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We study nonequilibrium steady states of the one-dimensional discrete nonlinear Schrödinger equation. This
system can be regarded as a minimal model for the stationary transport of bosonic particles such as photons
in layered media or cold atoms in deep optical traps. Due to the presence of two conserved quantities, namely,
energy and norm (or number of particles), the model displays coupled transport in the sense of linear irreversible
thermodynamics. Monte Carlo thermostats are implemented to impose a given temperature and chemical potential
at the chain ends. As a result, we find that the Onsager coefficients are finite in the thermodynamic limit, i.e.,
transport is normal. Depending on the position in the parameter space, the “Seebeck coefficient” may be either
positive or negative. For large differences between the thermostat parameters, density and temperature profiles
may display an unusual nonmonotonic shape. This is due to the strong dependence of the Onsager coefficients
on the state variables.
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I. INTRODUCTION

The discrete nonlinear Schrödinger (DNLS) equation [1,2]
has important applications in many domains of physics. As
is well known, such an equation arises in several different
problems. A classical example is electronic transport in
biomolecules [3]. In the context of optics or acoustics, it
describes the propagation of nonlinear waves in a layered
photonic or phononic system. Indeed, in a suitable limit,
the dynamics of high-frequency Bloch waves is described
by a DNLS equation for their envelope (see Refs. [4,5] for
details). On the other hand, in the realm of the physics of cold
atomic gases, the equation is an approximate semiclassical
description of bosons trapped in periodic optical lattices (see,
e.g., Ref. [6] and references therein for a recent survey). Many
other physical problems have been recently addressed having
the DNLS equation as a basic reference model, such as the
effect of nonlinearity on Anderson localization [7,8] and the
violation of reciprocity in wave scattering [9], just to mention
a few recent examples.

While a vast literature has been devoted to localization
problems, much less is known about finite-temperature prop-
erties. An analysis of the equilibrium statistical mechanics of
the continuous nonlinear Schrödinger equation was presented
in Ref. [10]. The discrete case was considered more recently
in Ref. [11], while the relaxation of localized modes (discrete
breathers) in the presence of phonon baths has been discussed
in Refs. [12,13]. Several results can be translated to other types
of nonlinear lattices, where a DNLS-like equation represents
an approximation of the lattice dynamics [14].

An even less explored field is that of nonequilibrium
properties of the DNLS equation. The relaxation to equilibrium
of the nonlinear Schrödinger equation with saturated, focusing
nonlinearity has been studied in Ref. [15], where the evolution
was projected over a finite number of Fourier modes (as
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opposed to the spatial discretization of the DNLS case), finding
numerical evidence of slow relaxation and metastability.

However, the case of an open system that steadily exchanges
energy with external reservoirs has not been treated so far. The
presence of two conserved quantities naturally requires one to
argue about coupled transport, in the sense of ordinary linear
irreversible thermodynamics. Despite the very many studies of
heat conduction in oscillator chains [16,17], works on coupled
transport are scarce [18–21]. Interest in this field has been
revived by recent works on thermoelectric phenomena [22,23]
in the hope of identifying dynamical mechanisms that could
enhance the efficiency of thermoelectric energy conversion
[24,25].

In order to investigate transport properties, we need to
introduce the interaction of the system with external reservoirs
that are capable to exchange energy and/or norm. For models
like DNLS, this is much less straightforward than for standard
oscillator chains, where, e.g., Langevin thermostats are a
typical choice [16,17]. Here we propose and test a very simple
Monte Carlo scheme which is easy to implement and suitable
for the model at hand. Another important difference between
the DNLS and standard oscillator chains (like the Fermi-
Pasta-Ulam or Klein-Gordon models) is that its Hamiltonian
is not the sum of kinetic and potential energies. Thus, it is
necessary to introduce suitable operative definitions of kinetic
temperature T and chemical potential μ to measure such
quantities in actual simulations. In the following, we make use
of a recent definition of the microcanonical temperature [26]
and extend it for the estimate of the chemical potential.

