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Extraction of stochastic dynamics from time series
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We present a method for the reconstruction of the dynamics of processes with discrete time. The time series
from such a system is described by a stochastic recurrence equation, the continuous form of which is known as
the Langevin equation. The deterministic f and stochastic g components of the stochastic equation are directly
extracted from the measurement data with the assumption that the noise has finite moments and has a zero mean
and a unit variance. No other information about the noise distribution is needed. This is contrary to the usual
Langevin description, in which the additional assumption that the noise is Gaussian (δ-correlated) distributed
as necessary. We test the method using one dimensional deterministic systems (the tent and logistic maps) with
Gaussian and with Gumbel noise. In addition, results for human heart rate variability are presented as an example
of the application of our method to real data. The differences between cardiological cases can be observed in the
properties of the deterministic part f and of the reconstructed noise distribution.
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I. INTRODUCTION

There are two main reasons for noise in real data [1]. First,
as a result of the measurement process, some contamination
can be superimposed on the signal in the form of measurement
noise. This kind of noise does not change the dynamics of the
system and is relatively easy to remove (see, e.g., [1] and
references therein). We can express it as a series of random
numbers added to each successive result of measurement.
Another kind of noise is the so-called dynamical noise. As its
name indicates, this kind of noise interacts with the dynamics
of the system so that the system is perturbed by the noise at each
moment in time. Measurement noise, on the other hand, only
obstructs the true dynamics of the system by modifying the
values measured during the evolution of the system. Dynamical
noise is typically difficult to remove. Also, a small amplitude
high-dimensional deterministic component of the dynamics
of the system can be interpreted as dynamical noise. The
most difficult are such cases for which the dynamics of the
unperturbed system is nonlinear or even chaotic. Sometimes
it is very difficult to distinguish the chaotic time series from a
realization of a stochastic process [2]. That is the reason for a
growing interest in methods for the estimation of the level of
dynamical noise and, ultimately, the removal of this kind of
noise from the measurement data.

There are many methods for the reduction of measurement
noise, even for chaotic systems (e.g., [3,4] or the recently
popular methods based on wavelet analysis, e.g., [5]). Some
methods allow us to estimate the level of dynamical noise,
e.g., [6,7]. However, there are very few methods for the
reconstruction of a dynamical system given noisy data. One of
the most promising methods is based on the Kramers-Moyal
(KM) expansion (described in detail in Ref. [8] and references
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therein). This method assumes that the dynamical system can
be described by means of the Langevin equation [9]

d

dt
X(t) = D(1)(X,t) +

√
2D(2)(X,t)ξ (t), (1)

where the coefficients D(1)(X,t) and D(2)(X,t) are the two
first coefficients of the Kramers-Moyal expansion [10,11].
These coefficients can be obtained as the limits of the proper
conditional moments which can be computed from the original
results of measurement. ξ (t) is δ-correlated noise with a zero
mean and a unit variance. The method has been applied to
many different types of time series. Initially, it was used for the
analysis of the drift and diffusion coefficients in the turbulent
cascade [12]. The method was successfully applied for the
modeling of the human heart variability [13,14]. It seems
to be a promising diagnostic tool allowing us to distinguish
healthy persons from those with congestive heart failure. In
Ref. [15], it was also shown that, from the dependence of
the diffusion coefficient on the rescaled RR intervals (which is
time between two successive R peaks in the electrocardiogram)
[denoted X in Eq. (1)], new parameters of heart rate variability
asymmetry can be obtained. They mirror the ability of the
system regulating the heart rate to shorten or to lengthen the
RR intervals.

One serious limitation of the above described method is the
assumption that the noise in Eq. (1) is Gaussian (with a zero
mean, standard deviation equals to one) and δ correlated. This
means that the method may be applied only for systems in
equilibrium [16]. We propose a KM expansion-based method
of noise reconstruction in application to discrete time systems.
Using conditional probability density, we develop a method
to separate the deterministic term from the noise. Next, we
present results of the procedure for test signals obtained
from the noisy logistic and tent maps. For comparison, we
considered the presence of Gaussian and Gumbel noise [17]
in the test time series. Finally, we extracted the deterministic
f and stochastic g components of human heart rate variability
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(an RR intervals time series, recorded in a healthy male
and in typical examples of atrial fibrillation, an early state
of aortic valve stenosis, an advanced case of aortic valve
stenosis, i.e., one with the ejection fraction less than 40%). The
differences in the stochastic properties between the medical
data sets analyzed are obtained, including the properties of the
reconstructed noise distribution.

