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Phase transitions in the q-voter model with two types of stochastic driving
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We study a nonlinear q-voter model with stochastic driving on a complete graph. We investigate two types of
stochasticity that, using the language of social sciences, can be interpreted as different kinds of nonconformity.
From a social point of view, it is very important to distinguish between two types nonconformity, so-called
anticonformity and independence. A majority of work has suggested that these social differences may be
completely irrelevant in terms of microscopic modeling that uses tools of statistical physics and that both types
of nonconformity play the role of so-called social temperature. In this paper we clarify the concept of social
temperature and show that different types of noise may lead to qualitatively different emergent properties. In
particular, we show that in the model with anticonformity the critical value of noise increases with parameter q,
whereas in the model with independence the critical value of noise decreases with q. Moreover, in the model with
anticonformity the phase transition is continuous for any value of q, whereas in the model with independence the
transition is continuous for q � 5 and discontinuous for q > 5.
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I. INTRODUCTION

Recently, various microscopic models of opinion dynamics
have been proposed and widely studied by physicists and social
scientists (for reviews see [1–4]). In the world of social studies
this kind of modeling is known as agent-based modeling
(ABM). It has been noted recently that despite the power of
ABM in modeling complex social phenomena, widespread
acceptance in the highest-level economic and social journals
has been slow due to the lack of commonly accepted standards
of how to use ABM rigorously [2,5]. As has been pointed
out by Macy and Willer [3], one of the main problems in the
field of social simulations is that there has been “little effort to
provide analysis of how results differ depending on the model
designs.”

A similar problem is visible in a field of sociophysics. For
example, to study opinion dynamics under conformity (one of
the major paradigms of social response), a whole large class of
models based on binary opinions S = ±1 has been proposed,
among them the voter model [6,7], majority rule [8,9], the
Sznajd model [10], and nonlinear voter models [11,12]. For all
these models the ferromagnetic state is an attractor [1]. On one
hand, this is expected since the conformity is the only factor
influencing opinion dynamics in these models. On the other
hand, this is obviously not realistic for real social systems.
To make models of opinion dynamics more realistic several
modifications has been proposed, among them the introduction
of contrarians [13,14], inflexibles [15], and zealots [16]. From
the social point of view all these modifications describe another
major paradigm of social response—so-called nonconformity
[17]. There are two widely recognized types of nonconformity:
anticonformity and independence. From a social point of view,
it is very important to distinguish between these two types of
nonconformity [17,18]. The term “independence” implies the
failure of attempted group influence. Independent individuals
evaluate situations independently of the group norm. From this
point of view both zealots, introduced by Mobilia [16], as well
as inflexibles, introduced by Galam [15], describe a particular
type of independent behavior. In contrast, anticonformists are

similar to conformers in the sense that both take cognizance
of the group norm—conformers agree with the norm, while
anticonformers disagree. Therefore, the contrarians introduced
by Galam in [13] or the stochastic driving proposed by de la
Lama et al. [14] describe anticonformity.

Although differences between two types of nonconformity
are very important for social scientists, the results obtained
so far indicate that differences may be irrelevant from the
physical point of view. Both contrarian and independent
behaviors play the role of social temperature, which induces an
order-disorder transition [13,14,19,20]. However, addressing
the problem posed by Macy and Willer [3] we would like
to check rigorously the differences between these two types
of nonconformity under the framework of a possibly general
model of opinion dynamics. In a class of models with binary
opinions such a general model has been recently introduced in
Ref. [12] under the name of the “q-voter model.” As special
cases this model consists of both the linear voter model as
well as the Sznajd model. In this paper we investigate this
model in the presence of different types of nonconformity and
check whether results for anticonformity and independence
are qualitatively the same, according to our first expectation.
It should be mentioned that another general class of opinion
dynamics, known as majority rule [8,9], would also be a good
candidate to test the differences between these two types
of nonconformity. However, introducing a general type of
independence is not so straightforward in this case.

The paper is organized as follows. In the next section we
introduce the generalized model with two types of noncon-
formity on a complete graph (topology, which is particularly
convenient for analytical calculations). In Sec. III we analyze
the time evolution of the system described by the master
equation. In this section we will already see differences
between models with anticonformity and independence, in
contrast to our first prediction. In Sec. IV we calculate
analytically the stationary values of public opinion in a case
of an infinite system. The results presented in Secs. III and
IV indicate clearly a phase transition between phases with
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and without majority. Therefore in Sec. V we find the phase
diagram and calculate the transition point as a function of
the model’s parameters. The results presented in this section
show clearly important qualitative differences between the two
types of nonconformity. In Sec. VI we apply the approach that
has been used to study nonequilibrium systems with two (Z2)
symmetric absorbing states in Refs. [21,22] to understand more
deeply these differences and in particularly the origin of the
discontinuous phase transition in the case of nonconformity.
We conclude the paper in the last section.

