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Simple nonlinear equation for structural relaxation in glasses
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A wide range of glassy and disordered materials exhibit complex, nonexponential, structural relaxation (aging).
We propose a simple nonlinear rate equation δ̇ = a[1 − exp(b δ)], where δ is the normalized deviation of a
macroscopic variable from its equilibrium value, to describe glassy relaxation. Analysis of extensive experimental
data shows that this equation quantitatively captures structural relaxation, where a and b are both temperature- and,
more importantly, history-dependent parameters. This analysis explicitly demonstrates that structural relaxation
cannot be accurately described by a single nonequilibrium variable. Relaxation rates extracted from the data
imply the existence of cooperative rearrangements on a supermolecular scale.

DOI: 10.1103/PhysRevE.86.010501 PACS number(s): 64.70.P−, 81.05.Kf, 81.40.Cd

Glass-forming materials exhibit a rapid increase in relax-
ation time scales when going through their glass temperature
Tg [1]. When external conditions change abruptly, the observa-
tion of the full relaxation to equilibrium becomes exceedingly
difficult, except for a narrow range of temperatures near Tg .
The relaxation is characteristically nonexponential and spans
several orders of magnitude in time. In many cases, the
relaxation is logarithmic. This behavior is paralleled in a broad
range of disordered systems: compaction of granular materials
[2], crumpling of thin sheets [3], aging of conductivity in
electron glasses [4,5] and dielectric loss in various glass
formers [6,7]. This apparently wide-spread behavior might
suggest a generic origin of slow glassy relaxations (aging).

Glassy relaxation is typically probed by tracking the
evolution of a macroscopic quantity, e.g., the volume or the
enthalpy, in response to an abrupt change in an externally
controlled variable, e.g., the temperature. In the latter case,
when a temperature T0 is rapidly changed to T , in the vicinity
of the glass temperature Tg , various degrees of freedom of the
glass respond differently. The vibrational degrees of freedom
quickly equilibrate at T . The structural degrees of freedom,
however, carry long-time “memory” of the original state at T0

and fall out-of-equilibrium with T . It is the out-of-equilibrium
dynamics of the structural degrees of freedom towards equi-
librium at T that is at the heart of “structural relaxation.”

Structural relaxation is conventionally interpreted in
terms of the Tool-Narayanaswamy-Moynihan (TNM) [8]
or Kovacs-Aklonis-Hutchinson-Ramos [9] phenomenological
four-parameter models. The main assumption in these models
is that during relaxation, a single dynamical variable is
sufficient for describing the nonequilibrium state of the glass.
In the case of the TNM model this variable is a “fictive
temperature,” defined to be a linear function of the probed
quantity. It is known, however, that these models do not
describe experimental data accurately [1] and actually fail to
account for thermal history dependence [10]. In addition, while
it has been recognized that nonmonotonic relaxation (i.e.,
the Kovacs memory effect [11]) cannot be described by a single
nonequilibrium state variable [12,13], some recent works have
suggested that this might be possible for monotonic relaxations
of the type considered here [12,14,15].

In spite of the seemingly universal nature of glassy
relaxation, as well as its great scientific and technological

importance, a theoretical understanding of it is still lacking. In
this Rapid Communication, we propose a simple, analytically
solvable, nonlinear rate equation for describing structural
relaxation (aging) in glasses. The equation is shown to
quantitatively capture extensive experimental data on volume
relaxation, yet it explicitly demonstrates the inadequacy of
a single-variable nonequilibrium description of glassy relax-
ation. This analysis sheds light on some basic properties of
structural relaxation in these systems, including estimates of
activation energies and volumes.

Volume relaxation of glassy materials is usually studied
by mercury dilatometry [16]. Classical experiments were
performed by Kovacs in the 1960s [11]. These measurements
are routinely used since then and provide a standard testing
ground for models. In the so-called down-jump experiments,
a glass is rapidly quenched from equilibrium at T0 to a lower
temperature T . Measurements begin at ti , the characteristic
time at which the vibrational degrees of freedom thermalize.

