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Effect of thermal noise on vesicles and capsules in shear flow
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We add thermal noise consistently to reduced models of undeformable vesicles and capsules in shear flow and
derive analytically the corresponding stochastic equations of motion. We calculate the steady-state probability
distribution function and construct the corresponding phase diagrams for the different dynamical regimes. For
fluid vesicles, we predict that at small shear rates thermal fluctuations induce a tumbling motion for any viscosity
contrast. For elastic capsules, due to thermal mixing, an intermittent regime appears in regions where deterministic
models predict only pure tank treading or tumbling.
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Introduction. The dynamics of fluid vesicles and elastic
capsules in linear shear flow has been extensively studied
in the past decades (for reviews, see Refs. [1–4]). For fluid
vesicles, the transition between the tank-treading regime (TT),
in which the membrane rotates around the interior fluid at
constant orientation, and the tumbling regime (TB), where the
capsule rotates as a rigid body, is described with relatively
good accuracy by the Keller-Skalak (KS) model [5], which
assumes ellipsoidal vesicles of fixed shape. This assumption
holds for moderate shear rates, while other dynamical regimes
are observed if the vesicle deforms due to higher shear stresses
[6–15]. The Skotheim-Secomb (SS) model [16] extends the KS
model to capsules showing elastic behavior, such as the shape
memory of red blood cells [17]. It captures many features
observed in experiments [18] and simulations [19–22]. For
capsules, the TT motion exhibits a periodic oscillation of
the orientation angle called swinging (SW). The TB regime
also shows a periodic oscillation of the tank-treading angle.
In addition, an intermittent regime (INT) appears for which
both swinging and tumbling happen alternately. A thorough
analysis of this intermittent regime is found in Ref. [23], which
suggests that intermittency should also exist for deformable
capsules. However, analytical work [4,24] and simulations
[19–21,25] tend to show that the intermittent regime may be
only transient if capsule deformation is consistently taken into
account.

Since these objects are micrometer sized, it can be rea-
sonably assumed that thermal fluctuations should have an
influence on the dynamical transitions. Indeed, experiments on
vesicles [26,27] show that they lead to sensible discrepancies
from deterministic theoretical descriptions. However, most
theoretical work that includes thermal noise has been done
either for quasispherical vesicles in two dimensions (2D)
[28,29] and three dimensions (3D) [30] or through pure
phenomenological models [9,31,32]. Thermodynamic consis-
tency, however, imposes strong conditions on the stochastic
equations of motion which we derive here in a minimal
extension of the SS model. We then determine how such
thermal fluctuations affect the phase diagram for vesicles and
capsules. In particular, we show that under realistic conditions
thermal effects should be observable.

Reduced model. We describe the dynamics of an unde-
formable, ellipsoidal vesicle or capsule in linear shear flow
as represented in Fig. 1. The two degrees of freedom are
the inclination angle θ of the particle relative to the middle

plane of the shear flow and the phase angle φ describing
the tank-treading motion of the outer membrane. Following
Ref. [16], the balances of angular momentum and dissipated
energy lead to the equations of motion
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which give the temporal evolution of θ and φ as functions of
the shear rate γ̇ , the viscosity ratio λ ≡ ηi/ηo between inner
and outer viscosity, the main axes a1,a2,a3 and the volume V of
the capsule, the elastic energy E0 corresponding to the shape-
memory effect, and geometrical quantities [33]. We quantify
the influence of thermal fluctuations by adding the stochastic
noises ζθ (t) and ζφ(t) similarly to Refs. [28,31]. They obey

〈ζi(t)〉 = 0, 〈ζi(t)ζj (t ′)〉 = 2Diδij δ(t − t ′), (3)

where {i,j} ∈ {θ,φ} and Dθ and Dφ are the respective diffusion
constants. The rotational diffusion constant is

Dθ = kBT
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which follows from the response of a rigid ellipsoid to a torque
about the z axis in a liquid of viscosity ηo [34], kB being the
Boltzmann constant, T the temperature, and g1,g2 geometrical
quantities [35]. To determine Dφ , we use the fact that the
shape-memory effect was introduced by adding the potential
E0 sin2 φ to the energy balance of the capsule. The fluctuation-
dissipation relation in equilibrium (γ̇ = 0) applied to Eq. (2)
then implies

Dφ = kBT

V ηo

1

4z2
1λ

′ . (5)

The diffusion coefficients (4) and (5) depend on the inverse of
the capsule volume V , i.e., the effects of thermal fluctuations
become more important when the capsules are smaller. A small
outer viscosity ηo also amplifies thermal effects.