II. MODEL

We consider a set of N individuals on a complete graph,
which are described by the binary variables S = ±1. At each
elementary time step q individuals S1, . . . ,Sq (denoted by ↑
for Si = 1 or ↓ for Si = −1, where i = 1, . . . ,q) are picked
at random and form a group of influence, called a q lobby.
Then the next individual (⇑ or ⇓) that the group can influence,
called the voter, is randomly chosen.

The part of a model described above is a special case of
the nonlinear q-voter model introduced in Ref. [12]. In the
original q-voter model, if all q individuals are in the same
state, the voter takes their opinion; if they do not have a
unanimous opinion, still a voter can flip with probability
ε. For q = 2 and ε = 0 the model is almost identical with
Sznajd’s model on a complete graph [23]. The only difference
is that in the q-voter model repetitions in choosing neighbors
are possible. In Ref. [24] the q-voter model with ε = 0 and
without repetition has been considered on a one-dimensional
lattice. In this paper we also deal with a q-voter model with
ε = 0 and without repetition, but additionally we introduce a
certain type of noise to the model. The original voter model
describes only conformity, whereas noise is introduced to
describe nonconformity.

In our model conformity and anticonformity take place
only if the q lobby is homogeneous i.e., all q individuals
are in the same state. In the case of conformity the voter
takes the same decision as the q lobby (like in the original
q-voter model), whereas in a case of anticonformity the voter
takes the opposite opinion to that of the group. In the case
of independent behavior, the voter does not follow the group
but acts independently—with probability 1/2 it flips to the
opposite direction, i.e., Sq+1 → −Sq+1.

To check the differences in results that are caused by
different types of nonconformity we consider three versions
of the model:

Anticonformity I: With probability p1 the voter behaves
like a conformist and with p2 like an anticonformist. This
type of anticonformity has been investigated in a case of the
Sznajd model on a complete graph in Ref. [20]. Because results
depend only on the ratio p = p1/p2, in this paper we consider
p1 = 1 and p2 = p. In this version of the model the following
changes are possible:

↑↑ . . . ↑︸ ︷︷ ︸
q

⇓ p1=1−→ ↑↑ . . . ↑︸ ︷︷ ︸
q

⇑ ,

↓↓ . . . ↓︸ ︷︷ ︸
q

⇑ p1=1−→ ↓↓ . . . ↓︸ ︷︷ ︸
q

⇓ ,

↑↑ . . . ↑︸ ︷︷ ︸
q

⇑ p2=p−→ ↑↑ . . . ↑︸ ︷︷ ︸
q

⇓ ,

↓↓ . . . ↓︸ ︷︷ ︸
q

⇓ p2=p−→ ↓↓ . . . ↓︸ ︷︷ ︸
q

⇑ . (1)

In other cases nothing changes.
Anticonformity II: With probability p the voter behaves

like an anticonformist and with 1 − p like a conformist.
This type of anticonformity has been investigated in a case
of the Sznajd model on several networks in Ref. [14] and
results were qualitatively the same as in Ref. [20]. Indeed
it is quite easy to notice that anticonformity II is a special
case of anticonformity I. However, for the record we consider
here both cases and show that indeed differences are only
quantitative. In this case the following changes are possible:

↑↑ . . . ↑︸ ︷︷ ︸
q

⇓ 1−p−→ ↑↑ . . . ↑︸ ︷︷ ︸
q

⇑ ,

↓↓ . . . ↓︸ ︷︷ ︸
q

⇑ 1−p−→ ↓↓ . . . ↓︸ ︷︷ ︸
q

⇓ ,

↑↑ . . . ↑︸ ︷︷ ︸
q

⇑ p−→ ↑↑ . . . ↑︸ ︷︷ ︸
q

⇓ ,

↓↓ . . . ↓︸ ︷︷ ︸
q

⇓ p−→ ↓↓ . . . ↓︸ ︷︷ ︸
q

⇑ . (2)

In other cases nothing changes.
Independence: With probability p the voter behaves in-

dependently and with 1 − p like a conformist. In the case
of independent behavior an individual changes to the opposite
state with probability 1/2. The following changes are possible:

↑↑ . . . ↑︸ ︷︷ ︸
q

⇓ 1−p−→ ↑↑ . . . ↑︸ ︷︷ ︸
q

⇑ ,

↓↓ . . . ↓︸ ︷︷ ︸
q

⇑ 1−p−→ ↓↓ . . . ↓︸ ︷︷ ︸
q

⇓ ,

. . .︸︷︷︸
q

⇓ p/2−→ . . .︸︷︷︸
q

⇑ ,

. . .︸︷︷︸
q

⇑ p/2−→ . . .︸︷︷︸
q

⇓ . (3)

In other cases nothing changes.