By imposing small T and μ jumps across the chain, we can
determine the Onsager coefficients, which turn out to be finite
in the thermodynamic limit, i.e., both energy and mass con-
ductions are normal processes. From the Onsager coefficients,
we can thereby determine the “Seebeck coefficient” S [27],
which we find to be either positive or negative depending on the
thermodynamic parameters (i.e., mass and energy density). For
larger temperature or chemical-potential differences, although
one can still invoke the linear response theory, some surprising
phenomena emerge. One example is the “anomalous heating”
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that can be observed when the chain is attached to two
thermostats operating at the same temperature: along the chain,
T reaches values that are as much as three times larger than
that imposed on the boundaries. This phenomenon can be
observed only in the case of coupled transport, since it is
due to the variable weight of the nondiagonal terms of the
Onsager matrix. It is apparent in the DNLS because of the
strong variability of the Onsager coefficients.

The paper is organized as follows. In Sec. II, we introduce
the model and describe the heat baths. In Sec. III, we define the
relevant thermodynamic observables and the formalism (e.g.,
the Onsager coefficients) necessary to characterize nonequi-
librium steady states. Section IV is devoted to a discussion
of the steady states, both in the case of small and large T , μ

differences. In Sec. V, we provide a pictorial representation of
the general transport properties by reconstructing the zero-flux
curves. Finally, the last section is devoted to the conclusions
and to a brief summary of the open problems.

II. SETUP

In one dimension, the DNLS Hamiltonian writes

H = 1

4

N∑
i=1

(
p2

i + q2
i

)2 +
N−1∑
i=1

(pipi+1 + qiqi+1), (1)

where the sum runs over the N sites of the chain. The sign
of the quartic term is positive, as we refer to a repulsive-atom
BEC, while the sign of the hopping term is irrelevant due to
the symmetry associated with the canonical (gauge) transfor-
mation zn → zne

iπn (where zn ≡ (pn + ıqn)/
√

2 denotes the
amplitude of the wave function). The equations of motion are

iżn = −zn+1 − zn−1 − 2|zn|2zn, (2)

with n = 1, . . . ,N , and fixed boundary conditions (z0 =
zN+1 = 0). The model has two conserved quantities, namely,
the energy and the total norm (or total number of particles),

A =
N∑

i=1

(
p2

i + q2
i

)
. (3)

As a consequence, the equilibrium phase diagram is two
dimensional, as it involves the energy density h = H/N

and the particle density a = A/N . A reconstruction of the
diagram was carried out in Ref. [11] within the grand-canonical
ensemble with the help of transfer integral techniques. It
is schematically described in Fig. 1: the lower dashed line
corresponds to the ground state (T = 0) upon varying the
particle density, and the upper dashed line corresponds to
infinite temperature. The nonequilibrium studies described in
this paper correspond to the region in between two such curves.

We aim to characterize the steady states of the chain
when put in contact (on the left and right boundaries) with
two thermostats at temperature TL and TR and chemical
potentials μL and μR , respectively. The implementation of
the interactions with a heat bath is often based on heuristics.
In particle models, the simpler schemes consist of either
adding a Langevin noise or assuming random collisions
with an equilibrium gas [16,17]. For the DNLS, this is less
straightforward: adding white noise and a linear dissipation
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FIG. 1. (Color online) Parametric plots of the local norm and
energies [a(y), h(y)] for TL = TR = 1, μL = 0, μR = 2 and increas-
ing chain lengths N = 200,800,3200 (solid lines, bottom to top).
The three (blue) dashed lines are the isothermal T = 0, T = 1, and
T = ∞, respectively. Lines at constant chemical potential (open
symbols) μ = 0, μ = 1, and μ = 2 (left to right, respectively) are
obtained by equilibrium simulations.

drives the system to infinite temperature, i.e., to a state in
which relative phases are uncorrelated [28].

In the absence of a first-principles definition of heat bath, we
consider two phenomenological Monte Carlo heat baths. The
general scheme of this kind of heat bath involves a stochastic
dynamics, which perturbs the canonical variables p1 →
p1 + δp1 and q1 → q1 + δq1 [30] at random times, chosen
according to a uniform distribution in the interval [tmin,tmax].
The perturbations δp and δq are independent random variables
uniformly distributed in the interval [−R,R]. Moves are
accepted according to the standard Metropolis algorithm,
evaluating the cost function exp {−T −1

L (�H − μL�A)}, with
TL and μL being the temperature and the chemical potential
of the heat bath. This kind of thermostat exchanges both
energy and particles. In some cases, however, we need to study
the chain behavior in the absence of one of the two fluxes
(energy and norm). A simple way to study these setups is to
modify the perturbation rule of the thermostat, requiring the
exact conservation of the corresponding local density (energy
density or norm density). We have thus the following two
schemes:

Norm-conserving thermostat—The perturbation acts only
on the phase φ1 of the complex variable z1. More precisely
we impose φ1 → φ1 + δφ1 mod(2π ), where δφ1 is a random
variable, uniformly distributed in the interval [0,2π ]. This
dynamics conserves exactly the local amplitude |z1|2 and
therefore the total norm A.

