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Anisotropic anomalous diffusion modulated by log-periodic oscillations
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We introduce finite ramified self-affine substrates in two dimensions with a set of appropriate hopping rates
between nearest-neighbor sites where the diffusion of a single random walk presents an anomalous anisotropic
behavior modulated by log-periodic oscillations. The anisotropy is revealed by two different random-walk
exponents νx and νy in the x and y directions, respectively. The values of these exponents as well as the periods
of the oscillations are obtained analytically and confirmed by Monte Carlo simulations.
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I. INTRODUCTION

The underlying mechanisms of anomalous diffusion on
fractal structures have attracted the attention of scientists for
many years; see, for example, Ref. [1] and references therein.
In this regard, it has been recently found that on some kind of
self-similar substrates, in addition to the well-known subdiffu-
sive behavior, the mean-square displacement of a random walk
(RW) is modulated by logarithmic periodic oscillations [2–4].
The same kind of modulation was also observed in biased
diffusion on random systems [5], earthquake dynamics [6],
escape probabilities in chaotic maps [7], processes on random
quenched and fractal media [8], diffusion-limited aggregates
[9], growth models [10], and stock markets [11]. There is
general agreement that this ubiquitous phenomenon appears
because of an inherent self-similarity [12] responsible for a
discrete scale invariance [13]. Nevertheless, this self-similarity
has to be identified for every system.

The origin of log-periodic modulation can be easily
determined for a minimal model of RW introduced in Ref. [3].
This model, which depends on two parameters, L ∈ N and
0 < δ ∈ R, consists of a one-dimensional lattice and a single
particle moving by jumps between nearest-neighbor (NN)
sites. The hopping rates are defined in a way that a region
of size Ln (with n = 0,1,2, . . .) is characterized by a diffusion
coefficient D(n), and the ratio between any two consecutive
coefficients is a constant, i.e., D(n+1)/D(n) = δ for all n ∈ N.
As a result, the RW mean-square displacement is modulated
by log-periodic oscillations, and both the RW exponent and the
period of the oscillations can be obtained using rather simple
arguments and calculations (for more details, see Ref. [3]).

This method can also be applied to the study of a RW on a
self-similar substrate in two dimensions. It has been shown [4]
that, in this case, each region of size Ln × Ln (L is the basic
length of the substrate, and n = 0,1,2, . . .) is characterized by
a diffusion coefficient D(n). Here again, a subdiffusive behavior
modulated by log-periodic oscillations arises because the ratio
D(n+1)/D(n) takes a constant value. It is the symmetry between
x and y directions, allowing the heuristic arguments used in the
one-dimensional case to be easily generalized to calculate the
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values of the RW exponents and the periods of the oscillations.
The important point is that, for a particle in a central square of
size Ln × Ln, the typical time to leave this square along the x

direction is the same as that along the y direction.
In this paper we investigate single-particle diffusion on

self-affine fractal structures in two space dimensions [14],
which are natural extensions of the above-mentioned self-
similar fractals. Typical examples of physical systems in which
our analysis may be relevant are those related to transport
properties of self-affine media, such as diffusion-limited
aggregation clusters in a finite strip [15], structures grown
with the dielectric-breakdown model in a cylinder [16], and
rough fracture surfaces [17].

In general, the lack of symmetry between the two main
directions (x and y) makes the analytical treatment difficult.
However, the problem simplifies considerably for a special
kind of substrate, that in which the space explored by a RW
grows with the same anisotropy as the substrate itself does. We
study this case first. The same kind of arguments employed to
analyze diffusion on self-similar substrates allows us to show
that, in this case, the mean-square displacement as a function of
time is a power law modulated by log-periodic oscillations, but
in contrast with its self-similar analog, the specific properties
of this function are now direction dependent. Indeed, although
the period of the modulation is isotropic, two different RW
exponents exist, one for the displacement in the x direction
and another for the displacement in the y direction. We
compute analytically the RW exponents and the period of the
modulating oscillation and confirm these results by Monte
Carlo simulations.

For the sake of completeness, we then study numerically
the RW behavior on a more general self-affine substrate. The
outcomes of these simulations suggest that, also here, the
mean-square displacements along the x and y directions as
a function of time follow log-periodic modulated power laws,
which are independent of each other.