III. TIME EVOLUTION

In a single time step �t , three events are possible: the
number of “up” spins, N↑, increases, decreases by 1, or
remains constant. Of course, all three events can be rewritten
for the number of “down” spins N↓ as N↑ + N↓ = N . Also the
concentration c = N↑/N of spins up increases or decreases by
�N = 1/N or remains constant:

γ +(c) = Prob{c → c + �N },
γ −(c) = Prob{c → c − �N }, (4)

γ 0(c) = Prob{c → c} = 1 − γ +(c) − γ −(c).
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The time evolution of the probability density function of c

is given by the master equation [7]

ρ(c,t + �t ) = γ +(c − �N )ρ(c − �N,t)

+ γ −(c + �N )ρ(c + �N,t)

+ [1 − γ +(c) − γ −(c)]ρ(c,t). (5)

Of course, an analogous formula can be written for N↑. The
exact forms of the probabilities γ +(c) = γ +(N↑) = γ + and
γ −(c) = γ −(N↑) = γ − depend on the version of the model;
for a finite system they are the following: For anticonformity I,

γ + = N↓
∏q

i=1(N↑ − i + 1) + p
∏q+1

i=1 (N↓ − i + 1)∏q+1
i=1 (N − i + 1)

,

(6)

γ − = N↑
∏q

i=1(N↓ − i + 1) + p
∏q+1

i=1 (N↑ − i + 1)∏q+1
i=1 (N − i + 1)

;

for anticonformity II,

γ + = (1 − p)N↓
∏q

i=1(N↑ − i + 1) + p
∏q+1

i=1 (N↓ − i + 1)∏q+1
i=1 (N − i + 1)

,

γ − = (1 − p)N↑
∏q

i=1(N↓ − i + 1) + p
∏q+1

i=1 (N↑ − i + 1)∏q+1
i=1 (N − i + 1)

;

(7)

and for independence,

γ + = (1 − p)N↓
∏q

i=1(N↑ − i + 1)∏q+1
i=1 (N − i + 1)

+ pN↓
2N

,

(8)

γ − = (1 − p)N↑
∏q

i=1(N↓ − i + 1)∏q+1
i=1 (N − i + 1)

+ pN↑
2N

.

For an infinite system the above formulas take much simpler
forms: For anticonformity I,

γ + = (1 − c)cq + p(1 − c)q+1,
(9)

γ − = c(1 − c)q + pcq+1;

for anticonformity II,

γ + = (1 − p)(1 − c)cq + p(1 − c)q+1,
(10)

γ − = (1 − p)c(1 − c)q + pcq+1;

and for independence,

γ + = (1 − p)(1 − c)cq + p(1 − c)/2,
(11)

γ − = (1 − p)c(1 − c)q + pc/2.

Solving analytically master equation (5) is not an easy
task, but exact formulas for γ + and γ − allow for a numerical
solution of the equation. For an arbitrary initial state the system
reaches the same steady state. In the case of an infinite system
the probability density function is a sum of delta functions,
ρst (c) = δ(c − c1) + δ(c − c2) + · · · + δ(c − ck), whereas for
a finite system ρst (c) has maxima (peaks) for the c = cj j =
1, . . . ,k, which are getting higher and more narrow with the
system size, approaching the deltas for the infinite system.
The number of peaks, k, and values c1, . . . ,ck depend on the
version of the model, as well as on the model’s parameters p

and q.

Examples of the stationary probability density functions for
the q lobby of size q = 7 and a system size of N = 200 are
presented in Figs. 1 (anticonformity I) and 2 (nonconformity).
As seen from Figs. 1 and 2, for small values of noise p (whether
the noise is introduced as independence or anticonformity) the
system is polarized, whereas for large values of p there is no
majority in the system. However, the transition from the phase
with majority to the phase without majority is very different
for each type of noise. In the case with anticonformity we
observe a continuous phase transition for arbitrary values of q,
whereas in the case with nonconformity there is a continuous
phase transition for q � 5 and a discontinuous phase transition
for q > 5.