Energy conserving thermostat—In this case, it is necessary
to go through two steps to conserve the energy,

e1 = |z1|4 + 2|z1||z2| cos (φ1 − φ2). (4)

First, the amplitude |z1| is randomly perturbed. As a result,
both the local amplitude and the local energy change. Then,
by inverting, Eq. (4), a value of φ1 that restores the initial
energy is sought. If no such solution exists, we go back to the
first step and choose a new perturbation for |z1|.
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As a first test of the Monte Carlo dynamics, we verified that
the T = const and μ = const lines are correctly reproduced at
equilibrium, i.e., for TL = TR and μL = μR (see, e.g., the open
symbols in Fig. 1). In particular, the μ = 0 line is in accordance
with the curve computed with the transfer integral method (see
Fig. 1 in Ref. [11]), as well as with the approximate analytical
expression given in Ref. [29]. Notice that both sets of curves are
not monotonous in the (a,h) plane, indicating the presence of
a nontrivial relation between the energy-norm parametrization
and the temperature-chemical potential one.

There is a basic difference between the two types of ther-
mostats. In the general scheme, a steady state is characterized
by four parameters TL, TR , μL, and μR . On the other hand, for
the norm-conserving scheme, we only assign TL, TR and the
norm density atot of the whole chain. As a consequence, the
value of μ on the boundary is not fixed and must be computed
from the simulation. If the steady state is unique, the former
thermostating scheme must yield the same results once the
chemical potentials are suitably fixed. A numerical test of
this equivalence has been performed by reconstructing some
zero-flux profiles with both thermostats. The curves overlap
reasonably well, although some small systematic deviations
are present. This is because the norm flux is never exactly
zero in the nonconservative case (typically of the order of
∼10−4 in a chain of 1000 sites). In addition, there are slightly
different thermal resistance effects in the two schemes. Besides
those discrepancies, we conclude that the proposed schemes
work equally well for the generation of nonequilibrium steady
states.

As usual in nonequilibrium molecular dynamics simu-
lations, some tuning of the bath parameters is required to
minimize boundary resistance and decrease the statistical
errors, as well as the finite-size effects [16]. For our Monte
Carlo thermostats, we observed that it is necessary to tune the
perturbation amplitude R. Typically, there is an optimal value
of R for which one of the two currents is maximal (keeping the
other parameters fixed), but this value may depend on T and μ.
Since it would be impractical to tune the thermostat parameters
in each simulation, we decided to fix them in most of the
cases. In particular we have chosen R = 0.5, tmin = 10−2, and
tmax = 10−1. Some adjustments have been made only when
the fluxes were very small.

III. PHYSICAL OBSERVABLES

In order to characterize the thermodynamic properties
of the DNLS, we extend the approach of Ref. [26] to
derive an operative definition not only of the microcanonical
temperature but also of the chemical potential. The starting
point is the usual definitions T −1 = ∂S/∂H and μ/T =
−∂S/∂A, where S is the thermodynamic entropy. The partial
derivatives must be computed taking into account the existence
of two conserved quantities (hereafter called C1 and C2).
Thus,

∂S
∂C1

=
〈

W‖�ξ‖
�∇C1 · �ξ

�∇ ·
( �ξ

‖�ξ‖W

)〉
, (5)

where 〈·〉 stands for the microcanonical average,

�ξ =
�∇C1

‖ �∇C1‖
− ( �∇C1 · �∇C2) �∇C2

‖ �∇C1‖‖ �∇C2‖2
,

(6)

W 2 =
2N∑

j,k=1
j<k

[
∂C1

∂xj

∂C2

∂xk

− ∂C1

∂xk

∂C2

∂xj

]2

,

and x2j = qj , x2j+1 = pj . By setting C1 = H and C2 = A,
the above formula reduces to the expression for T derived
in [26]. Moreover, by assuming C1 = A and C2 = H , Eq. (5)
defines the chemical potential μ. Notice that both expressions
are nonlocal. Nevertheless, we have verified that it is sufficient
to compute the expression (5) over as few as ten sites to obtain,
after some time averaging, reliable “local” estimates of both
T and μ [31].