II. METHOD

We assume that the time series can be fully described by
the stochastic recurrence equation

xn+1 = f (xn) + g(xn)ξn, (2)

where the functions f (x) and g(x) are to be found. This
equation is the discrete-time analog of the original continuous
Langevin equation (1). ξn denotes a time series of the noise
variable. We do not assume any form of distribution for the
noise, apart for the fact that the first and the second moments of
ξ exist. Let them be equal to 0 and 1, respectively. Otherwise,
a simple linear transformation can be applied to ξn to make
them fulfill the above conditions. We assume, however, that
the noise has a fixed distribution, independent of n. As to the
functions f (xn) and g(xn), we only assume that the last is
strictly positive. If g(xn) would be equal to 0, no noise would
be present in the system, of course. No further assumptions to
these functions are needed.

Let us a denote x = xn and x ′ = xn+1. We can then rewrite
Eq. (2) in the form

x ′ = f (x) + g(x)ξ. (3)

In this equation, we may treat x as a deterministic variable,
while x ′ and ξ are random variables. Define p(ξ ) as the
probability density of ξ . We can also define the conditional
probability density

q(x ′ | x) = q(xn+1 = x ′ | xn = x). (4)

As opposed to p(ξ ), the approximate form of q(x ′ | x) can be
easily found through the analysis of the xn series. To estimate
q(x ′ | x) for the given x, we first search in the time series for
all the pairs {xk,xk+1} for which xk = x. In practice, this means
binning the data and choosing such pairs of points {xk} and
{xk+1} which fall into the bins of the width δ containing x and
x ′, respectively. Let us denote the number of these pairs by Nj

and also find Ni , the number of the points {xk} in the whole
time series. The conditional probability is now given by

Q

[
x ′ ∈

(
x ′ − δ

2
,x ′ + δ

2

) ∣∣∣∣x ∈
(

x − δ

2
,x + δ

2

)]
= Nj

Ni

.

(5)

The conditional probability density function q(x ′ | x) can be
now given by

q(x ′ | x) ∼= Nj

Ni · δ
. (6)

For each bin of width δ the conditional probability Q is
determined and in each the probability density is given by
Eq. (6).

To determine the functions f (x) and g(x), we multiply (3)
by p(ξ ) and integrate∫ +∞

−∞
x ′p(ξ )dξ =

∫ +∞

−∞
f (x)p(ξ )dξ +

∫ +∞

−∞
g(x)ξp(ξ )dξ.

(7)

Since x is independent of ξ , we can rewrite (1) in the form∫ +∞

−∞
x ′p(ξ )dξ = f (x)

∫ +∞

−∞
p(ξ )dξ + g(x)

∫ +∞

−∞
ξp(ξ )dξ.

(8)

On the right-hand side, the first integral is equal to 1 as an
integral of the probability density function. The second integral
is the mean value of ξ , equal to 0 by assumption. Thus, Eq. (2)
becomes

f (x) =
∫ +∞

−∞
x ′p(ξ )dξ. (9)

From elementary probability theory, if the x ′ is a function
of ξ , the probability densities fulfill the condition

p(ξ | x)dξ = q(x ′ | x)dx ′. (10)

On the other hand, while x and ξ are independent, we can write

p(ξ | x) = p(ξ ). (11)

From (10) and (11) together,

p(ξ )dξ = q(x ′ | x)dx ′, (12)

and Eq. (3) becomes

f (x) =
∫ +∞

−∞
x ′q(x ′ | x)dx ′. (13)

To find g(x), we multiply (3) by ξp(ξ )dξ and integrate. As
a result, we obtain∫ +∞

−∞
x ′ξp(ξ )dξ

= f (x)
∫ +∞

−∞
ξp(ξ )dξ + g(x)

∫ +∞

−∞
ξ 2p(ξ )dξ. (14)

Now, the first integral on the right-hand side is equal to 0 and
the second integral is equal to 1. To express the integral on the
left side by x ′ and x, we transform Eq. (3) into

ξ = x ′ − f (x)

g(x)
(15)

and use Eq. (12). As a result, we obtain∫ +∞
−∞ x ′2q(x ′ | x)dx ′

g(x)
− f (x)

∫ +∞
−∞ x ′q(x ′ | x)dx ′

g(x)
= g(x).