In the case with anticonformity two states with majority,
represented by two equally high peaks, are stable below the
critical value of p∗. As p < p∗ increases the two peaks
approach each other and eventually for p = p∗ they form a
single peak, which is a typical picture for a continuous phase
transition (see Fig. 1) [25,26]. In the case with independence
this picture is valid only for the lobby q � 5. For q > 5
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FIG. 1. Stationary probability density function of the concentra-
tion of up spins for the q-voter model with anticonformity I for a
system of N = 200 individuals and a lobby size of q = 7. As seen
for small values of anticonformity p the system is polarized, but
for large values of p there is no majority in the system. For p = 0
(the case without anticonformity) the system consists of all spins up
or all spins down. With increasing p maxima are getting lower and
approaching each other. Eventually they form a single maximum.
This is typical behavior for a continuous phase transition. The critical
value of p can be found analytically (see Sec. V) and depends on q.
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FIG. 2. Stationary probability density function of the concentra-
tion of up spins for the q-voter model with independence for a system
of N = 200 individuals and a lobby size of q = 7. As seen for small
values of independence p the system is polarized, but for large values
of p there is no majority in the system. For p = 0 (the case without
independence) the system consists of all spins up or all spins down.
For larger values of p the third maximum appears at c = 1/2 (no
majority). This maximum increases with p while the remaining two
maxima are decreasing. Above a certain value of p there is only one
maximum for c = 1/2. This is typical behavior for a discontinuous
phase transition for which we can observe the phase coexistence.

the transition is very different. Again for small values of
p there are two peaks but with increasing p they are not
approaching each other. Instead, for p = p∗

1 the third peak
appears at c = 1/2 (see Fig. 2). The third peak is initially lower
than the remaining two peaks, which means that it represents
a metastable state. As p > p∗

1 increases the third peak grows
and for p = p∗

2 all three peaks have the same height. For
p > p∗

2 the central peak dominates over the other two, which
means that the state c = 1/2 is stable and the remaining two
are metastable. Finally, for p = p∗

3 the side peaks disappear
and only the center peak remains. This is a typical picture
for a discontinuous phase transition, which takes place at
p = p∗

2 [25,26]. Two values of the independence parameter,
p = p∗

1 and p = p∗
3 , demarcate the existence of metastability

(spinodal lines) [27,28]. Values p∗
1 , p∗

2 , and p∗
3 depend on

the size of the lobby q, which will be shown exactly in
Sec. V.

Before moving on to the analytical results for the infinite
system and determining the points of phase transitions, let us

0 2 4 6 8 10

x 10
5

0

0.5

1

time (MCS)

c

FIG. 3. (Color online) Time evolution of the concentration of up
spins for the model with anticonformity with lobby q = 7 and level of
anticonformity p = 0.5. The system size is N = 200. Spontaneous
transitions between two stationary states are visible.

present the time evolution. We stop for a moment to focus
on the case of a finite system. Having exact formulas for
transition probabilities γ + and γ − we are able not only to
calculate numerically the stationary density function ρst (c)
but also to generate sample trajectories of concentration
(Figs. 3–6). In the case of a finite system spontaneous
transitions between states are possible. In the case with an-
ticonformity transitions between two states, which correspond
to peaks in the probability density function ρst (c), are possible
below a critical value of p. Because both peaks are equally
high the system spends the same amount of time on average
in each state.

This is also true in the case with independence and q � 5
(see Fig. 4). However, as we have already written for q > 5
there is a discontinuous phase transition between states with
and without majority and for p ∈ (p∗

1,p
∗
3) there are three

possible states. Therefore for q > 5 we expect spontaneous
transitions among three states.

Such transitions are indeed observed. For p ∈ (p∗
1,p

∗
2) the

state with majority is stable and the state without majority is
metastable. Therefore, the system spends more time in states
with majority. For p ∈ (p∗

2,p
∗
3) the situation is exactly the

opposite—the state without majority is stable. At a transition
point p = p∗

2 all three states are stable and the system spends
the same time on average in each of three states (see Figs. 5
and 6).

IV. STATIONARY CONCENTRATION

In the stationary state we expect that the probability of
growth, γ +, should be equal to the probability of loss, γ −, and

0 0.5 1 1.5 2

x 10
4

0

0.5

1

time (MCS)

c

FIG. 4. (Color online) Time evolution of the concentration of up
spins for the model with independence with lobby q = 5 and level of
anticonformity p = 0.175. The system size is N = 200. Spontaneous
transitions between two stationary states are visible.
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FIG. 5. (Color online) Time evolution of the concentration of up
spins for the model with independence with lobby q = 7 and level
of anticonformity p = 0.111 (where for this value all three states are
stable). The system size is N = 200. Spontaneous transitions among
three stationary states are visible.

therefore

F (c,q,p) = γ +(c,q,p) − γ −(c,q,p) = 0, (12)

where F (c,q,p) can be treated as an effective force, γ + drives
the system to the state spins up, and γ − drives them to spins
down. Therefore we can easily calculate also an effective
potential:

V (c,q,p) = −
∫

F (c,q,p) dc. (13)

To calculate stationary values of concentration we simply solve
the equation

F (c,q,p) = 0, (14)

or, alternatively, find the minima of the potential V . Although
the first possibility is more straightforward, we will see in the
next section that knowing the form of the potential will help
us to calculate the transition points.