The expressions for the local energy and particle fluxes are
derived in the usual way from the continuity equations for
norm and energy densities, respectively,

ja(n) = 2(pn+1qn − pnqn+1), (7)

jh(n) = −(ṗnpn−1 + q̇nqn−1). (8)

The approach to the steady state is controlled by verifying
that the (time) average fluxes are constant along the chain
[ja(n) = ja and jh(n) = jh]. Moreover, it is also checked that
ja and jh are, respectively, equal to the average energy and
norm exchanged per unit time with the reservoirs.

In the thermodynamic limit (i.e., for sufficiently long
chains), the local forces acting on the system are very weak
and one can thereby invoke the linear response theory. This
means that forces and fluxes are related by the relations [25]

ja = −Laa

d(βμ)

dy
+ Lah

dβ

dy
,

(9)
jh = −Lha

d(βμ)

dy
+ Lhh

dβ

dy
,

where we have introduced the continuous variable y = i/N ,
while β denotes the inverse temperature 1/T ; L is the
symmetric, positive definite, 2 × 2 Onsager matrix. Notice
that the first term in the right-hand side of the above equations
is negative, since the thermodynamic forces are −βμ and μ,
and detL = LaaLhh − L2

ha > 0.
The particle (σ ) and thermal (κ) conductivity can be

expressed in terms of L,

σ = βLaa, κ = β2 detL
Laa

. (10)

Analogously, the Seebeck coefficient S, which corresponds to
(minus) the ratio between the chemical-potential gradient and
the temperature gradient (in the absence of a mass flux), writes

S = β

(
Lha

Laa

− μ

)
. (11)

We conclude this section by mentioning another important
parameter, namely, the figure of merit

ZT = σS2T

κ
= (Lha − μLaa)2

detL
,
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which determines the efficiency η for the conversion of a heat
current into a particle current as [25]

η = ηC

√
ZT + 1 − 1√
ZT + 1 + 1

.

For large ZT , η approaches the Carnot limit ηC . Understanding
the microscopic mechanisms leading to an increase of ZT is
currently an active topic of research [22].

IV. STEADY STATES

A. Local analysis

In a first series of simulations, we have studied the
nonequilibrium states in the case of small differences between
the two thermostats, verifying that transport is normal, i.e.,
the Onsager coefficients are finite in the thermodynamic limit.
This is less obvious than one could have imagined [32]. In any
case, for fixed �T = TR − TL and �μ = μR − μL, the two
fluxes ja and jh are inversely proportional to the system size
N . At high enough temperatures, the asymptotic scaling sets
in already in chains a few hundred sites long [see Fig. 2(a)].
Moreover, if �T and �μ are small enough, the profiles of T

and μ along the chain are linear as expected.
However, upon decreasing the temperature, the minimal

chain length needed to observe a normal transport becomes
very large. As shown in Fig. 2(b), for the same range of lattice
sizes as in Fig. 2(a), the currents are almost independent on
N , as one would expect in the case of ballistic transport. This
is because, at small temperatures, one can always linearize the
equations of motion around the ground state (which depends
on the norm density), obtaining a harmonic description and
thereby an integrable dynamics.

A plot of the four Onsager coefficients in the (T ,μ)
plane is reported in Fig. 3. Within statistical errors, the
off-diagonal terms are always positive in the considered range.

10
2

10
3

N

10
-2

10
-1

j
a,h

10
-3

10
-2

10
-1

j
a,h

(a)

(b)

FIG. 2. (Color online) Average energy current (squares) and norm
current (dots) vs chain size N : (a) High-temperature regime TL = 2,
TR = 4, μ = 0, and (b) low-temperature regime TL = 0.3, TR = 0.7,
μ = 1.5. The thin (blue) line is the 1/N behavior expected for normal
transport. Each value is obtained by computing the fluxes on a run of
5 × 106 time units.
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FIG. 3. (Color online) Elements of the Onsager matrix L in the
T ,μ plane for a chain of length N = 500; �T = 0.1, �μ = 0.05.
Each value is obtained by computing the fluxes on a run of 5 × 106

time units.

All coefficients are larger for small T and large μ. This is
connected to the scaling behavior of the linear coefficients in
the vicinity of the ground state [32].