II. ANALYTICAL APPROACH

We study the behavior of a RW on two self-affine substrates,
referred to in what follows as model I and model II. For
convenience, each substrate is built in stages. The result of
every stage, called a generation, is a periodic array of basic or
unit cells, consisting of sites connected by bonds. We denote by
Lx and Ly the linear size of the unit cell of the first generation
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FIG. 1. The unit cells of model I. The zeroth, first, and second
generation are drawn in (a), (b), and (c), respectively. The basic length
scales are Lx = 5 and Ly = 3. A thin bond (thick bond) represents a
hopping rate k(0) (k(i), i � 1). See the text for more details.

in the x and y directions, respectively. Note that this is not
a dynamical process but a systematic way to define a full
self-affine structure: the nth generation when n goes to infinity
(see below). On these substrates the motion of a single particle
occurs stochastically. At every time step, the particle jumps
with a nonzero probability only between NN sites which are
connected by a bond. The details of the models are given in
what follows.

A. Model I

The building process is illustrated in Fig. 1, which shows
the unit cell for the zeroth, first, and second generations. It is
easy to see that, for this model, Lx = 5 and Ly = 3, where the
length unit is the distance between NN sites. It is also apparent
from this figure that the second-generation unit cell has linear
sizes L2

x and L2
y in the x and y directions, respectively,

and is built from the first-generation one in a self-affine
way. In general, the linear sizes of the nth-generation unit
cell are Ln

x and Ln
y , and the corresponding two-dimensional

periodic substrate is obtained by connecting these cells. (The
first-generation substrate is sketched at the top of Fig. 2.)

The full self-affine substrate we are interested in is the result
of an infinite number of iterations. Note that this substrate is
finitely ramified and that a region of size Ln

x × Ln
y can be

separated from the rest by cutting four bonds.
The hopping rate between any NN connected sites in the x

direction is always k(0). On the other hand, the hopping rate in
the y direction depends on the site and on the generation. Their
values are determined by asking that the mean time to leave a
nth-generation unit cell along the x and y directions coincides.
We call t (n) this escape time. Because of this constraint, there
will be n + 1 different hopping rates (k(i), i = 0, . . . ,n) related
to the nth generation. As an example, in Fig. 1 we show
schematics of the zeroth, first, and second generations with
one, two, and three kinds of hopping rates, respectively. In
this sketch, a thin bond represents k(0) while the other hopping
rates are represented by thicker bonds. We can observe that

k
(1)

Periodic Boundary Conditions

a

b

(a)

(b)

FIG. 2. First generation of model I. (a) The substrate built with
the basic cell shown in Fig. 1(b). (b) The infinite one-dimensional
string of cells used to compute the diffusion coefficient D(1)

y . The
arrows indicate periodic boundary conditions in the y direction. For
example, if a RW at site a (b) jumps upward (downward) with a
hopping rate k(1), it arrives at site b (a).

k(1) appears at the top of the first-generation unit cell and k(2)

appears at the top of the second-generation one.
We proceed now to analyze the behavior of the diffusing

particle on a nth-generation substrate. It is useful to remember
that, on any periodic substrate, normal diffusion should be
observed if time is long enough for the RW to be influenced
by the structure periodicity. As we work with an asymmetric
substrate (i.e., Ln

x �= Ln
y for the nth-generation), we have

to consider the x and y directions separately. For the nth-
generation substrate, a diffusion coefficient D(n)

x (D(n)
y ) in the

x (y) direction can be defined through the time dependence
of the mean-square displacement �2x(t) = 〈[x(t) − x(0)]2〉
{�2y(t) = 〈[y(t) − y(0)]2〉}, i.e., via the relations

�2x(t) = 2D(n)
x t (1)

and

�2y(t) = 2D(n)
y t, (2)

valid for a time t longer than t (n).
The diffusion problem is trivial on the zeroth-generation

substrate. This is a simple square lattice, and

D(0)
x = D(0)

y = k(0). (3)

The first-generation substrate [see Fig. 2(a)] presents a more
difficult task. However, regarding diffusion in the x direction,
the whole substrate and the string of cells displayed at the
bottom of the same figure with periodic boundary conditions
in the y direction lead to equivalent problems. We exploit
this equivalence and calculate the diffusion coefficient of that
one-dimensional array, following the steady-state method [18].
We get

D(n)
x = (

5
7

)n
k(0), for n = 0,1,2, . . . , (4)
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and thus,

D(n)
x

/
D(n+1)

x = δx = 7/5, for n = 0,1,2, . . . . (5)