The exact forms of the force F and the potential V for an
infinite system are as follows: For anticonformity I,

F = (1 − c)cq + p(1 − c)q+1 − c(1 − c)q − pcq+1,

V = − 1

q + 1
(cq+1 + (1 − c)q+1)

+ p + 1

q + 2
(cq+2 + (1 − c)q+2); (15)

for anticonformity II,

F = (1 − p)(1 − c)cq + p(1 − c)q+1

− (1 − p)c(1 − c)q − pcq+1,

0 2 4 6 8 10
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0
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time (MCS)

c

FIG. 6. (Color online) Time evolution of the concentration of
up spins for the model with independence with lobby q = 9 and
level of anticonformity p = 0.0685. The system size is N = 200.
Spontaneous transitions among three stationary states are visible.

V = −1 − p

q + 1
(cq+1 + (1 − c)q+1)

+ 1

q + 2
(cq+2 + (1 − c)q+2); (16)

and for independence,

F = (1 − p)(1 − c)cq + p(1 − c)

2

− (1 − p)c(1 − c)q − pc

2
,

(17)

V = −1 − p

q + 1
(cq+1 + (1 − c)q+1)

+ 1 − p

q + 2
(cq+2 + (1 − c)q+2) − p

2
c(1 − c).

Solving analytically Eq. (14), i.e., finding cst as a function
of p for an arbitrary value of q, is impossible, but we can
easily derive the opposite relations satisfying Eq. (14): For
anticonformity I,

p = cst (1 − cst )q − (1 − cst )c
q
st

(1 − cst )q+1 − c
q+1
st

, (18)

for anticonformity II,

p = cst (1 − cst )q − (1 − cst )c
q
st

(1 − cst )q+1 + cst (1 − cst )q − (1 − cst )c
q
st − c

q+1
st

, (19)

and for independence,

p = cst (1 − cst )q − (1 − cst )c
q
st

(1 − cst )/2 + cst (1 − cst )q − (1 − cst )c
q
st − cst /2

. (20)

We have used the above formulas to plot the dependence
between steady value of concentration cst and the level of noise
p for several values of q (see Fig. 7). Although only the relation
p(cst ) is calculated analytically and the opposite relation is
unknown, we plot cst (p) by simply rotating the figure with
the relation p(cst ). Clear differences between the two types of
noise are visible—in a case with anticonformity the transition
value of p increases with q and in a case with independence
it decreases with p. Moreover, the type of transition is the
same for arbitrary values of q in the case with anticonformity,
whereas in the case with independence the transition between
phases with and without majority changes its character for
q > 5.

It should be also noticed that formulas (18)–(20) have been
obtained from condition (14); i.e., they correspond to extreme
values of potentials (15)–(17). However, only the minima of
the potential correspond to the stable value of concentration.
Therefore, in Figs. 7 and 8 we have denoted unstable values
that correspond to the maxima of potentials by dotted lines.
Moreover, we have presented the flow diagram for chosen
values of q to show precisely which state is reached from
given initial conditions. Particularly interesting behavior is
related with independence (bottom panel in Fig. 8). Starting
from two different initial concentrations disorder or order can
be reached as a steady state (hysteresis).

In the next section we derive analytically transition
points using knowledge of the effective potentials V in
Eqs. (15)–(17).
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FIG. 7. Phase diagram for the models with anticonformity (top
panel) and independence (bottom panel). Dependencies between
steady values of concentration cst and the level of noise p for several
values of q are plotted using formulas (18)–(20). Although only
relation p(cst ) is calculated analytically and the opposite relation is
unknown, we plot cst (p) simply by rotating the figure. Dotted lines
have been used to mark instability. Although both types of line (solid
and dotted) are obtained from Eq. (14), i.e., correspond to extreme
values of potentials (15) and (17), only solid lines denotes stable
values, i.e., correspond to the minima of potentials (see also Fig. 8).
A clear difference between two types of noise is visible—in a case
with anticonformity the transition value of p increases with q and
in a case with independence it decreases with p. Moreover, the type
of transition is the same for arbitrary values of q in a case with
anticonformity, whereas in a case with independence the transition
between phases with and without majority changes its character for
q > 5.