The resulting coefficient S is plotted in Fig. 4(a), where one
can see that there are two regions where the Seebeck coefficient
has different sign, separated by a curve which, according to
Eq. (11), is defined by Lha/Laa = μ (see below). This means
that the relative sign of the temperature and chemical-potential
gradients is opposite in the two regions (in the presence of
a zero norm flux). This is indeed seen in Fig. 4(b), where
the result of two different simulations are plotted in the two
regions.

Finally, since the figure of merit ZT roughly follows S,
there is only a modest change in the considered parameter
ranges. Moreover, for fixed T , ZT decreases upon increasing
μ. This is qualitatively in agreement with the general expec-
tation that an increasing strength of interaction (increasing μ

means increasing the average norm and thus the nonlinearity)
is detrimental for the efficiency.

B. Global analysis

If the temperature or the chemical-potential difference is
no longer small, then the temperature and chemical-potential
profiles are expected to have a nonlinear shape. This is because,
as we have seen in the previous section, the Onsager matrix
varies with a and h (or, equivalently, with T and μ).

A particularly striking example is reported in Fig. 5. Both
T (y) and μ(y) profiles do approach the imposed values at the
chain edges (up to tiny jumps due to the boundary impedance).
However, T (y) exhibits a remarkable nonmonotonous profile:
although the chain is attached to two heat baths with the same
temperature, it is substantially hotter in the middle (up to a
factor 3!).

Another way to represent the data is by plotting the local
norm and energy densities in the phase plane (a,h). By
comparing the results for different chain lengths, we see in
Fig. 1 that the paths are progressively “pushed” away from the
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FIG. 4. (Color online) (a) Seebeck coefficient S obtained from
the data in Fig. 3; (b) Temperature and chemical-potential profiles for
TL = 1, TR = 1.5; simulation with norm-conserving thermostats at
two values of the norm density atot corresponding to values of S with
opposite signs.

T = 1 isothermal and, for N = 3200, the asymptotic regime
is attained.

In order to understand the onset of such anomalous shape,
it is convenient to rewrite Eq. (9) by referring to T and μ. By
introducing vector notations, we can write

J = A(μ,T )
dv
dy

, (12)

where J = (ja,jh), v = (μ,T ), while the matrix A (which
is no longer symmetric) can be expressed in terms of the
Onsager matrix and of the fields T and μ (for instance,
A11 = −Laa/T ). Inverting the above equation, one obtains

dv
dy

= A−1(μ,T )J, (13)

where A−1 denotes the inverse of A. This system describes a set
of two linear differential equations which are nonautonomous
(since the matrix coefficients in general vary with μ and T ).

If one assumes to know the “material” properties (i.e., the
matrix A−1) and wishes to determine fluxes and profiles,
one can proceed by integrating the differential equations,
starting from the initial condition T (0) = TL, μ(0) = μL. The
a priori unknown parameters ja and jh can be determined by
imposing that the final condition is T (1) = TR and μ(1) = μR .
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a (y)

h(y)
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FIG. 5. (Color online) (a) Temperature and chemical-potential
profiles as a function of y = i/N for a chain of N = 3200 sites
and TL = TR = 1, μL = 0, μR = 2. Each point is an average of the
appropriate microcanonical expression derived from Eq. (5) over a
subchain of about ten sites around i. (b) Norm and energy densities
corresponding to the profiles in (a).

Alternatively, if the fluxes are known, one can integrate the
equations up to any point y0, and thereby generate the profiles
that would be obtained by attaching the right end of the chain
to thermal baths with temperature TR = T (y0) and chemical
potential μR = μ(y0).

In order to check the validity of the method, we have
also adopted an alternative point of view by combining the
knowledge of the fluxes with simulations of short chains and
small gradients to determine the elements of the matrix A in
suitably selected points in the (T ,μ) plane. In order to estimate
the four entries of A, it is necessary to perform two independent
simulations for{

TL,R = T ± �T

μL,R = μ

{
TL,R = T

μL,R = μ ± �μ.

With such information, we have been able to estimate dv/dy

along the chain [from Eq. (13)] and to compare the results with
the direct simulations. The results plotted in Fig. 6 demonstrate
that the two approaches are in excellent agreement.