(16)

Expression (16) is always valid as g(x) > 0 by assumption.
By taking this into account as well as Eq. (4), we finally obtain

g(x) =
√∫ +∞

−∞
x ′2q(x ′ | x)dx ′ − f 2(x). (17)

For some x, because of numerical errors, it may be that∫ +∞
−∞ x ′2q(x ′ | x)dx ′ < f 2(x) and, as a result, Eq. (17) has
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no real value. In such cases, the value of g is assumed to
be less than the absolute error of its computation and is set
equal to zero. The integrals in Eqs. (4) and (17) are computed
numerically, e.g., by means of the trapezoidal rule.

In the next step, we have to determine the parameter δ and
whether the analyzed time series is long enough to apply the
method presented here. It is clear that the narrower the width
of the bin δ, the more accurate the recognition of the form of
the functions f and g. On the other hand, if δ is too small,
too few pairs {xn,xn+1} fulfill the relation (4). This increases
the error of the method. Keeping the number of time series
elements in a single bin at least 100 [18], the minimum length
of the time series L should be of the order of 100 · M where
M is the total number of the bins, each of the width δ. If the
smallest element of the time series is xmin and the maximum
xmax, we have

M = xmax − xmin

δ
. (18)

That gives us the final condition that relates L and δ:

L � 100
xmax − xmin

δ
. (19)

In many papers that use similar methods to ours, very long
test data sets are generated to minimize the problem of poor
statistics. Here, we use different examples of data set lengths,
especially such that are comparable with the lengths of signals
used in experiments. To avoid the problem of a large spread
of the reconstructed functions at the extreme values of the
argument, we limited the fitting procedure for f (x) and g(x)
to an inner range of the argument. The details are given in the
following.

III. TEST OF THE METHOD

We test the method developed in the previous section by
extracting the deterministic and stochastic parts of the system
from the time series. As an example, we used two different,
but typical, recurrence systems to generate the artificial noisy
time series. We tested the method for Gaussian and for Gumbel
noise [17]. For the first test, we chose the logistic map with
Gaussian white noise added and in the form

xn+1 = 2.13xn(1 − xn) + (0.106xn + 0.02)ξn. (20)

FIG. 1. Return map of the first 104 points generated using the
recurrence equation (20) for the logistic map with multiplicative white
noise.
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f(x)= -2.16x2+2.14x-0.001 g(x)=0.10x+0.023

FIG. 2. Functions (a) f and (b) g determined from the data
presented in Fig. 1 using the reconstruction method. The black
diamonds mark the data used in the fitting procedure (see text). The
functions obtained are in good agreement with those used for the
generation of the data by Eq. (20).

In the above example, ξn is a series of white Gaussian random
numbers with zero mean and a unit variance. The amplitude
of the noise term is not a constant but depends on xn. The
coefficients in Eq. (20) at the noise term are arbitrary g(x), but
we have checked that the method works for other choices. The
small constant term (0.02) was added because even a small
level of noise, independent of ξ , added to the logistic equation
results in a strong effect. Also, we would like to demonstrate
how precise is the result of the procedure we used to extract the
function f (x) and g(x). The map of the first 10 000 iterations
of (xn) is depicted in Fig. 1.

To obtain the function f (x) and g(x), we applied the method
described in the previous section to the time series of the length
L = 105 and M = 200. The plots of both extracted functions
are presented in Fig. 2 as gray crosses. The function f (x) can
be approximately described by a quadratic equation and the
function g(x) is linear. These forms of the fit were assumed a
priori as trial functions and compared to the original. A similar
procedure was performed for the other systems studied here.
We compared the formulas for f (x) and g(x) obtained from
the reconstruction method with the expressions in Eq. (20).
The fits are

f (x) = −2.022x2 + 2.028x + 0.019, (21)

g(x) = 0.083x + 0.027. (22)

FIG. 3. Return map of the first 104 iterations of the recurrence
equation for the tent map with multiplicative white noise [Eq. (25)].
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M. PETELCZYC, J. J. ŻEBROWSKI, AND J. M. GAC PHYSICAL REVIEW E 86, 011114 (2012)

TABLE I. The results for f (x) and g(x) for the tent map with L = 105.