V. PHASE TRANSITIONS

As already noticed there is a continuous phase transition for
the model with anticonformity I and II for arbitrary values of
q. Below a critical value p = p∗(q) the effective potential
has two minima and above the critical value it has only
one. Consequently, the stationary probability density function
ρst (c) for p < p∗ has two maxima and for p > p∗ only one at
c = 1/2 (i.e., there is no majority in the system). Analogous
behavior is observed for the model with nonconformity but
only for q � 5. In all these cases we can easily calculate the
critical value p∗ by making a simple observation concerning
the behavior of the effective potentials (15)–(17) for q � 5 at
c = 1/2 (see also Fig. 1 for clarity): For p < p∗ potentials
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0.6
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0.6

0.8
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FIG. 8. Flow diagrams for the models with anticonformity for
q = 2 (top panel) and independence for q = 9 (bottom panel).
Particular values of q have been chosen just as examples and
the dependencies between stationary values of c and parameter p

for other values of q are seen in Fig. 7. Here solid lines denote
stable (attracting) steady values of concentration that correspond to
the minima of potentials (15)–(17), whereas dotted lines denote
unstable values of c that correspond to maxima of potentials. Arrows
denote the direction of flow, i.e., how the concentration changes in
time. Particularly interesting behavior is related with independence
(bottom panel). Starting from two different initial concentrations
disorder or order can be reached as a steady state (hysteresis).

V (c,p,q) have the maximum values for c = 1/2 and therefore

∂2V (c,p,q)

∂c2

∣∣∣∣
c= 1

2

< 0. (21)

For p > p∗ potentials V (c,p,q) have the minimum values for
c = 1/2 and therefore

∂2V (c,p,q)

∂c2

∣∣∣∣
c= 1

2

> 0. (22)

This means that for p = p∗ the maximum changes to the
minimum at c = 1/2:

∂2V (c,p,q)

∂c2

∣∣∣∣
c= 1

2

= 0 ⇒ ∂F (c,p,q)

∂c

∣∣∣∣
c= 1

2

= 0. (23)

Hence, the critical values are as follows: For anticonformity I,

p∗(q) = q − 1

q + 1
, (24)
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FIG. 9. Schematic plot of a potential for the model with indepen-
dence and q > 5. For p ∈ (0,p∗

1), potential V (c,p,q) has two minima
that correspond to the states with majority. For p ∈ (p∗

1 ,p
∗
2), the

potential V (c,p,q) has three minima and the state without majority is
metastable. For p ∈ (p∗

2 ,p
∗
3), the potential V (c,p,q) has three minima

and the states with majority are metastable. Finally, for p ∈ (p∗
3 ,1),

the potential V (c,p,q) has only one minimum that corresponds to
the state without majority. The exact form of the potential is given by
Eq. (17).

for anticonformity II,

p∗(q) = q − 1

2q
, (25)

and for independence with q � 5,

p∗(q) = q − 1

q − 1 + 2q−1
. (26)

As we see, simple calculations allowed us to find the
critical points for almost all cases, except for the model with
nonconformity for q � 6. In all cases considered above, there
is a continuous phase transition between phases with and
without majority. However, for the model with independence
and q � 6 the phase transition becomes discontinuous, which
has been already discussed in Sec. III. This behavior can be
also suspected from the form of the effective potential (17),
which for q � 6 has the following properties (see also Fig. 9):

For p ∈ 〈0,p∗
1), V (c,p,q) has two minima.

For p = p∗
1 , in V (c,p,q) a third minimum emerges.

For p ∈ (p∗
1,p

∗
2), V (c,p,q) has three minima.

For p = p∗
2 , V (c,p,q) has three equal minima.

For p ∈ (p∗
2,p

∗
3), V (c,p,q) has three minima.

For p = p∗
3 , in V (c,p,q) the third minimum disappears.

For p ∈ (p∗
3,1〉, V (c,p,q) has one minimum.

As we see, there is an interval p ∈ (p∗
1,p

∗
3) in which potential

V (c,p,q) has three minima and therefore the stationary
probability density function has three maxima (see Fig. 2).
In this region we have a coexistence of two phases—with
and without majority. For p < p∗

2 the state with majority is
stable and the state without majority is metastable and for
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anti-conformity I
anti-conformity II
independence q ≤ 5
independence q > 5

FIG. 10. (Color online) Transition points p∗ as a function of q

for all three models. Solid lines denote the line of the phase transition
and dashed lines denote spinodal lines, i.e., determine the region
with metastability. Several differences among models are visible. As
seen, both models with anticonformity behave qualitatively the same:
the critical value of p increases with q. However, for the model
with independence the transition point decreases with p. Moreover,
for q � 6 the phase transition changes its type from continuous to
discontinuous.

p > p∗
2 the state with majority is metastable and that without

majority is stable. Consequently, the phase transition appears at
p = p∗

2 = p∗ and p = p∗
1,p

∗
3 designate spinodal lines [27,28].

Transition points p∗ as a functions of q for all three
models are presented in Fig. 10. As seen, both models with
anticonformity (I and II) behave qualitatively the same: the
critical value of p increases with q. However, for the model
with independence the transition point decreases with p.
Moreover, for q = 5 in the case with independence, the phase
transition changes its type from continuous to discontinuous.
To clarify our results we decided to present the complete
phase diagrams for the models with anticonformity and
independence in Fig. 11. Because results for both models with
anticonformity (I and II) are qualitatively the same we present
the phase diagram only for the model with anticonformity II.