V. ZERO FLUX CURVES

A compact pictorial representation of transport properties
is obtained by drawing the lines corresponding to vanishing
fluxes ja and jh. They can be directly determined by means of
the conservative thermostats presented in Sec. II. Some lines
are plotted in Fig. 7, both in the plane (a,h) and (T ,μ). It
is worth recalling that in the absence of a mutual coupling
between the two transport processes (zero off-diagonal ele-
ments of the Onsager matrix), such curves would be vertical
and horizontal lines in the latter representation. It is instead
remarkable to notice that the solid lines, which correspond to
jh = 0, are almost vertical for large μ: this means that in spite
of a large temperature difference, the energy flux is very small.
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FIG. 6. (Color online) Spatial derivatives of T and μ [panels (a)
and (b), respectively] computed from the profiles of Fig. 5 (black
dashed lines) and their reconstruction (red solid lines) by Eq. (13)
using the linear response coefficients (matrix A). The latter have been
calculated on a chain of N = 250. The quality of the reconstruction
improves by increasing the lattice size as shown by the blue filled dot
which is obtained for N = 1000.

This is an indirect but strong evidence that the nondiagonal
terms are far from negligible.

The condition of a vanishing particle flux ja = 0 defines the
Seebeck coefficient, which is S = −dμ/dT . Accordingly, the
points where the dashed curves are vertical in Fig. 7(b) identify
the locus where S changes sign. The jh = 0 curves have no
direct interpretation in terms of standard transport coefficients.
Finally, if one connects a DNLS chain with any two points in
the (μ,T ) plane, its profile would correspond to the only path
that is characterized by a constant ratio of ja/jh.

It is instructive to compare these results with the scenario
expected in the “harmonic” limit, where the nonlinear terms in
the DNLS are negligible. Here, the dynamics is characterized
by an ensemble of freely propagating waves, and transport
is thus ballistic. A direct reconstruction of the zero-flux lines
by direct simulations is not very useful, as, in analogy with
the known behavior for the harmonic chain [33], the profiles
of T and μ are flat (except for a few sites close to the
boundaries). Thus, the curves degenerate to single points and
no comparison is possible. We thus resort to a different method
of computing transport coefficients for ballistic systems, which
is completely analogous to the well-known Landauer theory of
electronic transport [34]. Consider an N -site chain in between
two leads at different temperatures and chemical potentials
(TL,μL), (TR,μR). Since transport is ballistic, energy and
norm are carried by N independent phonon modes, whose
dispersion law is ω(q) = 2 cos q, with q being the wave
number (|q| � π ). Accordingly, the fluxes are N independent
and the ensuing transport coefficients are proportional to N . In
this context, the norm and energy fluxes are given (up to some
numerical constant) by the formulas

Ja =
∫ +2

−2
dω t(ω)[fL(ω) − fR(ω)],

Jh =
∫ +2

−2
dω ω t(ω) [fL(ω) − fR(ω)] ,
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FIG. 7. (Color online) Zero-flux curves in the (a,h) and (μ,T )
planes [panels (a) and (b), respectively]. Black dashed lines corre-
spond to ja = 0 and are obtained with norm-conserving thermostats
upon fixing the total norm density atot, TL, and TR . Blue solid lines
are for jh = 0 using energy-conserving thermostats with fixed total
energy density htot, μL/TL, and μR/TR . Simulations are for a chain
of length N = 500. The thin dashed lines in the upper panel are the
T = 0 and T = ∞ isothermals. The thick dot-dashed lines identify
the locus where S changes sign (see text).

where t(ω) denotes the transmission coefficient, while fL,R

are the equilibrium distribution functions of the reservoirs.
If we assume that they are composed of two infinite linear
chains (both with the same dispersion), then the equipartition
principle implies that the distributions are of the Rayleigh-
Jeans form [13] fL,R(ω) = f (TL,R,μL,R,ω), where

f (T ,μ,ω) = T

ω − 2μ

[the factor 2 stems from the definition of zn and Eq. (3)]. The
physical meaning of the formulas is pretty intuitive: they can
be derived from suitable generalized Langevin equations [32]
following similar steps as for coupled oscillators; see, e.g.,
Ref. [35]. The relevant information is contained in the
transmission coefficient that depends on how the chain is
coupled to the external leads. For the Monte Carlo bath,
throughout this paper, the precise form of t is not known. We
thus postulate the simplest possible form, namely, that for large
N , t(ω) = t for |ω| < 2, and zero otherwise. For our purposes,
we set t = 1 in the following, otherwise all of the coefficients
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FIG. 8. (Color online) Comparison of the zero-flux lines obtained
from simulation of the DNLS equations (black solid and blue dot-
dashed lines correspond to ja = 0 and jh = 0, respectively). The
red dashed lines are the zero-flux lines computed by the Landauer
formulas as described in the text.

