this equation is 0. Since H (b) � 0 by assumption,
it follows that the right-hand side must also be 0, and vice
versa. �

This theorem immediately implies that restrictions to m-
body Hamiltonians, for any m, will also restrict the sets
of ground states that we can synthesize. In particular, an
m-body can implement only m-wise correlations. Consider,
for example, the case of an n-body system; then any ground
state set G that does not satisfy

{b : wt(b) odd} ⊆ G ⇔ {b : wt(b) even} ⊆ G (7)

can be synthesized only by a Hamiltonian with all n bodies
interacting together. One observes that the ground state set
corresponding to the parity function on a binary string (i.e.,
f (b) = |b|mod 2) violates the above condition, and hence
cannot be simulated by any two-body Hamiltonian. Thus, we
cannot simulate all binary functions directly.

The above problem can be circumvented by introducing
ancillae, additional bits within the Ising lattice that are not
designated as either input or output bits. For example, consider
simulation of the NAND gate, defined by NAND(b1,b2) =
(b1 ⊗ b2) ⊕ 1, where all arithmetic is done modulo 2. Directly,
a Hamiltonian HNAND with ground state set GNAND =
{001,011,101,110} simulates NAND. However, NAND can also
be simulated any Hamiltonian on k + 3 spins, with a ground
state set of the form G = {00s001,01s011,10s101,11s110},
where each sij denotes binary strings of length k.

Now consider binary functions f , g, h, simulated by
Hamiltonians Hf ,Hg,Hh, with outputs bf , bg and bh. The
functional composition f (g(b1,b2),h(b3,b4)) on the four input
bits bi where i = 1, . . . ,4, can be simulated by the Hamiltonian

Hg(b1,b2,bg) + Hh(b3,b4,bh) + Hf (bg,bh,bout), where bg and
bh are introduced as ancillae.

IV. UNIVERSALITY OF ISING GROUND STATES

An arbitrary Boolean circuit that takes n input bits and maps
them to m output bits can be decomposed a basic logic circuit
composed of the following components: Wires that take a spin
as input, and copies its state to a neighboring spin; and NAND

gate that can generate all Boolean functions. These require the
synthesis of the following ground state sets GWIRE = {00,11}
and GNAND = {001,011,101,110}. (In standard literature, the
FANOUT gate that copies an input bit onto two outputs spins
is also normally required. However, this operation can be
decomposed in spin systems into two wires that connect to
the same input spin.)

We the convert this to a planar circuit, that is, one in
which no wires may intersect. This requires the replace-
ment of each section where a wires intersects with a SWAP

gate, SWAP(b1,b2) = (b2,b1). We observe that this operation
can be decomposed into a network of three XOR gates,
that is, SWAP(b1,b2) = XOR1[XOR2(XOR1(b1,b2))], where
XOR1(b1,b2) = (b1 ⊕ b2,b2) and XOR2(b1,b2) = (b1,b1 ⊗ b2).
We call this the planar circuit representation of f .

Therefore, we can construct a square Ising Hamiltonian that
synthesizes f provided there exist square Ising Hamiltonians
that implement each of the basic aforementioned components,
that is, (1) wires, (2) XOR gates, and (3) XOR gates. To see that
each of these can be simulated by a two-body Hamiltonian,
we prove the following lemma.

Lemma 1. Given a set of states G on a system of three
spins with 000 ∈ G, there exists a two-body Hamiltonian that
synthesizes G if and only if

{111} ∪ Desc(111,1) ⊆ G ⇔ Desc(111,2) ⊆ G. (8)

Proof. The forward direction is a special case of Eq. (7)
for n = 3. To observe the converse, assume Eq. (8) is true.
Equation (4) implies that H is a two-body Hamiltonian if and
only if H satisfies

∑
b∈A

H (b) =
∑
b∈B

H (b), (9)

where A = {111} ∪ Desc(111,1) and B = Desc(111,2). To
see that Eq. (9) is true, observe that if A,B ⊆ G then Eq. (9) is
satisfied trivially. Otherwise, construct the Ising Hamiltonian
that has assignments

H (b) = 1

|A/G| , H (d) = 1

|B/G| , (10)

for all b ∈ A/G, d ∈ B/G. Here |A/G| is the number of
elements that lie in A but outside G. �

The above lemma gives us a method to construct all
the elements of a universal circuit from two-body nearest
neighbor Hamiltonians. Wires can be simulated through HI =
b1 + b2 − 2b1b2. Lemma 1 implies that the NAND can be
simulated directly (to see NAND can be simulated, relabel
the third bit). XOR cannot be implemented by the ground
state of a two-body Hamiltonian on three spins. However, the
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FIG. 1. (Color online) The Hamiltonian that synthesizes the XOR

Gate, HXOR, with its corresponding interaction graph (i) can be
embedded into a 3 × 3 square Ising lattice. (ii) Each original spin bi

is mapped to a set of spins Bi which are linked by HWIRE interactions.
At the ground state, all spins in each set Bi are of the same state and
hence behave as if they are a single bit.