M f (x) Pearson f g(x) Pearson g

50 1.174x + 0.012 and −1.197x + 1.189 0.994 0.484x2 − 0.702x + 0.258 0.997
200 1.179x + 0.001 and −1.199x + 1.197 0.999 0.404x2 − 0.623x + 0.239 0.998
400 1.174x + 0.012 and −1.198x + 1.198 0.999 0.376x2 − 0.592x + 0.230 0.996

Original f (x) Original g(x)
f (x) = 1.2x for x < 0.5 g(x) = 0.45x2 − 0.675x + 0.253

f (x) = 1.2(1 − x) for x > 0.5

The coefficient of determination R2 equals 0.87 and 0.55,
respectively. Note the larger spread of the reconstructed values
at both ends of the argument range. This is an effect due to the
poor statistics at the external bins and results in the difference
between the functions obtained and those used in the map (20).
Therefore, a careful extraction of f (x) and g(x) from the data
is critical for the method and depends on the binning. When we
limited the calculation of fits to the bins in which the number
of data points exceeds 100 [see Eq. (4)], we obtained a much
better accuracy:

f (x) = −2.159x2 + 2.139x − 0.001, (23)

g(x) = 0.10x + 0.023. (24)

Note that this limitation improved the coefficients of determi-
nations R2 from 0.87 to 0.97 (for f ), and 0.55 to 0.91 (for g).

The accuracy of our method depends on the length of the
times series L and number of bins M [see Eq. (19)]. The proper
determination of the parameters L, M will be studied in detail
in the following example (for the tent map with Gaussian
noise):

xn+1 = 1.2xn + (0.45x2 − 0.675x + 0.253)ξn for

xn < 0.5,

(25)
xn+1 = 1.2(1 − xn) + (0.45x2 − 0.675x + 0.253) ξn for

xn > 0.5.

The map of the first 10 000 pairs (xn,xn+1) is depicted in Fig. 3
starting from x0 = 0.3. The calculations were done for L =
105, with different numbers of bins M = 400, 200, and 50.
The functions f (x) and g(x) were computed for the bins for
which the number of pairs was more than 100. The results

of the calculations together with the Pearson coefficients are
given in Table I.

A similar numerical experiment was done for a shorter time
series with L = 2 × 104 for which with M = 400, 200, 40, 20,
and 10. The mean and the variance of the reconstructed noise
are presented in the last column of Table II.

It can be seen that computation of f (x) and g(x) even for
shorter time series is acceptable and in good agreement with
these functions used in the generation procedure. Note that
the results for g(x) obtained for the series with L = 105 and
2 × 104 with M = 400 agree relatively poorly with the original
formulas, but have a high value of the Pearson coefficients.
This is the effect of the indirect computation of the function
g(x) using Eq. (17) from the data. The accuracy of the
calculation of f (x) has an effect on the accuracy for g(x).

The results presented in Tables I and II are in agreement
with Eq. (19). Aside from keeping the number of data points
in each single bin used in the calculation larger than 100,
one should check the average number of xn per bin in the
calculation. As an example, in Table II for M = 200, the
average number of points is exactly 100, while for M = 400,
the average is 50. In the latter case, the determination of the
g(x) function is not accurate. Moreover, the number of bins
affects also the reconstruction of the noise ξn using Eq. (15)
(see the mean and variance in the last two columns in Table II).
The larger the number of bins, the better the reconstruction
of the noise. The distribution of the noise obtained from
the time series with L = 2 × 104 is the best for M = 200
and 400. Note, on the other hand, that for M = 400 the
reconstruction of the functions f (x) and g(x) is very poor.
The best quality of the extraction of f (x) and g(x) and of the
statistical properties of the reconstructed noise ξn values were
obtained for M = 200 [see Table II and Figs. 4(a) and 4(b)].

TABLE II. The results for f (x), g(x) for the tent map with L = 2 × 104. Mean μ and σ 2 of the reconstructed noise distribution are shown
in the last two columns.