Equations (1) and (2) form a set of Langevin equations
which can be transformed into a single Fokker-Planck equation
for the probability distribution p(θ,φ,t) [36]. This Fokker-
Planck equation reads

∂tp(θ,φ,t) = −∂θjθ − ∂φjφ, (6)
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FIG. 1. Schematic view of a capsule in shear flow.

with the currents
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where we defined B ≡ z1/z0 + 2/λ′z0z1z2 and

Deff ≡ Dθ + Dφ/z2
0. (9)

In the following, we will solve Eq. (6) in the steady state, i.e.,
for ∂tp(θ,φ,t) = 0.

In the absence of shear flow (γ̇ = 0), the equilibrium
probability distribution becomes

peq(θ,φ) = 1

4π2I0
(

E0
2kBT

) exp

(
E0

2kBT
(1 − 2 sin2 φ)

)
, (10)

where I0(x) = 1/π
∫ π

0 exp(x cos θ )dθ is a modified Bessel
function of the first kind. This distribution does not depend on
θ since no orientation is preferred. For fluid inelastic vesicles
we have E0 = 0, leading to a homogeneous distribution for
both angles. For elastic capsules, the distribution shows two
peaks at the angles φ = 0 and φ = π due to the shape-memory
energy E0 sin2 φ.

In order to investigate the nonequilibrium steady states
(γ̇ > 0) and construct phase diagrams, we introduce the
tumbling ratio [37]

ωtu ≡ 〈∂tθ〉
〈∂tθ〉 + 〈∂tφ〉 , (11)

which plays the role of an order parameter: ωtu = 0 corre-
sponds to a pure tank-treading motion and ωtu = 1 to pure
tumbling, intermediate values corresponding to a dynamics
in which both tumbling and tank treading take place. In
the following, all numerical calculations are performed by
setting a1 = a3 = 4 μm and a2 = 1.5 μm, which corresponds
approximately to the dimensions of a red blood cell [18]. The
outer viscosity is taken to be approximately that of water,
ηo = 1 mPa s, and the temperature T = 293 K.

Fluid vesicles. Fluid vesicles do not exhibit shape memory,
i.e., E0 = 0, implying that the Fokker-Planck equation (6) does

not contain any term depending explicitly on φ. Therefore, we
can write ps(θ,φ) = ps(θ ). In addition, by averaging Eqs. (1)
and (2), one obtains

〈∂tφ〉 = − 1

λ′z1z2B
(2〈∂tθ〉 + γ̇ ) , (12)

such that the tank-treading frequency 〈∂tφ〉 can be deduced
from the tumbling frequency 〈∂tθ〉.

Without thermal fluctuations, we recover the KS model for
which two cases must be distinguished. If B < 1, i.e., above
the critical viscosity contrast λc ≡ 1 + 2z0/z1z2, the solution
of Eq. (6) is

ps
KS(θ,λ > λc) =

√
1 − B2

2π (1 − B cos(2θ ))
, (13)

which corresponds to a tumbling motion (TB) of the capsule
around the z axis. The mean tumbling frequency calculated
from (1) is equal to 〈∂tθ〉 = −γ̇

√
1 − B2/2. Note that even

though the capsule tumbles, the mean tank-treading velocity
(12) becomes zero only in the limit λ → ∞, a fact already
stressed in Ref. [5]. The TB regime for vesicles therefore
consists in a mixing between tumbling and tank treading. If
B � 1, i.e., λ � λc, the inclination angle takes the stationary
value

θTT = 1

2
arccos

(
1

B

)
, (14)

while the membrane exhibits a tank-treading motion (TT)
around the interior of the capsule. Here we have 〈∂tθ〉 = 0 and
〈∂tφ〉 = −γ̇ /λ′z1z2B, which corresponds indeed to pure tank
treading without tumbling. This transition between tumbling
and tank treading happens at the critical viscosity ratio λc

which depends only on the geometry of the vesicle but not on
the shear rate γ̇ . The order parameter (11) is ωtu = 0 for TT,
and 0 < ωtu � 1 for TB.