The first difference between models with anticonformity
and independence—connected with the qualitative depen-
dence between p∗ and q—is easy to explain heuristically.
It is quite obvious why in the model with independence
the critical point p∗ decreases when q increases. When q

increases it becomes unlikely to choose randomly q parallel
spins and therefore the noise term dominates because it is
independent of the state of the q lobby. Similarly, it can be
understood why in the model with anticonformity the critical
point p∗ increases with q. It should be recalled here that
anticonformity takes place only when q + 1 parallel spins
are chosen randomly, which is more unlikely than choosing
q parallel spins. Therefore the anticonformity term declines in
importance even more than the conformity term as q increases.
The second difference between models—the change of the
transition type in the model with independence—is not so
easy to understand intuitively. This result has been obtained
numerically from the potential (17), but in the next section
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FIG. 11. (Color online) Phase diagrams for the models with
anticonfomity II (top panel) and independence (bottom panel).
As seen, for the model with anticonformity, the critical value p∗

increases with q, and for the model with independence, it decreases
with q. For anticonformity (top panel) there is a continuous phase
transition (denoted by the solid line) between order (i.e., c �= 1/2
or, equivalently, m �= 0) and disorder (i.e., c = 1/2 or, equivalently,
m = 0). In the model with independence (bottom panel) there is
a continuous phase transition only for q < 5. At q = 5 the phase
transition changes its type from continuous to discontinuous. For
q > 5 an area in which one of two phases (ordered or disordered) is
metastable is limited by so-called spinodal lines. This area is labeled
as “coexistence,” although the real coexistence occurs only on the
transition line. However, in the region of metastability both phases can
be observed depending on the initial conditions (hysteresis), which
can be also seen from the flow diagram in Fig. 8.

we will show how this result could be also derived from an
approximate Landau description.

VI. LANDAU DESCRIPTION

Although we were able to calculate critical points for
the model with anticonformity and for the model with in-
dependence with q � 5 directly from the potentials (15)–(17),
it can be instructive to use the classical description proposed
by Landau for equilibrium phase transitions [26]. It has been
shown that this kind of description can be also obtained
as a mean-field approach for the Langevin equation of
nonequilibrium systems with two (Z2) symmetric absorbing
states [21,22].

In our paper we have written the master equation as a
function of concentration c = N↑/N of up spins. We have
decided to use this quantity for convenience since calculations
are simple and equations have compact forms. However, to
meet the symmetry requirement [21,22] one should use an

order parameter (in this case magnetization) defined as

φ = N↑ + N↓
N

(27)

for which potentials (15)–(17) are symmetric under reversal
φ → −φ.

Following the approach presented in Refs. [21,22], which
coincides with the classical approach proposed by Landau,
we expand potentials (15)–(17), rewritten as a function of φ,
into power series and keep only the first three terms of the
expansion:

V (φ) = Aφ2 + Bφ4 + Cφ6, (28)

where coefficients A= A(p,q), B = B(p,q), and C = C(p,q)
depend on the model.

For the model with independence,

A(p,q) = − (1 − p)

2q

(q − 1)

2
+ p

4
,

B(p,q) = − (1 − p)

2q

q(q − 1)(q − 5)

24
,

C(p,q) = − (1 − p)

2q

q(q − 1)(q − 2)(q − 3)(q − 9)

720
. (29)

From Landau theory it is known that for B(p,q) > 0 and
C(p,q) > 0 there is a critical point at which A(p,q) changes
sign [26]. For A < 0 the potential V (φ) has two symmetric
minima and thus the system is driven to one partially ordered
state with φ �= 0. For A > 0 the potential V (φ) has a minimum
at φ = 0 and therefore the system remains in an active
disordered state and a magnetization φ fluctuates around zero.
From Eq. (29) it is easy to calculate that

A(p,q) = 0 → p = p∗ = q − 1

q − 1 + 2q−1
,

A < 0 → p < p∗, φ �= 0, (30)

A > 0 → p > p∗, φ = 0,

which coincides with the result (26) obtained from the exact
version of the potential (17).

As shown within classical Landau theory, for B(p,q) < 0
and C(p,q) > 0 a discontinuous jump in the order parameter
is expected [26]. Again from Eq. (29) it is easy to see that
B(p,q) < 0 for q > 5 (see also Fig. 12). Therefore we expect
a discontinuous phase transition for q > 5, which also agrees
with the results obtained from Eq. (17). It should be mentioned
here that a transition for B � 0 could possibly be included in
the class of generalized voter models (the so-called unique
GV transition) [21]. It has been noticed for a general class
of models with two (Z2) symmetric absorbing states that for
B � 0 the location of the potential minimum changes abruptly
from φ = 0 to φ ± 1; i.e., a discontinuous phase transition is
observed [21]. In our model the situation is slightly different,
because for p > 0 there are no absorbing states and below
the transition point |φ| < 1. However, still the system jumps
from a totally disordered to a partially ordered state; i.e., a
discontinuous phase transition is observed.