M f (x) Pearson f g(x) Pearson g μ σ 2

10 1.3x + 0.029 and −1.037x + 0.966 0.825 1.076x2 − 1.267x + 0.393 0.962 0.84 0.83
20 1.116x + 0.042 and −1.102x + 1.12 0.996 0.605x2 − 0.815x + 0.284 0.998 0.524 0.929
40 1.075x + 0.059 and −1.193x + 1.185 0.995 0.495x2 − 0.713x + 0.260 0.997 0.296 0.983
200 1.244x − 0.021 and −1.205x + 1.2 0.999 0.40x2 − 0.625x + 0.241 0.981 0.064 0.996
400 1.12x + 0.038 and −1.21x + 1.204 0.999 0.32x2 − 0.749x + 0.276 0.986 0.032 0.998

Original f (x) Original g(x)
f (x) = 1.2x for x < 0.5 g(x) = 0.45x2 − 0.675x + 0.253

f (x) = 1.2(1 − x) for x > 0.5
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FIG. 4. Functions (a) f and (b) g determined from the data
presented in Fig. 3 using the reconstruction method. The black
diamonds mark the data points used in the fitting procedure (see
text).

This numerical experiment shows the validity of the relation
L � 100M [Eq. (19)]. Each ξn obtained by our method is
quantitatively comparable to the ξn used during the generation
of the map. 50 consecutive values of the original time series
of ξn are depicted in Fig. 5(a) by the black full diamonds
and the reconstructed ξn by the empty diamonds. Figure 5(b)
depicts the difference between the original values for the noise
and the ξn obtained from our method. Note, however, that
the differences depend on the quality of the reconstructed
functions f (x) and g(x). Here, the reconstruction of ξn is
calculated for L = 2 × 104 and the mean and variance for
reconstructed noise distribution (Table II) are acceptable even
though the individual differences � in Fig. 5(b) are relatively
large, i.e., between −0.2 and 0.2.

We will now show that the reconstruction method can
be successfully applied to data with noise which has not
necessarily a Gaussian distribution. As an example, we used
the logistic map with Gumbel noise [17] but with the limitation
of zero mean and variance equal to 1. We constructed the map
in the form

xn+1 = 2.13xn(1 − xn) + (0.056xn + 0.02)ξn. (26)

The first 10 000 iterations are depicted in Fig. 6. ξn is now
Gumbel noise with the probability density function (PDF)

FIG. 5. (a) 50 consecutive values of the original noise ξn (black
full diamonds) and the results of the reconstruction from the data
presented in Fig. 3 (open diamonds), (b) the differences � between
the original and the reconstructed ξn.

FIG. 6. Return map of the first 104 iterations of the recurrence
equation for the logistic map with multiplicative Gumbel noise
[Eq. (26)].

given by

P (y) = exp

(
A − y

B

)
exp

[
exp −

(
A − y

B

)]
. (27)

The parameters A,B > 0 define the mean and the variance
and were selected to obtain the properties for the moments of
the distribution assumed here. L = 105 points with M = 200
bins were used in the calculations. The functions f (x) and
g(x) extracted from the data are presented in Fig. 7. The black
diamonds mark the bins where the number of points xn exceeds
100 and the following fits for f (x) and g(x) were obtained:

f (x) = −2.07x2 + 2.06x + 0.017, (28)

g(x) = 0.062x + 0.017. (29)

The reconstruction of the consecutive values of the noise
ξn is presented in Fig. 8(a). A good agreement of the original
values for the noise (black full diamonds) and those calculated
by our method from Eq. (15) (open diamonds) was obtained.
In Fig. 8(b), the difference between original values of noise
and ξn values obtained from our method are depicted. These
differences fluctuate around zero. In comparison to the results
presented in Fig. 5(b), we note that the time series length
was L = 105, i.e., longer than in previous cases. As a result,
smaller values for � were obtained for this example. The
parameters obtained for the distribution of the reconstructed
noise were μ = 0.048 and σ 2 = 0.999; the skewness was
1.087 while for the original noise data the value was 1.1395.
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FIG. 7. Functions (a) f and (b) g determined using the re-
construction method from the data presented in Fig. 6. The black
diamonds mark the data points used in the fitting procedure (see
text).
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FIG. 8. (a) Example of a sequence of consecutive values of
the original noise ξn (black full diamonds) and the corresponding
reconstructed noise (open diamonds) obtained from the data presented
in Fig. 6. (b) The differences � between the original and the
reconstructed (ξn).

For the kurtosis, 1.98775 was obtained while for the original
data it equals 2.4. The difference between the reconstructed
and the original value for the kurtosis is due to its large
sensitivity to outliers. Apart from this difference, the method
was successfully applied to a map with Gumbel noise. Not
only the deterministic and stochastic components were found,
but also the reconstruction of the noise itself was performed.