To find the diffusion coefficients in the case of the y

direction, we divide Eq. (2) by Eq. (1), imposing the same
escape time constraint, i.e., �2x(t (n)) = L2n

x and �2y(t (n)) =
L2n

y . This leads to

D(n)
y

D
(n)
x

= L2n
y

L2n
x

(6)

from which the diffusion coefficients

D(n)
y = (

9
35

)n
k(0), for n = 0,1,2, . . . , (7)

can be obtained [using Eq. (4) and the values of Lx and Ly].
Hence, the ratio between consecutive coefficients is also a
constant in the y direction:

D(n)
y

/
D(n+1)

y = δy = 35/9, for n = 0,1,2, . . . . (8)

At this stage, the model is completely defined, and the
hopping rates are obtained recursively from Eq. (5) by using
the above-mentioned trick of converting the two-dimensional
diffusion problem into a one-dimensional one:

k(n)

k(0)
=

{
Ln

x −
[
LyL

n−1
x − k(0)

k(n−1)

]}−1

, for n = 1,2,3, . . . .

(9)

Let us now consider a RW on the full self-affine structure.
For a time t in the interval [t (n),t (n+1)], the following relations
hold:

Ln
x �

√
�2x(t) � Ln+1

x , (10)

Ln
y �

√
�2y(t) � Ln+1

y , (11)

and it will be impossible for the RW to distinguish the
full self-affine structure from the nth-generation one. Thus,
Eqs. (1) and (2) account for the RW behavior in that time
window, and the mean-square displacement should behave
qualitatively as sketched in Fig. 3. This behavior is reminiscent
of single-particle diffusion on a self-similar substrate, whose
mean-square displacement as a function of time obeys a
log-periodic modulated power law [4]. Because of the lack
of symmetry between the x and the y directions, to describe
diffusive behavior in the case of a self-affine substrate, we need
not one but two functions, which we expect to be

�2x(t) = Cxt
2νx fx(t) (12)

and

�2y(t) = Cyt
2νy fy(t), (13)

where Cx and Cy are constants, νx and νy are the RW
exponents, and fx(t) and fy(t) are log-periodic functions with
periods τx and τy , respectively.

The values of these quantities can be computed from the
parameters of the model after simple geometrical analysis of
Fig. 3 (see the figure caption and Refs. [3,4] for further details).
The results are

νx = 1

2 + log10 δx

log10 Lx

, (14)

log10(t
(n+1))log10(t

(n))

log10(L
2
x)
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FIG. 3. (Color online) Schematic of the mean-square displace-
ment in the x direction as a function of time, shown by the
red (thick) curve. The length of the segment bc is log10(2D(n)

x ) −
log10(2D(n+1)

x ) = log10(δx) because of Eq. (5). From the slopes
(= 1) of the full straight lines (representing the normal diffusion
behaviors �2x = 2D(n)

x t), one determines that the segments ad
and cd have the same length or, equivalently, that log10(τ ) =
log10(L2

x) + log10(δx). The dashed straight line represents the global
power law �2x ∼ t2νx with 2νx = log10(L2

x)/ log10(τ ). Thus, νx =
(2 + log10 δx/ log10 Lx)−1. The mean-square displacement in the y

direction exhibits an analogous behavior.

νy = 1

2 + log10 δy

log10 Ly

, (15)

τx = δxL
2
x, (16)

and

τy = δyL
2
y. (17)

Note that even when νx �= νy , the periods of the modulations
coincide because of constraint (6), i.e.,

τx = δxL
2
x = D(n)

x

D
(n+1)
x

L2
x = D(n)

y

D
(n+1)
y

L2
y = δyL

2
y = τy, (18)

where we have also used Eqs. (5) and (8). We call τ this
period. From the equations above, the values of the period and
the exponents are τ = 35, νx = 0.4527, and νy = 0.3090.

Let us note that the average time to escape from a unit cell
of the nth-generation is t (n) = τn, meaning that relations (10)
and (11) hold for

τn � t � τn+1. (19)

Then, when the RW leaves the initial region of size Ln
x × Ln

y

to enter the next one of size Ln+1
x × Ln+1

y , the length to width
ratio Ln

x/L
n
y is increased by an anisotropic factor a = Lx/Ly

while the average time increases from t to τ t . On the other
hand, according to Eqs. (12) and (14), the corresponding mean-
square displacements are related by �2x(τ t) = L2

x�
2x(t) and

�2y(τ t) = L2
y�

2y(t). Therefore, in this transition, the ratio√
�2x/�2y is also increased by a factor a; i.e., the space

explored by the RW grows with the same anisotropy as the
substrate where the diffusion takes place.
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FIG. 4. The unit cells of model II. The zeroth, first, and second
generations are shown in (a), (b), and (c), respectively. Lx = 3, and
Ly = 2.