The first question we raise is whether structural relaxation
can be properly described by a single nonequilibrium variable.
To address this question, we denote such a variable by δ(t) and
note that a single variable description means that the rate of
relaxation is uniquely determined by its instantaneous value,
δ̇(t) = r[δ(t)], where r[·] is some functional. Therefore, in
such models there exists a function g(t) such that δ(t) =
g[t + g−1(δ0)], where δ0 = δ(0) is the initial condition, and
hence measurements differing only in initial conditions would
collapse on a single master curve upon proper time shift.
An example is shown in Fig. 1(a) with measurements
digitized from Kovacs’ original work [11], given in terms of
δ = (V − V∞)/V∞, the normalized deviation of the volume
from its asymptotic value V∞. Here the temperature T = 30 ◦C
is the same for all measurements, and only the initial state is
changed by quenching from different initial temperatures T0.
In Fig. 1(b) we time shift each one of the curves such that
their initial values would sit on the 60 ◦C → 30 ◦C curve. The
failure of the time-shifted data to collapse on a master curve
implies that using a single nonequilibrium variable would be
inadequate for constructing a predictive model of structural
relaxation.

This observation seems to be in line with the com-
mon knowledge that glassy relaxation is characterized by a
broad spectrum of relaxation times. A fundamental modeling
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FIG. 1. (Color online) (a) Down-jumps with a fixed target
temperature T = 30 oC in PVAc. Data digitized from Fig. 16
in Ref. [11]. (b) The above measurements time-shifted onto the
60 oC → 30 oC curve.

approach would incorporate these various time scales into
the evolution of the probability distribution function of the
volume v of mesoscopic material elements f (v,t), as it
approaches the equilibrium distribution f

eq
T (v) at T during

structural relaxation. This is a daunting task that has been
pursued only in simple models [17,18]. Our goal here is to
show that while models that use only the macroscopic volume
V (t) = N

∫ ∞
0 vf (v,t)dv (where N is the number of elements)

cannot be complete, they can still teach us something and
might serve as a starting point for constructing an adequate
phenomenological model.

There are two basic approaches for rationalizing logarith-
mic relaxations. The first views the relaxation as a linear
response; i.e., relaxation rates are independent of the state of
the system. A logarithmic response is then obtained by sum-
ming over a spectrum of exponential relaxation modes. This
approach was suggested in Ref. [11], was pursued in Ref. [19],
and was recently invoked in the context of electron glasses [5].
Essentially, the evolution of the deviation from equilibrium is
assumed to take the form δ(t) ∝ ∫ ∞

0 p(λ) exp(−λ t)dλ, where
p(λ) is a distribution of relaxation rates. When p(λ) ∼ λ−1 in
a certain range, logarithmic behavior emerges. The second
approach, suggested in many contexts (e.g., in Ref. [3]),
describes logarithmic relaxation as a result of the dependence
of rate on the instantaneous state. A nonlinear equation of the
form δ̇ ∝ − exp(b δ) is then proposed to yield δ ∝ − log(t)/b.

We follow the latter approach and propose to describe
structural relaxation using

δ̇ = a(1 − eb δ). (1)

Here a is a basic relaxation rate and b is a constant. The 1 added
in the parentheses ensures that δ̇ vanishes with δ. Equation (1)
admits the analytic solution

δ(t) = −1

b
log[1 − (1 − e−b δ0 ) e−ab t ], (2)

where δ0 is the initial condition. For large enough initial am-
plitudes, for which exp(−b δ0) � 1, and short times ab t � 1,
we have δ(t) � − log(ab t)/b. The final stage of the relaxation
is exponential, δ(t) ∝ exp(−ab t). For large negative initial
amplitudes, for which exp(−b δ0) 	 1, and short times a t �
−δ0, the relaxation is linear δ � δ0 + a t . Again, the final stage
of relaxation is exponential, δ(t) ∝ − exp(−ab t). This marked
asymmetry between δ > 0 and δ < 0 relaxations naturally
emerges from the exponential δ → −δ asymmetry in Eq. (1).

We note that the dependence of the relaxation rate on the
instantaneous state, which is represented by the nonlinearity
in Eq. (1), suggests a coupling between different relaxation
events, which is absent in the linear response approach. In
fact, an equation similar to Eq. (1), in which this coupling is
mediated by long range elastic interactions, has recently been
proposed [20,21].