IV. HEART RATE VARIABILITY ANALYSIS

Next, we applied the method to heart rate variability time
series. For comparison, four different examples of heart rate
variability were chosen: a healthy young male (25 years old),
a male patient with atrial fibrillation (AF) (65 years old),
two male patients with aortic valve stenosis, the first (ST)
had an ejection fraction 71% (25 years old) and the second
(LST) had an ejection fraction 40% (23 years old). In medical
literature, ejection fraction is denoted %EF. Note that the data
were chosen randomly (without preselection of the individual
patient) from a large database of patients at the Institute of
Cardiology. We analyzed 6-h-long nighttime data sets recorded
between 9 p.m and 6 a.m. The heart rate variability time
series, the RR intervals [19], were extracted from a 24-h
Holter ECG recording using the Del Mar Reynolds system
(Spacelabs) at the Institute of Cardiology (Warsaw, Poland).
The data were checked manually by a cardiologist: normal
beats were detected, artifacts were deleted by hand. The data
were sampled at 128 Hz. No arrhythmia filtering was applied.
There are a different number of points in each signal: 21801
(norm), 28831 (AF), 25701 (ST), and 18484 (LST). However,
the results presented in Table III for the distribution of the noise
of heart rate variability (HRV) were obtained for all examples
from the first 18 470 values of ξ .

The return maps of RR intervals as well as the results of
computation are presented in Figs. 9 and 10. In Fig. 9, we
compare the healthy male (sinus rhythm only) and the example
of atrial fibrillation. In Fig. 9(a), the “torpedo” shape of the
return map typical for normals [20] can be seen: it is narrow for
short RR intervals (small variance) and wider for the longer
ones. The map (xn,xn+1) for AF is presented in Fig. 9(e).
The occurrence of the supraventricular arrhythmia perturbs
the natural dynamics of sinus heart rhythm. The functions

FIG. 9. Comparison of the results for heart rate variability from
a healthy person (left column) with those for a patient with atrial
fibrillation (right column). (a), (e) Return maps of the heart rate
variability recorded at nighttime; (b), (f) the functions f determined
from the time series using the reconstruction method; (c), (g) the
functions g determined from the time series using the reconstruction
method; (d), (g) the distribution obtained for the reconstructed
noise ξn.

f (x) for both examples are linear [Figs. 9(b) and 9(f)], but
with different coefficients (see Table III). Note that f (x) for
AF is almost flat. What is more, the range of the function g(x)
is much larger for AF in comparison to the healthy case. This
means that for AF the amplitude of noise is larger than for
sinus rhythm. In the last row of Fig. 9, the distribution of the
reconstructed noise ξn is given with the statistical parameters
in Table III. Referring to the assumptions of our method, we
obtained the means μ close to zero, and the variances σ 2 close
to unity. The subtle differences are seen in the higher moments
of the two distributions.

In Fig. 10, we compare two patients (of a similar age)
but with different stages of aortic valve stenosis. The male
with LST is at a larger risk of cardiac death than the case
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TABLE III. The results for f (x) extracted distribution of noise of HRV: mean, μ; variance, σ 2.

Type f (x) R2 μ σ 2 Skewness Kurtosis

Healthy 0.87x + 0.13 0.997 0.059 0.998 0.449 2.061
AF 0.032x + 0.721 0.197 0.029 1.01 0.996 1.673
ST 0.84x + 0.134 0.997 0.033 0.967 1.331 10.321
LST 0.864x + 0.149 0.991 0.037 1.0 − 3.443 22.92

ST for whom the ability of the heart to pump blood is not
seriously impaired. In Fig. 10(a), a torpedo shape of the return
map is also visible, and no significant change of the shape

FIG. 10. Comparison of the results for heart rate variability from
two patients with aortic valve stenosis: left column (ST patient) and
right column (LST patient-with a low ejection fraction). (a), (e)
Return maps for the heart rate variability at nighttime; (b), (f) the
functions f determined from the time series using the reconstruction
method; (c), (g) the functions g determined from the time series using
the reconstruction method; (d), (g) the distributions obtained for the
reconstructed noise ξn.