If we include thermal noise, the Fokker-Planck equation (6)
can still be easily solved as

ps(θ ) = 1
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is the normalization constant and I0 the Bessel function
defined after Eq. (10). In this case, the stationary probability
distribution (15) depends on the shear rate γ̇ , which was not
the case without noise. The mean tumbling frequency

〈∂tθ〉 = −2π
Deff

N

(
exp

[
γ̇ π

2Deff

]
− 1

)
(17)

is never exactly zero, such that ωtu 
= 0 always. However, as
can be seen in the inset of Fig. 2, showing the tumbling ratio
as a function of λ for γ̇ = 1 s−1, it decays exponentially in the
black region. We can thus still effectively identify a TT regime,
defined here by ωtu < 0.1, in which tumbling becomes rare.
The contour plot of Fig. 2, which represents ωtu as a function
of λ and γ̇ , can therefore be interpreted as a phase diagram,
where TT occurs in the black region and TB elsewhere.
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FIG. 2. Phase diagram for the KS model with thermal noise
as a function of γ̇ and λ. Inset: ωtu along the white dotted line
(γ̇ = 1 s−1), and the dashed line corresponds to the deterministic
KS model. An enlargement of the bottom left corner is also shown.

The first effect of thermal noise is to smooth out the TT-TB
transition, which happens for smaller viscosity contrasts than
in the deterministic case, as can be seen in the inset of Fig. 2.
Moreover, in this case, this transition depends not only on λ

but also on γ̇ . In the limit of high shear rates, fluctuations
are suppressed and we recover the critical viscosity contrast
of the KS model. On the other hand, the critical viscosity
contrast goes to 0 for low but nonzero shear rates. In fact, as
the enlargement in Fig. 2 shows, a TB motion is always present
at shear rates lower than approximately 0.1 s−1, which is a new
feature with respect to the deterministic phase diagram derived
in Ref. [10].

In order to illustrate this shear-induced phase transition, we
plot the distribution function ps(θ ) at λ = 2 and for γ̇ = 0.1,
1, and 3 s−1 in Fig. 3(a). In the deterministic model, the vesicle
tank treads at fixed orientation θTT (vertical line). With thermal
noise, the dynamics is different for these three shear rates
indicated by crosses in Fig. 2. For γ̇ = 0.1 s−1, the vesicle’s
orientation cannot remain fixed because most fluctuations
induce rotations and the regime is effectively TB (ωtu = 0.68).
The distribution is then relatively flat (dashed-dotted line).
For γ̇ = 1 s−1, the vesicle is tank treading and from time
to time a full rotation is induced by fluctuations (ωtu =
0.13). The probability distribution is almost symmetrically
centered around θTT (dashed line). For γ̇ = 3 s−1, the regime
is effectively TT since tumbling practically never happens
(ωtu = 0.0052) and the orientation angle fluctuates around θTT

due to thermal noise (dotted line). The mean inclination angle
〈θ〉 as a function of λ is also influenced by thermal noise—a

FIG. 3. (Color online) (a) Probability distribution of the orienta-
tion angle θ at λ = 2 and different shear rates. (b) Mean inclination
angle 〈θ〉 as a function of the viscosity contrast. The solid black lines
represent the KS model.

FIG. 4. (Color online) Phase diagrams of the dynamics of
capsules as a function of λ and E0 (in units of kBT ) for γ̇ = 1 s−1 for
the deterministic (left) and stochastic (right) case.

fact already seen in Ref. [31]—and an exponential tail appears
instead of sharp transition, as illustrated by Fig. 3(b). Such a tail
is similar to the one observed in a simulation including thermal
noise [29]. A similar slow decay of the mean inclination
angle has also been recently observed in an experiment [6,27],
but it seems that it can also be reproduced in deterministic
simulations [15].

