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Branching-rate expansion around annihilating random walks
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We present some exact results for branching and annihilating random walks. We compute the nonuniversal
threshold value of the annihilation rate for having a phase transition in the simplest reaction-diffusion system
belonging to the directed percolation universality class. Also, we show that the accepted scenario for the
appearance of a phase transition in the parity conserving universality class must be improved. In order to obtain
these results we perform an expansion in the branching rate around pure annihilation, a theory without branching.
This expansion is possible because we manage to solve pure annihilation exactly in any dimension.

DOI: 10.1103/PhysRevE.86.010104 PACS number(s): 64.60.De, 05.10.Cc, 64.60.ae, 82.20.−w

Active-to-absorbing phase transitions represent one of the
simplest cases where genuine nonequilibrium behavior is
attained. In this context, much work has been devoted to the
study of branching and annihilating random walks (BARW)
[1–5], systems composed of particles of a single species A,
that diffuse in a d-dimensional space, and that can suffer both
annihilation and branching (i.e., offspring creation) processes.
BARW are not only of direct physical interest, but also present
a conceptually simple class of out of equilibrium systems.

Due to universality, it is generally enough to consider
the simplest possible reactions, which allow for BARW to
be classified into subclasses [1,2]. Pure annihilation (PA),
the theory without branching where the only reaction is

2A
λ−→ ∅, constitutes a good starting point in order to study

properties of BARW. In the long time limit the PA system
approaches the empty state, where all density correlation
functions are zero. The response functions, however, are
nontrivial, and are governed in the infrared (IR) (that is, for
momenta and frequencies smaller than the scale set by λ) by
a non-Gaussian renormalization group (RG) fixed point. If we
add the simplest branching reaction A

σ−→ 2A, the resulting
BARW system is known to be in the directed percolation
universality class [6], and we call it BARW-DP. If instead
we choose to add the reaction A

σ−→ 3A, which preserves the
parity of the number of particles, the system belongs to the
parity conserving (PC) universality class (more appropriately
known as generalizedvoter [7]) whenever a phase transition
takes place. We call this system BARW-PC [8].

Both universality classes have been studied using pertur-
bative RG methods [2], by expanding the model around the
Gaussian reactionless RG fixed point. In the case of DP, the
authors of Ref. [2] do not find a phase transition in dimensions
d > 2. As for PC, at one- and two-loop orders an (upper)
critical dimension dc > 1 is found, with the PA fixed point
being unstable for d > dc, so that the branching perturbation
is always relevant, there is no absorbing phase, and hence no
phase transition. Conversely, for d < dc the PA fixed point
is fully attractive and an absorbing phase exists at small
branching σ , whereas at larger σ the system is in its active
phase. A phase transition must therefore occur at finite σ ,
which is confirmed numerically in d = 1. In Ref. [10], a one-
loop analysis of BARW with Lévy-flight dynamics was shown

to be compatible with this scenario. Finally, nonperturbative
renormalization group (NPRG) studies are also consistent with
it [11].

In this Rapid Communication, we revisit these conclusions,
proving that (i) in DP there is a phase transition for all d, in
agreement with what is found in Monte Carlo and NPRG
studies [12,13], and (ii) in PC, the PA fixed point remains
unstable in the σ direction for all relevant dimensions d � 1,
and therefore there are aspects of the PC transition that are still
to be fully understood.

Our results rely on an expansion in σ around the PA
theory (contrary to the usual perturbative expansion, which
is performed around the Gaussian theory). This expansion is
highly nontrivial since it requires one to solve exactly PA,
which we do by deriving closed equations for all its response
functions. As far as we know, such an expansion around a
non-Gaussian model has never been performed before for out
of equilibrium systems. Since our approach is valid for any
value of the annihilation rate λ, we obtain exact results at
small σ .

Being based on an exact solution of PA, our approach
also allows us to exactly compute nonuniversal quantities. We
choose to calculate, for the BARW-DP model, the nonuniversal
threshold value λth of the annihilation rate, at which a phase
transition occurs at vanishing σ .

(a) Pure annihilation. We briefly recall some technical
aspects. In order to study reaction-diffusion processes, a
field theory can be constructed in a standard way by using
the Doi-Peliti formalism [14]. As a result, one obtains the
generating functional of the correlation and response functions

Z[J,Ĵ ] =
∫

Dφ Dφ̂ exp

(
−S[φ,φ̂] +

∫
x

Jφ + Ĵ φ̂

)
, (1)

with an appropriate action S[φ,φ̂], that captures the micro-
scopic reactions. Here we have introduced the notation, to be
used throughout, x = (x,t) [and p = (p,ν) in Fourier space],∫
x

= ∫
ddx dt and

∫
p

= ∫
ddp

(2π)d
dω
2π

.