must be multiplied by t . If we introduce the function


(T ,μ) ≡
∫ +2

−2
dω f (T ,μ,ω) = T ln

(
μ − 1

μ + 1

)
,

which for μ < −1 and T > 0 is always positive, then we can
write

Ja = 
(TL,μL) − 
(TR,μR),

Jh = 4(TL − TR) + 2μL
(TL,μL) − 2μR
(TR,μR).

By expanding to first order in �T = (TL − TR) and �μ =
(μL − μR),

Ja = M00�T + M01�μ,
(14)

Jh = M10�T + M11�μ,

where

M =
(


(T ,μ)
T

2T
μ2−1

4 + 2μ
(T ,μ)
T

4T μ

μ2−1 + 2
(T ,μ)

)
.

With the help of the explicit formulas (14), we can reconstruct
the zero-flux curves as follows. Starting from an initial point
(Tin,μin), we compute �T and �μ inverting Eqs. (14) setting
Ja = 0,Jh = 1 and Ja = 1,Jh = 0, respectively (the value 1 is
arbitrary). We then let (Tin,μin) → (Tin + �T,μin + �μ) and
iterate the procedure until the whole lines are reconstructed.

The results are depicted in Fig. 8. The curves for the linear
case are defined only in the region μ < −1. The results of
the simulations of the DNLS (solid lines) nicely approach the
curves of the linear case (dashed lines) upon decreasing μ.
The agreement is satisfactory, especially in view of the many
ad hoc assumptions made in deriving Eqs. (14).

VI. CONCLUSIONS

We have presented a study of stationary thermal transport
properties in the DNLS equation. Due to the nonstandard form

of its Hamiltonian, several new issues have been brought to
the fore dealing with energy transport in oscillator chains.
In particular, we have extended the microscopic definition
of the temperature to the chemical potential and defined
suitable Monte Carlo thermostating schemes to characterize
the nonequilibrium steady states of the DNLS in various
regimes. The simulations confirm the expectations that trans-
port is normal (i.e., the Onsager coefficients are finite in
the thermodynamic limit), although some almost ballistic
transport is found at very low temperature, where the DNLS
approaches an almost integrable limit.

Due to the very existence of two naturally coupled transport
processes, the nonequilibrium steady state can display non-
monotonous energy and density profiles, which is an unusual
feature for an oscillator or particle model. As seen from
Eq. (13), it is clear that the temperature profile cannot in general
be linear in y, since the elements of A−1 depend on μ and T . In
principle, the profiles may have nontrivial shapes depending
on the qualitative behavior of the solutions of Eq. (13). In
the DNLS, the phenomenon is particularly pronounced (the
temperature inside the chain reaches values that are almost
three times larger than those imposed by the thermal baths)
because of the strong variability of the Onsager coefficients.
It would be interesting to find the physical motivation for this
effect to predict and possibly control the conditions for its
appearance.

Another feature is the fact that the Seebeck coefficient
changes sign upon changing the state parameters, e.g., by
increasing the interaction strength. The observable conse-
quence of this is that the temperature and chemical-potential
gradients change their relative signs. Thus, there are situations
in which the particle density a may be larger in the colder
regions.

Furthermore, a remarkable feature of the DNLS thermo-
dynamics is the possibility of negative temperature states
in suitable parameter regions [11]. These regions, which
are characterized by the presence of long-lived localized
excitations (discrete breathers), have not be considered in the
present paper, but are definitely worth being explored. It may
be indeed speculated that they would lead to genuine nonlinear
transport features and even to the birth of new dynamical
regimes possibly displaying transitions between conducting
and insulating states.

Besides its intrinsic theoretical interest as a test bed for the
characterization of coupled irreversible processes, the DNLS
equation opens the way also to experimental investigations. In
fact, despite its mathematical simplicity, the DNLS model can
be of guidance in the design and interpretation of experiments
on coupled transport in cold atomic gases in deep optical
lattices as well as in optical multilayered and nonlinear
structures.
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