B. Model II

For this model, the unit cells for the zeroth, first, and second
generations are shown in Fig. 4. The full self-affine substrate is
here also obtained when the generation order goes to infinity.
The linear sizes of the nth-generation unit cell are Ln

x and Ln
y

with Lx = 3 and Ly = 2.
The diffusion of a single particle is analyzed as in model I.

That is, we reformulate the two-dimensional RW problem on a
one-dimensional array and compute the diffusion coefficients
following the steady-state method [18].

For the nth generation, we obtain

D(n)
x = (

3
4

)n
k(0), for n = 0,1,2, . . . , (20)

and thus,

D(n)
x

/
D(n+1)

x = δx = 4/3, for n = 0,1,2, . . . . (21)

On average, the time to leave a nth-generation unit cell along
the x direction becomes the same as that along the y direction
if

D(n)
y = k(0)

3n
, for n = 0,1,2, . . . , (22)

implying

D(n)
y

/
D(n+1)

y = δy = 3, for n = 0,1,2, . . . . (23)

The k(i) values, coming from Eq. (22), are again computed
from Eq. (9) (with Lx = 3 and Ly = 2). Furthermore, in spite
of the differences between model I and model II, we expect
the qualitative behavior sketched in Fig. 3 to be valid for
both models. Therefore, the RW exponents νx and νy and
the period τ are given by Eqs. (14), (15), and (18) with the
values νx = 0.4421, νy = 0.2789, and τ = 12.

III. NUMERICAL RESULTS

To test the predictions outlined above, we perform standard
RW Monte Carlo simulations on a nth-generation unit cell for
each model. In model I (II), every RW starts at the center of
symmetry of the cell (at the top-left-most site). The value of
n is always chosen large enough to prevent the RWs from

reaching the cell borders (the bottom and right cell borders)
during the simulation. Working on this cell is thus equivalent
to working with the full self-affine structure. In all simulations
the hopping rate k(0) is set to 1/4, and the other k(i) values
(i � 1) are obtained from Eq. (9). After every Monte Carlo
step, the time is increased by �t = 1.

With the numerical results of model I, in Fig. 5(a) we
have plotted the mean-square displacement along the main
directions. We see in these plots that both �2x(t) and �2y(t)
are well described by modulated power laws. The upper and
lower straight lines have slopes 2νx and 2νy , respectively. They
are drawn to guide the eyes, using the analytical values of
the RW exponents. The log periodicity of the modulations
can be better observed in Fig. 5(b) in which we have
plotted �x = log10(�2x/Axt

2νx ) and �y = log10(�2y/Ayt
2νy )

against t , using the same data as in Fig. 5(a). Ax (Ay)
is a constant chosen to have the oscillations in the x (y)
direction centered around 0.00 (0.05). The continuous lines
are of the form B sin[2π log10(t)/ log10(τ ) + α], i.e., the first-
harmonic approximation of a periodic function with period
log10(τ ) where B and α are fitted parameters and τ = 35 (the
above-given analytical period). It is clear from this figure that
the theoretical predictions of Eqs. (14), (15), and (18) are
consistent with the numerical findings.
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FIG. 5. (Color online) (a) The mean-square displacements �2x

(green squares) and �2y (purple circles) as functions of time for
model I. The upper straight line has a slope 2νx with νx = 0.4527
obtained from Eq. (14). The lower straight line has a slope 2νy with
νy = 0.3090 obtained from Eq. (15). (b) �x and �y vs t for the same
data. Ax and Ay are properly chosen constants. The curves represent
the first-harmonic approximations Bx sin[2π log10(t)/ log10(τ ) + α]
(blue, upper) and By sin[2π log10(t)/ log10(τ ) + β] (red, lower). The
period τ is given by Eq. (18). Bx , By , α, and β are fitted constants.
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FIG. 6. (Color online) The mean-square displacement �2x (black
squares) [�2y (red circles)] versus time for model II. The top straight
line has a slope 2νx = 0.8842, and the lower straight line has a slope
2νy = 0.5579. Both exponents are obtained from Eqs. (14) and (15).
The inset shows plots of �x (black squares) and �y (red circles)
against t for the same data. The curves were obtained as in Fig. 5
with the period τ calculated from Eq. (18).

The corresponding numerical results for model II are shown
in Fig. 6. Note that, also for this model, at long times,
the mean-square displacement as a function of time is well
described by modulated power laws. To better appreciate
the log periodicity of the modulation, we have plotted �x

and �y vs t in the inset of this figure. The fitting curves
are of the form D sin[2π log10(t)/ log10(τ ) + α] with the
analytical value τ = 12. The agreement between analytical
and numerical results is good too.