In the case of PA the only reaction is 2A
λ−→ ∅ and

SPA[φ,φ̂] =
∫

x

[φ̂(∂t − D∇2)φ + λ(φ̂2 − 1)φ2], (2)
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FIG. 1. Generic form of a diagram for 	(n,m) including at least
one loop. (Left) Diagrammatic representation of a generic 	(n,m)

vertex. (Right) General structure for 	(n,m) in PA; the black blob
is a connected and amputated Green function that has to comply with
some requisites (see text).

where D is the diffusion constant and where we have ignored
initial conditions, because we are only interested in the steady
state. This theory has a strong resemblance with equilibrium
φ4 theory, but is further constrained by causality properties [1].

All the information of a system is encoded in the vertices
	(n,m) of the theory [also known as the one-particle irreducible
(1PI) functions, with n incoming legs and m outgoing response
legs], related to the connected correlation and response
functions by a Legendre transform [15]. We now present
an identity allowing us to obtain a closed equation for any
	(n,m) in PA. It can be most conveniently written at the
diagrammatic level: any Feynman diagram contributing to
	(n,m) that includes at least one loop must begin by a four-leg
bare vertex.

In Fig. 1 we show the general structure of these diagrams.
The black blob denotes a subdiagram that is constrained by
the condition that the full diagram must be 1PI. In particular,
it means that this subdiagram must be connected (and with
amputated external legs). Now, any connected diagram con-
tributing to this blob has a unique tree decomposition in terms
of 1PI subdiagrams having at most n incoming and m outgoing
legs [15]. By summing all possible diagrams and permutations
compatible with the 1PI structure of the full diagram, we obtain
a closed equation that relates any 	(n,m) with other 	(l,s) with
a lower number of legs. A nonperturbative proof (not based
on an all-order analysis) of this general property will be given
elsewhere [16].

In order to be concrete, let us analyze the identity given
in Fig. 1 for the simplest vertices. For 	(1,1) this yields a
well-known property: there is no correction to 	(1,1) in PA,
since there is no diagram such as the one in Fig. 1 with a single
incoming leg. Concerning 	(2,2), one arrives at the known
equation [17,18]

	(2,2)(p1,p2,p̄1,p̄2)

= 4λ − 2λ

∫
q

G(q)G(p1 + p2 − q)

×	(2,2)(q,p1 + p2 − q,p̄1,p̄2) (3)

with G(q) = [	(1,1)(−q)]−1 the propagator of the theory. The
solution of Eq. (3) is of the form

	(2,2)(p1,p2,p̄1,p̄2) = 4l(p1 + p2) (4)

with

l(p) = λ

(
1 + 2λ

∫
q

G(q)G(p − q)

)−1

. (5)

This result can simply be seen as stemming from a geometric
sum over bubbles. A similar relation is found for 	(2,1). The
relation presented in Fig. 1 is a generalization of these known
results to any vertex function. It enables us to study BARW
by means of a perturbative expansion in the branching rate σ

around PA.
(b) BARW-PC. Let us begin by considering the parity

conserving universality class: 2A
λ−→ ∅ and A

σ−→ 3A. The
corresponding microscopic action reads

SPC[φ,φ̂]=
∫

x

[φ̂(∂t−D∇2)φ + λ(φ̂2−1)φ2 + σ (1 − φ̂2)φφ̂].

This action is symmetric under φ → −φ, φ̂ → −φ̂, which
implies the constraint 	(n,m) = 0 if (n + m) is odd.

The PC model is known to present an active-to-absorbing
phase transition in d = 1, generally believed to be related to
a change of stability of the PA fixed point in a dimension
dc with 2 > dc > 1. Perturbatively [2], and also within the
local potential approximation (LPA) of the NPRG [11], this
change of stability occurs in the following way: On the one
hand, for dimensions close to two, canonical power counting
arguments show that the PA fixed point is unstable in the σ

direction, which implies that the system is in its active phase
for all σ > 0. On the other hand, at one- and two-loop orders
an (upper) critical dimension dc > 1 is found such that for
d < dc the coupling σ becomes irrelevant around the PA fixed
point, which therefore becomes fully attractive, thus showing
the existence of an absorbing phase at small σ . This change of
stability occurs because a new fixed point F PC crosses the PA
fixed point at dc and in this dimension they both change their
stability. Below dc, this new fixed point is in the physically
relevant quadrant λ � 0, σ � 0, has one unstable direction,
and is thus associated with the PC phase transition. We now
reconsider this scenario.

We can perform a systematic expansion in σ while keeping
λ finite. Within this formalism we can reanalyze the stability
of the IR PA fixed point in the presence of the PC creation
reaction, A

σ−→ 3A, that we can determine exactly since our
analysis is exact at small σ . The relevance of this coupling can
be obtained from the flow of 	(1,3), since this function is of
order σ .