Elastic capsules. For E0 > 0, the solution of (6) cannot be
separated and one has to solve the equation numerically. The
phase diagrams of Fig. 4 represent the tumbling ratio ωtu as
a function of the viscosity contrast λ and the shape-memory
energy E0 at a shear rate of γ̇ = 1 s−1. As for vesicles, ωtu

is never exactly 0 or 1 with thermal noise, but the values are
extremely close in the black and white regions such that we can
still effectively identify the SW and TB regimes, respectively.
The region for which intermittent dynamics takes place is much
wider in the presence of thermal noise. In particular, there is
now a large intermittent region for λ � 1 which was not there
in the deterministic case.

This can be seen in Fig. 5, which shows the phase transition
for λ = 0. In the SS model, this transition is discontinuous
and happens between E0 = 96 (in units of kBT ), where the
capsule is perfectly tank treading (ωtu = 1), and E0 = 97, at
which perfect tumbling (ωtu = 0) is observed [see Fig. 5(a)].
The thermal fluctuations turn the transition into a continuous
one, which implies a mixing of both types of motion in a region

FIG. 5. (Color online) (a) ωtu as a function of E0. (b)–(d)
Stationary probability distribution ps(θ,φ) for three different values
of E0. The other parameters are λ = 0 and γ̇ = 1 s−1.
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FIG. 6. (Color online) Intermittent behavior with γ̇ = 1 s−1,
λ = 4, and E0 = 40kBT . Left: Deterministic trajectory of length
500 s. Right: Corresponding probability distribution in the presence
of thermal noise.

of approximately 40kBT around the critical energy. This is
illustrated by the stationary probability distribution at different
values of the shape-memory energy. For E0 = 60 [Fig. 5(b)],
the capsule is in the TT regime and the probability distribution
follows exactly the deterministic trajectory (dashed line), but
the amplitude of the oscillations in θ is approximately two
times larger. Similarly, for E0 = 120 [Fig. 5(c)], the capsule is
tank treading and the most probable path is the deterministic
one (dotted line) with larger oscillations of φ. At the transition
[E0 = 96.5, Fig. 5(d)], however, we observe a thermal mixing
of the TT and TB regimes. The capsule exhibits both motions
with a slight offset with respect to the deterministic paths at
E0 = 96 (dashed line) and E0 = 97 (dotted line).

In the presence of thermal noise, the intermittent regime
predicted by the SS model thus still exists, but is superimposed
with a thermal mixing of the dynamical regimes, as shown
in Fig. 6. The left panel shows one deterministic trajectory

of the capsule in the θ−φ phase space. The trajectory is
quasiperiodic and consists of incomplete tumbling rotations
(horizontal curves) interrupted by incomplete tank-treading
motions since there must not be any intersection. The right
panel shows the probability distribution in the presence of
thermal noise. The tank-treading path is the most probable
one, even though tumbling also happens. The white areas on
the top right and top left are almost excluded, which was
not the case for the deterministic trajectory. Complete TB
rotations as well as complete TT rotations may occur since
an intersecting trajectory is not forbidden for a stochastic
motion.

Concluding Perspectives. We have shown that under
realistic conditions, the effects of thermal fluctuations on
the dynamics of fluid vesicles and elastic capsules should
be observable for objects having approximately the same
dimensions as red blood cells in water. In most extant
experiments on elastic capsules, either the capsules are too big
[38] or the outside medium has a too high viscosity [18,39] for
showing thermal effects. Two important predictions concern
the tumbling motion of fluid vesicles at low shear rates for all
viscosity contrasts, and the thermal mixing of swinging and
tumbling for elastic capsules at low viscosity contrast. In the
future, the generalization of our model to deformable objects
should be investigated, for which we expect that thermal
noise would play an even more important role, especially
for fluid vesicles as suggested by the experiments reported
in Ref. [27].
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