Hamiltonian on four spins,

HXOR(b1,b2,bA,bo) = (4bA − 3)(b1 + b2 + bo) − 4bA

+ 2(b1b2 + b2bo + b1bo) + 4, (11)

with ground states {0010,0101,1001,1100} simulates XOR us-
ing bA as an ancilla. Thus, all the above gates can be simulated
by two-body Hamiltonians. Since these Hamiltonians also
involve at most four spins, their interaction graphs must also
be planar with vertices of degree at most three. Thus, they
can all be embedded in a square Ising lattice with additional
ancillae (see Fig. 1), and hence so can f .

Finally, we observe that each gate can be simulated by a
Hamiltonian on at most k spins, where k is a fixed number.
Thus, the number of spins used to simulate f is at most some
polynomial for the number of logic gates used to construct f .
Therefore, the square Ising model can simulate an arbitrary
circuit efficiently.

Theorem 2. Consider an arbitrary binary function f . There
always exists a square Ising Hamiltonian H whose ground
states encode f .

The above theorem allows us to encode any logic circuit,
and thus computational task, into the ground state of an Ising
Hamiltonian. Not only is it remarkable that the ground state
of such simple lattices are capable of simulating all physical
processes, but this fact also allows us to apply the many
results of computational complexity directly onto the task for
computing ground states for an Ising Hamiltonian.

V. COMPUTATIONAL COMPLEXITY AND EMERGENCE

Any Boolean function f can be encoded as the ground
state of an Ising Hamiltonian Hf . Suppose now that f

is intractable, then the strong Church-Turing thesis would
necessarily imply that computing a ground state of Hf would
also be intractable. In fact, the assertion is stronger. Since we
can potentially encode the output of f in the state of any
spin state, the process of determining the ground state of any
particular spin would also be intractable. In this final section,
we will use the above intuition to provide lower bounds on
the computational difficulty of the ground state problem, that
is, finding the ground state of some suitable two-dimensional,
nearest neighbor Ising Hamiltonian.

In computational complexity [4], NP denotes the class of
problems whose solutions can be verified, but not necessarily

found, in polynomial time. It encapsulates many computational
tasks that we would like to be able to solve efficiently, such
as prime factoring and the traveling salesman problem [26].
The hardest of such problems lie in the class NP complete.
Should any NP-complete problem be solved efficiently, then it
could be used as a subroutine to efficiently solve all problems
in NP and imply that P = NP. While this remains one of
the biggest theoretical questions in computer science, popular
opinion tends to favor that P is distinct from NP, and hence
efficient solutions of NP complete are unlikely.

One particularly well known NP-complete problem is the
circuit satisfiability (CSAT) problem [27]: Given a circuit with
n input bits and a single output bit described by a binary
function f , is there a set of inputs such that the output is 1?
Consider a given CSAT problem with a circuit f . Theorem 2
implies that we can construct a Hamiltonian Hf together
with a predefined output bit bo such that bo = f (x) for any
ground state of Hf . Since we can modify any Hamiltonian by
a constant without affecting its set of ground states, we can
always choose Hf such that its ground state energy is 0.

Considering the ground state decision problem, does there
exist a state with energy at most 0 under the Hamiltonian
H ′

f = Hf + (1 − bout)? The perturbation 1 − bout lifts the
degeneracy in Hf such that the resulting Hamiltonian H ′

f

will have a zero energy state if and only if there is a set of
inputs to f such that it outputs 1. Therefore, knowledge of the
ground state of Hf and hence bo clearly allows one to solve
CSAT. Therefore, the ground state decision problem is at least
NP hard. Furthermore, since Hf is a Hamiltonian on a square
Ising lattice that grows at most polynomially with the size of
the circuit, it is easy to check whether the energy of a given
state is greater than 0. Thus, the ground state decision problem
is NP complete.

We see that the above result, originally derived by Barahona
[17], flows as a natural consequence of applying Ising
lattices to solve a particular NP-complete problem. It is
stimulating then to speculate what other important results
could be obtained by applying the Ising model to other
nontrivial computational problems. The Halting problem [2]
is an exciting candidate; it and its generalizations [28]
prove that there exist many properties of Turing machines
that are undecidable. Such properties would necessarily
correspond to certain properties of the Ising model, and it
would be interesting to see if these properties are physically
relevant.