At first order in σ , we can write the equation for 	(1,3) in
the form shown diagrammatically in Fig. 2, whose structure
implies the following functional form for 	(1,3):

	(1,3)(p,p1,p2,p3) = −2σ (p,p1) − 2σ (p,p2) − 2σ (p,p3).

(6)

The quantity that interests us is dσ , the scaling dimension of
σ in the IR limit, which can be extracted from the behavior of
σ̂ (p) ≡ σ (0, − p)/l(p),

σ̂ (p) ∼ |p|d−dσ , l(p) ∼ |p|2−d for ν,|p|2 � λ2/(2−d).

+= +perm.

FIG. 2. Closed equation for 	(1,3) in BARW-PC.
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The equation for σ̂ obtained from Fig. 2 and Eq. (6) reads

σ̂ (p) = σ

λ
− 4

∫
q

G(q)G(p − q)σ̂ (q)l(q). (7)

Using this exact expression and expanding in ε = 2 − d we
easily recover the one- and two-loop results [2,16].

In order to get a result for dσ it is convenient to get rid of the
bare reaction rates, as we are only interested in the universal
IR scaling behavior. We subtract to (7) its value at zero σ̂ (p =
0), which is zero for d < 2, given that we expect dσ < d.
Our results will later confirm this. We must also take into
account the expected scaling invariance. We define the scaling
function σ̃ (ν̃),

σ̂ (p,ν) = |p|d−dσ σ̃ (ν̃), ν̃ = ν

|p|2 . (8)

Observe that we are performing a perturbation around the PA
fixed point, whose anomalous dimensions are zero, and the
natural scaling variable is accordingly ν̃ = ν/|p|2.

The ensuing equation for σ̃ is still too complicated to
be solved analytically, and requires a numerical solution.
A convenient way to do this is to make an expansion in
u = cos ̂(p,q), which turns out to be rapidly convergent. We
then proceed as follows: At each order in u, we adjust dσ at
a given value of d, by numerically iterating this equation in
order to reach a fixed functional form for σ̃ (ν̃) in a lattice
of Nν points with a resolution δν. We have checked the
convergence in u and in the numerical parameters δν and Nν ,
used for the computation of integrals. This procedure gives
always a converged scaling function σ̃ (ν̃), which confirms a
posteriori the scaling form ansatz (8). We observe σ̃ (ν̃) to be
a nontrivial function of its argument [16], which may explain
the qualitative difference between our results and previous
approximate results. Observe that LPA and one-loop analysis
are based on a 	(1,3) vertex without dependence on frequency
and momentum.

This procedure allows us to find the value of dσ as a
function of d, the results of which are plotted, together with
previous perturbative results, in Fig. 3. There one sees that,

1 1.2 1.4 1.6 1.8 2
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-0.5
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dσ

1-loop
2-loops
this work

FIG. 3. Results for dσ , showing there is no change in the RG
relevance for the branching rate σ .

even if dσ gets smaller when d decreases, it remains always
positive, which is in contradiction with the usual picture for
the PC transition. Notice that this result does not rule out the
possibility of a transition in d = 1. We propose the following
scenario that reconciles all existing results. In a dimension
between 1 and 2, two fixed points appear at positive λ and
σ , the one with the smaller value of σ being fully attractive
and governing the absorbing phase, while the other is once
unstable and is thus associated with the PC transition. In this
scenario, the absorbing phase must have a behavior different
from PA. This can be studied either by using Monte Carlo
methods or higher order NPRG equations.

The previous result is surprising because another exact
analysis [19] in d = 1, which seems to indicate that σ

is irrelevant with respect to the IR PA fixed point, is in
contradiction with our conclusions. We can explain this
difference observing that the model used in Ref. [19] is defined
with λ = ∞ (and indeed presents no phase transition at all
for whatever value of σ ). Now, the IR limit of the theory
corresponds to ν,|p|2 � λ2/(2−d), but this does not allow us to
take σ = 0 when compared to λ. Looking at Eq. (7), λ = ∞
implies σ̂ ≡ 0, so that the relevant direction corresponding to
σ is no longer accessible by studying σ as a perturbation. This
is true for all d. In particular, for d ∼ 2, the form of the relevant
direction can be calculated perturbatively and the result is at
one loop

σ̂ (p) ∼ σ

λ3
l2(p). (9)

One observes then that in the limit λ → ∞ the relevant
direction is eliminated artificially even at d ∼ 2. Thus, the
results of [19] do not apply to BARW-PC at finite values of
the reaction rate λ, the system in which we are interested. It
also shows that when λ is large, a crossover must occur and
for a long transcient the PA behavior will show up. Monte
Carlo studies of the low branching regime of this system have
until now, as far as we know, also been mostly made in the
limit λ → ∞ [20,21]. They are compatible with the standard
scenario, but within the criticisms previously pointed out.