compared to the normal in Fig. 9(a) is visible. The changes in
the dynamics of heart rate variability due to stenosis are well
visible for the case LST in Fig. 10(e). The dynamics is now
completely changed: instead of a single torpedo, three “clouds”
of points occur [21]. In this time series, only 1.8% of premature
beats (arrhythmias) were detected so that the changes in the
shape of the map indicate a different organization of sinus
rhythm. The functions f (x) for both examples are linear
[Figs. 10(b) and 10(f)] with similar coefficients (see Table III).
In Figs. 10(d) and 10(h), the distributions of the reconstructed
noise are given. Their shapes differ essentially, which is
consistent with the statistical parameters for these cases
(Table III). The skewness for the first stenosis patient is
positive, while for the LST patient it is negative. Only for
this medical example, a negative skewness was obtained. The
LST patient has a left asymmetric distribution of the noise.
The kurtosis for the reconstructed noise for stenosis is much
larger than for the healthy and for the AF case. Kurtosis
for the LST patient is twice larger than for ST patient and
11 times larger than for a healthy person. To measure the
sensitivity of the noise distribution potentially caused by the
occurrence of the outliers, we did the following additional
analysis. The calculations of the higher moments were redone
for ξ values from the range 〈mean − 3*standard deviation,
mean + 3*standard deviation〉. This range contains 99.3% of
the total ξ values for the case ST, while for LST, 97.7%.
We thus limited the effect of the outliers in the data on our
calculation. In spite of this, we again obtained a negative
skewness for LST (−0.50) and a large difference between
the cases of arterial stenosis for the kurtosis (3.67 for LST
versus 0.03 in ST). The medical examples are used here solely
to demonstrate the application of our algorithm. A study on a
much larger group of patients needs to be performed to assess
the potential use of our method to medical diagnostics.

V. CONCLUSIONS

We present a method for the reconstruction of the dynamics
of a discrete-time system from its noisy time series. The
method estimates the deterministic component f and the
noise term g. We showed analytically how these functions
can be obtained and how they can be extracted from real
data. We also discussed the practical aspects of the method
given by the relation between an adequate length of the time
series and the number of bins used in the computations. To
ensure a good quality, we introduced limitations on the ranges
of the argument in the fitting procedure used to obtain the
mathematical formulas for the functions f (x) and g(x). We
limited the analysis to such bins where the number of counts
exceeds 100. Our method has the valuable advantage over
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the methods based on the continuous Langevin equation. The
method described here can be applied to various types of
noise present in the system, not only for Gaussian noise. Note,
however, that the assumption about the first two moments of
its distribution is necessary: we assume that they are finite and
have a zero mean and a unit variance. We tested the method on
artificial time series with noise using three types of signals
for the tests. These were the tent and logistic maps with
multiplicative Gaussian noise with a quadratic and a linear
form for the g(x) function, respectively. The third test signal
was obtained using the logistic map with Gumbel noise. We
obtained a good agreement between the original f (x) and
g(x) functions used to generate the time series and the series
reconstructed using our method. What is more, we were able
to reconstruct successfully the consecutive ξn for the Gaussian
as well as for the Gumbel noise.

A comparison of the properties of the heart rate variability
of two arterial valve stenosis patients in different stages of
the advancement of the disease shows a similarity in the
f (x) function. The noise reconstructed for the patient with an
advanced stenosis (LST) has a negative skewness and a large
kurtosis. The higher moments of the noise distribution obtained
for these patients indicate large differences in comparison
to those of the Gaussian distribution. This seems to be in
agreement with the results obtained by Hayano et al. [22], who
showed that an increase of non-Gaussianity (measured by an
index) of heart rate variability predicts cardiac mortality. On
the other hand, the effect of large differences between skewness

and kurtosis of the reconstructed noise for the two stenosis
patients studied here could be attributed to the occurrence
of outliers in the series (especially for the case of advanced
stenosis LST), which affect the values of the higher moments.
We therefore removed most of the outliers and found that
qualitatively the results remained unchanged. In further work,
we are planning to verify, using a much larger database, if the
occurrence of outliers is typical for advanced stenosis. The
primary aim of this paper was to demonstrate the effectiveness
of our method for the reconstruction of noise from empirical
data. The first results presented here may be also taken as an
indication that the analysis may find application for medical
diagnosis. The ability to extract the noise acting in the system is
new and may be applied to study fluctuations in many different
kinds of time series. Together with the analysis of the higher
order Kramers-Moyal terms reported recently for heart rate
variability [18], the analysis of the properties extracted noise
may lead to new developments.
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