Another promising avenue of research is to consider what
the limitations on the computation of ground states imply about
the macroscopic properties of the resulting Ising lattice. For
example, it is easy to see how our results can be extended
to show that computing the correlation length of such Ising
lattices is also NP complete. This leads to the concept of
emergence in the infinite case in [25], following the path
established by Anderson in 1972 with his celebrated paper
“More is Different” [29], where he postulated that the ground
state of a spin glass may be noncomputable.

Emergent properties of a physical system are properties
which arise from the whole and are not deducible from the
physical interactions of the component parts. In “More Really
Is Different” [25], a special case of this technique was applied
to show that certain macroscopic properties of a properly
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chosen, two-dimensional, infinite periodic Ising lattice are
emergent. That is, it is possible to embed universal circuits
within infinite periodic Ising lattices, such that should certain
macroscopic properties be computed, one would be able to
decide whether a arbitrary computer program would halt. The
result naturally motivated the question “What would happen
should such lattices be finite?” In this paper we see that in
such sceneries these emergent macroscopic properties are
connected with the known NP-complete properties of finite
lattice Ising spin glasses. This relation (infinite → undecidable,
finite → NP-complete) was previously proved as well in planar
tiling problems [30], which suggests that it could be a common
feature of complex universal systems.

VI. CONCLUSION

We have derived the general conditions for a desired set
of states to be the ground state of a classical Hamiltonian
constrained to interact with a finite number of spins, including
two-body interactions, that is, the Ising model. We have pre-
sented a simple way of encoding universal circuit computation
in the ground states of Ising lattices through the construction
of Ising blocks that implement the necessary logical gates and
connections. This result can be immediately applied to derive
a simple version of Barahona’s original proof [17] that the
problem of finding states on Ising Hamiltonians is, in general,
NP complete.
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APPENDIX: DERIVATION OF EQ. (5)

We first define

gb
c (a1,a2, . . . ,ak) =

k∑
p=1

ap

⎡
⎣ ∑

d∈Dsc(b,p)

H (d)

⎤
⎦ . (A1)

Thus, for any b such that ‖b‖ > m, we have the relation

H (b) = gb
c (1,1, . . . ,αm = 1,0, . . . ,αk = 0)

=
‖b‖−1∑
k=m+1

⎛
⎝ ∑

d∈Dsc(b,k)

cd

⎞
⎠

+ gb
c (1,1, . . . ,αm = 1,0, . . . ,αk = 0) . (A2)

Now we note the fact∑
d∈Dsc(b,m)

H (d) = gb
c (β1,β2, . . . ,βm−1,0, . . . ,0) . (A3)

To compute βj , consider H (d), which has exactly mCj

terms of the form cd′ with ‖d′‖ = m. Also there exists ‖b‖Cm

terms of the form H (d). Thus, to total number cd′ terms is
‖b‖Cm

mCj . Dividing this by the total number of cd′ that are

descendant from b gives

βj =
(‖b‖

m

)(
m

j

)
(‖b‖

j

) =
(‖b‖ − j

‖b‖ − m

)
1 � j � m, (A4)

so that∑
d∈Dsc(b,m)

H (d)

= gb
c

[(
k − 1

k − m

)
,

(
k − 2

k − m

)
, . . . ,k − m + 1,1,0 . . . ,0

]
.

(A5)

Substituting into Eq. (A2)

H (b) =
∑

d∈Dsc(b,m)

H (d)

+ gb
c [1 −k−1 Ck−m,1 −k−2 Ck−m, . . . ,1

− k−(m−2)Ck−m, − (k − m),0, . . . ,0], (A6)

we eliminate the am term in the argument of gb
c . By writing

∑
d∈Dsc(b,m−1)

H (d) = gb
c

[(
k − 1

k − (m − 1)

)
,

(A7)(
k − 2

k − (m − 1)

)
, . . . ,k − m + 2,1,0, . . . ,0

]
,

etc., we can eliminate each of aj , 1 � j � m recursively and
write out an equation for H (d) entirely from the sum of its
descendants,

H (b) = gb
c (a1,a2, . . . ,aj , . . . ,am = 1,0, . . . ,0), (A8)

with

am = 1, (A9)

am−j = 1 − am

(
k − (m − j )

k − m

)

−am−1

(
k − (m − j )

k − 1

)
− am−2

(
k − (m − j )

k − 2

)

− · · · − am−(j−1)(k − m − j ). (A10)

Substituting indices p = m − j , we get

ap = 1 − ap+1(k − p) − ap+2

(
k − p

2

)

− · · · − am

(
k − p

m − p

)
1 � p < m, (A11)

which is the recurrence relation featured. Thus, if H is m-body,
then the required equation is implied. Conversely, if Eq. (A2)
is satisfied, we have

‖b‖−1∑
k=m+1

⎛
⎝ ∑

d∈Dsc(b,k)

cd

⎞
⎠ = 0 ∀ b : ‖b‖ > m, (A12)

which has no nontrivial solutions.
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