(c) BARW-DP. Let us now consider the simplest BARW-

DP model: 2A
λ−→ ∅ and A

σ−→ 2A, whose microscopic action
reads [2]

SDP =
∫

x

[φ̄(∂t − D∇2)φ + λφ̄(φ̄ + 2)φ2 − σ φ̄(φ̄ + 1)φ].

Notice that in this equation we have performed, as is usually
done, a shift in the response fields, φ̂(x) = 1 + φ̄(x). The
case σ = 0 corresponds to PA, now written in terms of the
shifted φ̄ field. This version of PA can be solved following the
same ideas as previously. In particular, it is easy to check that
the equation for 	(2,2) remains the same as in the unshifted
case, Eq. (3).

We consider the exact calculation of the threshold λth for the
existence of an active-to-absorbing phase transition in BARW-
DP. In order to check for the presence of a phase transition
it is enough to study the behavior of � = 	(1,1)(p = 0) as
a function of the annihilation rate λ, since the zeros of �
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+= PA

FIG. 4. Closed equation for 	(1,1) in BARW-DP at O(σ ).

correspond to a divergence of the correlation length. Given that
λth corresponds to the transition value of λ when σ → 0+, an
analysis at leading order in σ allows for an exact calculation of
λth. An equation for 	(1,1)(p) at order O(σ ) can be represented
in the diagrammatic form of Fig. 4, which can be written

	(1,1)(p) = −σ + 4σ l(p)
∫

q

G(q)G(p − q) + O(σ 2), (10)

where we have evaluated the propagator G(p) and the vertex
	(2,1)(q,p − q,−p) at order zero in σ , that is in PA, and
consequently replaced this last function by 4l(p) [2,16].

By substituting the expression for l(p = 0), evaluating (10)
at p = 0, and putting � = 0, we find

λth =
(

2
∫

q

G(q)G(−q)

)−1

. (11)

To evaluate λth, we need to take into account that the properties
of a phase diagram are not universal, and depend on the specific
form of the theory at short distances. This is as in equilibrium
statistical mechanics, where critical temperatures depend on
the specific form of the lattice. Here we consider a particular
microscopic form for the model corresponding to a hypercubic
lattice with lattice spacing a. In this case the propagator reads

G(q) = 1

iω + 2D
a2

∑d
i=1[1 − cos(aqi)]

. (12)

In Table I, the value of the resulting threshold coupling
λth is given, proving in particular the existence of a phase
transition in every dimension. Previous results from Monte
Carlo simulations [13,22] are in excellent agreement with
these exact ones. This same general structure of the phase
diagram has also been show to exist in other models in the DP
universality class [23].

TABLE I. Values of the threshold coupling λth for various
dimensions d .

d 3 4 5 6

λth/Dad−2 (this work) 3.96 6.45 8.65 10.7
λth/Dad−2 (Monte Carlo) [13] 3.99 6.48 8.6 10.8

It is convenient to point out that for d � 2 an IR divergence
of the integral in Eq. (11) takes place. This makes λth = 0 in
those dimensions, in agreement with the results of Ref. [2].
For this reason, for d � 2 it is not useful to expand the
model at small σ for a finite λ in order to study the phase
transition. Moreover, this also shows that in those dimensions
the transition is dominated by IR effects, and correspondingly
most of the dependence on the microscopic behavior of the
model is absent.

(d) Concluding remarks. In this work we take advantage
of the structure of PA to find closed exact expressions for
any of its response functions, which we use to perform an
expansion in the branching rate σ around this model. This
gives us access to the small branching regime of BARW in
two important universality classes.

In the case of the system of reactions 2A → ∅, A → 2A,
which belongs to the DP universality class, we give an
explicit proof of the existence of a phase transition in all
space dimensions. We have, moreover, calculated exactly the
nonuniversal threshold value of the annihilation rate for this
phase transition to occur. This result is beyond the possibilities
of usual perturbation theory. As for the parity conserving case,
we find, surprisingly, that the appearance of the PC fixed
point associated with an active-to-absorbing transition below
a critical dimension must occur at a nonzero value of the
branching rate, which would be compatible with a scenario
where there are not one but two new fixed points as d is
lowered.
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[2] J. L. Cardy and U. C. Täuber, Phys. Rev. Lett. 77, 4780 (1996);
J. Stat. Phys. 90, 1 (1998).

[3] P. Grassberger, F. Krause, and T. von der Twer, J. Phys. A 17,
L105 (1984).
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