We consider now a substrate (model III) which consists
of the full self-affine structure of model I but with the same
hopping rate k(0) between any pair of connected NN sites.
For this model, the average time to leave a nth-generation
unit cell along the x direction is different from that along
the y direction. It may occur that Ln

x �
√

�2x(t) � Ln+1
x and

Lm
y �

√
�2y(t) � Lm+1

y for a given time t and m �= n, in other
words meaning that near t the RW behaves as in the nth-
generation substrate regarding the x direction but as in the mth-
generation substrate regarding the y direction. Thus, we cannot
expect that the heuristic arguments in the previous section
continue to be valid, and we have then to study the problem
numerically.

The logarithm of the scaled mean-squared displacements
(in the x and y directions) �x and �y are plotted in Fig. 7
as a function of the logarithm of time. The RW exponents
νx = 0.4373 and νy = 0.3859 in this figure are fitted values.
Let us note that νx is different from νy and that the data of
Fig. 7 strongly suggest that the modulations have the same
period τ in both directions. As expected, the numerical values
of these parameters are not in agreement with Eqs. (14), (15),
and (18). We would like to remark that if we used Eqs. (14)
and (15) (with δx = 7/5 and δy = 7/3 resulting from the new
hopping rates), we would get the RW exponents ν ′

x = 0.4527
and ν ′

y = 0.3609, which, in turn, would lead to the periods

τ ′
x = L

1/ν ′
x

x = 35 and τ ′
y = L

1/ν ′
y

y = 21, different from each
other (see the caption of Fig. 3 for the equation τ = L1/ν).
Note that the numerical value of νx = 0.4373 (νy = 0.3859)

100 102 104

-0.1

0.0

0.1 Γx

Γ
y

t

'y=21y=26

x=26 'x=35

Γ x , 
Γ y

FIG. 7. (Color online) Scaled mean-square displacements for
model III. Plot of �x (green squares) and �y vs t (orange
circles), using numerical data. (Cx and Cy are properly cho-
sen constants; see the text.) The full lines represent the first-
harmonic approximations Ax sin[2π log10(t)/ log10(τ ) + α] (upper)
and Ay sin[2π log10(t)/ log10(τ ) + β] (lower) of �x and �y , respec-
tively. Here, τ = 26, Ax , Ay , α, and β are fitted constants. The upper
dashed line represents the first-harmonic approximation of �x with
period τ ′

x = 35. The lower dashed line represents the first-harmonic
approximation of �y with period τ ′

y = 21.

is smaller than ν ′
x (larger than ν ′

y), and the numerical value
period τ is in the range [τ ′

y,τ
′
x] (τ ∼= 26). For model III,

Eqs. (10), (11), and (19) do not hold because, on average, the
RW reaches the top or bottom border of the nth-generation unit
cell before reaching the right or left border of the same cell. In
the case of model I, this is avoided by properly modifying some
hopping rates in every generation. The diffusion spread in the
y direction is thus slowed down [k(n) < k(n−1), see Eq. (9)], and
the horizontal and vertical cell borders are, on average, reached
simultaneously.

IV. DISCUSSION AND CONCLUSIONS

We have studied single-particle diffusion on a finitely
ramified self-affine structure in two dimensions. For a special
kind of model for which the ratio between the x and y

mean-square displacements matches the structure anisotropy,
we argue that the RW exponent in the x direction νx is
different from that in the y direction νy and that the global
subdiffusive behavior is modulated by log-periodic oscillations
with a period τ which does not depend on the direction. The
arguments employed in this work allow the main properties
of the particle mean-square displacement to be obtained
as a function of model parameters. Because our arguments
are somehow heuristic, Monte Carlo simulations using two
models, I and II, were also carried out. The numerical results
confirm our theoretical predictions.

For the rest of the self-similar systems, our conclusions are
more limited due to the lack of suitable analytical methods and
that the RW explores the space with an anisotropy different
from that of the substrate. The results of the Monte Carlo
simulations performed using one of these models (III) show
(within the accuracy of the simulation) that also in this
case νx �= νy and that the RW mean-square displacement
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is modulated by log-periodic oscillations with an isotropic
period. However, we cannot guarantee that this behavior will
hold in the limit of an arbitrarily long time; that is why we
have introduced models I and II. Let us finally note that the
extension of our analytical results to other values of Lx and
Ly is straightforward.
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