To test Eq. (1) we present in Fig. 2 fits of Eq. (2) to a
significant portion of Kovacs’ original data [11]. For each
curve the parameters δ0,a,b were independently varied. Note,
however, that δ0 is determined by the first data point and hence
is not a fitting parameter. Down-jumps in polyvinyl acetate
(PVAc) with a fixed target temperature T [Fig. 2(a)] and
fixed initial condition T0 [Fig. 2(b)] are satisfactorily captured
by Eq. (2). We checked the equation also against data for
glucose [Fig. 2(c)] which appear in Ref. [11]. Figures 2(d)
and 2(e) show fits to up-jumps, experiments where the initial
temperature T0 is lower than T , making the initial condition
δ0 < 0. Figure 2(d) is plotted in a linear scale to show the
manifestly linear portion of the relaxation. Usually, both
up-jumps and down-jumps are plotted using a logarithmic time
scale to show the asymmetry between the two responses. Here
we assign this asymmetry to the nonlinearity of the response.
Additional data were shown to agree with Eq. (1) [22].

Is it a mere curve fitting? Equation (1) provides an excellent
description of the data, at a price of independently varying the
model parameters for each set of experimental conditions. In
addition, we already know that a single variable approach as
in Eq. (1) cannot constitute a predictive model. Nevertheless,
the variation of the parameters a and b with the experimental
condition may be physically meaningful and may offer insight
into structural relaxation. Indeed, Fig. 3 shows that a and b

vary systematically with T0 and T . Figure 3(a) shows a(T ) for
PVAc and glucose for a fixed initial temperature T0 (in each
experiment, both down and up-jumps). The first observation
is that a(T ) is a function; i.e., it varies smoothly with T . The
same holds for b(T ); see Fig. 3(b) for measurements with fixed
T0. Actually, a exhibits a strong exponential dependence on
T , which is a manifestation of the dramatic slowing down
associated with the glass transition. The possible origin of this
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FIG. 2. (Color online) Fits of Eq. (2) to Kovacs’ data [11]. The
solid black curves are three-parameter fits. (a) Down-jumps in PVAc
with fixed T = 30 ◦C. See Fig. 1. (b) Down-jumps in PVAc from
the same initial condition T0 = 40 ◦C to T = 25, . . . ,37.5 ◦C (top to
bottom). (c) Down-jumps in glucose from a fixed initial temperature
T0 = 40 ◦C to T = 19.8, . . . ,32.5 ◦C (top to bottom). (d) Up-jumps
in PVAc. Note the linear scale. Here T0 = 30, . . . ,37.5 ◦C (bottom to
top) to T = 40 ◦C. The measurement starts at ti = 36s. (e) Up-jumps
in glucose where T0 = 25 ◦C is fixed while T = 30, . . . ,37.4 ◦C
(bottom to top). The measurement starts at ti = 36 s.

dependence in thermally activated processes will be discussed
below.

In the present context, the observation that the structural
state of a glass cannot be described by a single nonequilibrium
variable implies that a and b should depend on the initial
temperature T0. Indeed, Fig. 3(b) demonstrates that b depends
on T0. Here the parameter b in PVAc and glucose is plotted
against the jump size T0 − T for both down-jumps and up-
jumps and a wide variation of T and T0. This shows that
b is a function of both T and T0, which strikingly implies
that a relaxing glass carries the memory of its original state
at T0 for very long times. The dependence of a on T0 (not
shown) is the opposite of that of b. Nevertheless, we could
not simply connect the two. We also verified (not shown) that
the final exponential relaxation rate, controlled by the product
a(T ,T0) b(T ,T0), also depends on T0.

Another interesting feature of Fig. 3(b) is the approximate
collapse of all measurements on a single curve as a function
of T0 − T . This implies that b has a physical meaning. We
also note the apparent discontinuity of b when passing from
up-jumps to down-jumps, which is known in the literature
as the τeff paradox [23]. We take it to mean that as the
asymptotic volume at T is approached from above or from
below, the system explores disparate regions in phase space.
This indicates that the volume alone cannot tell the whole
story about glassy relaxation. This might also imply that the
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FIG. 3. (Color online) Variation of the parameters in
Eq. (1) with initial temperature T0 and target temperature
T . Magenta squares, PVAc down-jumps from T0 = 40 ◦C [11];
crosses, PVAc down-jumps to T = 30 ◦C [11]; magenta trian-
gles, PVAc T jumps to T = 40 ◦C [11]; pluses, PVAc T jumps
to T = 35 ◦C [11,23]; circles, PVAc down-jumps from T0 =
35 ◦C [24]; diamonds, PVAc down-jumps from T0 = 40 ◦C [25];
green solid squares, glucose down-jumps from T0 = 40 ◦C [11];
green solid triangles, glucose up-jumps from T0 = 25 ◦C [11].
(a) Variation of relaxation rate a with T for experiments of fixed
initial condition. The dashed line is an exponent eT/T̃ with T̃ = 1 K.
The error bars are smaller than the symbols. (b) For PVAc and glucose
b shows a consistent dependence on jump magnitude T0 − T .

volume and other thermomechanical properties of glasses do
not necessarily equilibrate simultaneously (see [1], Sec. B.1.8).