One should also notice that in the case of a q-voter model
with independence for q > 9 also C(p,q) becomes negative
and than the approximation (28) is no longer valid.
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FIG. 12. Coefficient B(p,q) [see the effective potential (28)] for
a critical point p = p∗ at which A(p,q) changes sign. For the model
with independence (denoted by “o”) coefficient B < 0 for q > 5,
which suggests a discontinuous phase transition, whereas for the
model with anticonformity (denoted by “*”) coefficient B � 0 for
any value of q and therefore the transition is continuous for arbitrary
values of q.

Analogous calculations can be done for the models with
anticonformity. Because both models with anticonformity are
qualitatively the same we present here results for the model
with anticonformity II. In this case,

A(p,q) = 2pq − q + 1

2q
,

B(p,q) = −1

4

1 − p

2q

[(
q − 1

3

)
−

(
q − 1

1

)]
+ 1

4

p

2q

(
q + 1

3

)
,

C(p,q) = −1

6

1 − p

2q

[(
q − 1

5

)
−

(
q − 1

3

)]
+ 1

6

p

2q

(
q + 1

5

)
.

(31)

Therefore in the case with anticonformity,

A(p,q) = 0 → p = p∗ = q − 1

2q
,

A < 0 → p < p∗, φ �= 0, (32)

A > 0 → p > p∗, φ = 0,

which coincides with the result (25). Moreover, for the model
with anticonformity (see Fig. 12) coefficient B(p = p∗,q) � 0
for any value of q; i.e., the transition is continuous for arbitrary
values of q.

VII. CONCLUSIONS

In this paper we have asked questions about the im-
portance of the type of nonconformity (anticonformity and
independence) that is often introduced in models of opinion
dynamics (see, e.g., [13,14,19,20]). We realized that the
differences between the different types of nonconformity are
very important from social point of view [17] but we have
expected that they may be irrelevant in terms of microscopic

models of opinion dynamics. To check our expectations we
have decided to investigate a nonlinear q-voter model on
a complete graph, which has been recently introduced as a
general model of opinion dynamics [12].

To our surprise, the results for the model with anticon-
formity are qualitatively different from those for the model
with independence. In the first case there is a continuous
order–disorder phase transition induced by the level of anticon-
formity p. The critical value of p grows with the size of the q

lobby. On the other hand, for the model with independence the
value of the transition point p∗ decays with q. Moreover, the
phase transition in this case is continuous only for q � 5. For
larger values of q there is a discontinuous phase transition and
coexistence of ordered (with majority) and disordered (without
majority) phases is possible.

We have suggested in the title and the introduction of the
paper that both types of nonconformity play the role of noise.
However, only independence introduces real random noise,
which plays a role similar to temperature. From this point of
view the change of the type of transition resembles a similar
phenomena in the Potts model (for a review see [29]). In the
Potts model there is a first-order phase transition for q > 4 and
a second-order phase transition for smaller values of q, where
q denotes the number of spin states. Of course, in the case of
our model q does not denote the number of states, which is
always 2, but the size of the group. A similar observation has
recently been made by Araujo et al. [30] within a model of
tactical voting. They have considered q candidates on which
citizens vote and proposed a balance function to quantify the
degree of indecision in the society due to the coexistence of
different opinions. It turned out that for some values of model
parameters the model boiled down to the q-state Potts model,
although similarly, like in our model, q denoted the number of
candidates instead of the number of states. A similar change of
the type of transition has been also observed in a general class
of systems with two (Z2) symmetric absorbing states within a
Langevin description [21,22]. Moreover, it has been suggested
that models with many intermediate states (i.e., the Potts model
or a simple three-state model described in Ref. [22]) behave as
equivalent two-state models with effective transitions that are
nonlinear in the local densities [22], which is the case of a q-
voter model or a two-state model of competition between two
languages [31]. The theory presented in Refs. [21,22] suggests
also that the continuous phase transition that is observed
for q < 5 could possibly be included in the Ising class,
whereas the discontinuous phase transition that is observed
for q > 5 would fall into the class of generalized voter
models.

Concluding the paper we would like to pay attention to one
more phenomena that is visible in Fig. 10. For lobby q = 2
the results are the same for anticonformity and independence.
Therefore it comes as no surprise that the difference between
the two types of nonconformity has not been noticed while
studying the Sznajd model (i.e., q = 2) [14,20].
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