As is clear from the discussion following Eq. (2), the
product b δ0 quantifies the degree of nonexponentiality in
the response, similar to the stretching exponent in stretched-
exponential representations of glassy relaxation [20]. We
expect b δ0 to become small at high temperatures and small
temperature jumps, giving rise to a linear response character-
ized by a purely exponential relaxation, though this regime has
not been probed in the data analyzed here. In this context, it is
interesting to note that b is in fact growing as T0 − T > 0
becomes smaller in Fig. 3(b). Together with the apparent
discontinuous behavior of b mentioned above, this observation
calls for further investigation.

Equation (1) seems to contain physical information about
structural relaxation. To quantify this, we rationalize the
equation using a two-state model. A common way to motivate
such an equation is to assume that an Arrhenius-like process
depends on an observable. Assume then that the volume
evolves through activated jumps of volume elements between
a contracted “− state” and an expanded “+ state.” Therefore,

ṅ = −k−n + k+(1 − n) , (3)

where n is the fraction of elements in the + state. A key
assumption here is that the activation energies are volume
dependent, k± ∝ exp[−E±(n)/kBT ]. E±(n) are energy bar-
riers for expansion and contraction. They are assumed to
grow with density; it is harder to move in a denser system.
Recalling that δV/V ∼ 10−3, we approximate n � nT + δn,
where nT is the equilibrium value of n at temperature T .
Neglecting terms of order δn, using the equilibrium condition
k−(nT )nT = k+(nT )(1 − nT ), and writing δn = δn/nT , we
obtain

δ̇n = k−(nT )(eA+δn − eA−δn ), (4)
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FIG. 4. (Color online) The volume-dependent energy barrier
E−(VT ) = −kBT log(a/k0) for parameter a in Fig. 3(a). Here
k0 = 1012 s−1. Solid lines are linear fits.

where A± = −(nT /kBT )∂E±(nT )/∂n are non-negative, as
barriers become smaller with expansion. Equation (1) then
emerges as a special case when a(T ) = k−(nT ), A+ = 0, and
b(T ) = A− ∝ ∂E−(VT )/∂V .

We can then extract an energy barrier scale from a =
k0 exp[−E−(VT )/kBT ], where VT is the equilibrium volume at
T . We set k0 ∼ 1012 s−1, which is the typical scale of molecular
vibration. In Fig. 4 E− is calculated for the experiments
summarized in Fig. 3(a). The activation barrier is on a 1-eV
scale, which might imply cooperative rearrangements of tens
of monomers. It is interesting to note that the temperature
variation of E− is rather mild in the vicinity of the glass
transition, yet it is enough to produce the strong variation
in the relaxation times seen in Fig. 3(a)

To further test the latter, we estimate the size of rearranging
regions by a dimensional argument using the measured

derivative ∂E−(VT )/∂T . Define a volume scale v as

v ∼ κV
∂E−
∂V

∼ −κ

α

∂E−
∂T

, (5)

where κ = V −1∂V/∂P is the isothermal compressibility
and α = V −1∂V/∂T is the thermal expansion coefficient.
Linear regressions shown in Fig. 4 yield ∂E−/∂T ∼
−0.02 eV/K. Taking for PVAc α � 7 × 10−4 K−1 and κ �
0.42 GPa−1 [11], we find v ∼ 2 nm3. A similar estimate for
glucose also results in a cubic nanometer scale. These estimates
possibly suggest that structural rearrangements involve tens
of basic units (e.g., monomers in a polymer), which might
be related to other cooperative length scales discussed in the
literature [26]. Therefore, while the model cannot explain the
dependence of the parameters on the initial temperature T0,
it does seem to be sensitive to the dominant scales of the
underlying relaxation processes.

In summary, we proposed a simple mean-field equation for
glassy relaxation. Our analysis demonstrates that the structural
state of a relaxing glass cannot be fully described by a
single nonequilibrium variable. In fact, a glass may carry
information about its history for extremely long time scales.
Finally, estimates of typical energies and volumes associated
with thermally activated relaxation indicate the existence of
cooperative rearrangements on a supermolecular scale.
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