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Thermal rectification in graded materials
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In order to identify the basic conditions for thermal rectification we investigate a simple model with nonuniform,
graded mass distribution. The existence of thermal rectification is theoretically predicted and numerically
confirmed, suggesting that thermal rectification is a typical occurrence in graded systems, which are likely
to be natural candidates for the actual fabrication of thermal diodes. In view of practical implications, the
dependence of rectification on the asymmetry and system’s size is studied.
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The study of the underlying dynamical mechanisms which
determine the macroscopic properties of heat conduction has
opened the fascinating possibility to control the heat current.
In particular, a model of a thermal rectifier has been proposed
[1] and since then, the phenomenon of thermal rectification
has been intensively investigated [2–9] in order to analyze
and improve the rectification effect, including experimental
realizations [10].

However, as correctly pointed out in Ref. [3], most recurrent
proposals of a thermal diode, based on the sequential coupling
of two or three segments with different anharmonic potentials,
are difficult to be experimentally implemented and the rec-
tification power typically decays to zero with increasing the
system size. In addition, most investigations so far have been
based on numerical simulations and a much better theoretical
understanding is highly desirable both for fundamental reasons
as well as for obtaining useful hints for the actual realization
of devices with satisfactory rectification power.

Along these lines, graded materials are attracting more and
more interest: Papers with numerical [5–7], analytical [8,9]
and even experimental [10] studies have appeared recently in
the literature.

The present Rapid Communication addresses the funda-
mental dynamical mechanisms that lead to rectification. Our
strategy is to consider a simple model that contains the
minimal ingredients we theoretically judge to be necessary
to rectification, and compare the numerical results with the
theoretical predictions. As the features of our model are
also shared by more realistic models such as anharmonic
chains of oscillators, we conjecture that the obtained results
may have practical implications as well. Our study allows
us to understand the basic ingredients behind rectification, to
describe nontrivial and important properties of the heat flow,
and to show that rectification in graded materials could be a
ubiquitous phenomenon.

We consider a chain [11] of elastically colliding particles
of two kinds referred to, in the following, as “bars” and
“bullets,” respectively. (See Fig. 1.) Each bar is confined inside
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a cell of unit length; that is, besides elastic collisions with its
neighboring bullet(s), it is also subject to elastic collisions
with the two boundaries of the cell. A bullet only undergoes
collisions with its two neighboring bars. Apart from collisions,
all particles move freely. We denote the masses (velocities)
of bars by Ml (vl), l = 1, . . . ,Z, and those of bullets by mk

(uk), k = 1, . . . ,Z − 1, respectively, with Z being the total
number of cells. Two statistical thermal baths with different
temperatures τL and τR are put into contact with the two ends
of the system: When the first (last) bar collides with the left
(right) side of the first (last) cell, it is injected back with a new
velocity determined by the distribution [12]

PL,R(v) = |v|M1,Z

kBτL,R

exp

(
− v2M1,Z

2kBτL,R

)
. (1)

The Boltzmann constant kB is set to be unity. In our molecular
dynamics simulations, after the system reaches the steady state,
we can compute the local temperature of each cell and the
steady heat flux across the system. The local temperature of
the lth cell is defined as the kinetic temperature of the bar, i.e.,
τl ≡ 〈Mlv

2
l /kB〉, where 〈·〉 stands for the time average. The

steady heat flux is measured as the time average of the energy
exchanged in unit time between the left heat bath (the last bar)
and the first bar (the right heat bath), or that between any two
neighboring particles. We have verified that the so-measured
heat flux is the same as the local heat flux carried by each
particle, which is defined as 〈Mlv

3
l /2〉 (〈mlu

3
l /2〉) for the lth

bar (bullet).
In order to investigate rectification, we consider the mass

graded version of the above chain. Precisely, we will focus on
a system with mass graded bullets m1 < m2 < · · · < mZ−1

and identical bars, M1 = · · · = MZ = 1. In order to avoid
boundary effects due to coupling with the heat baths, the
rectification effects are measured numerically only over the N

central cells, with the first (last) ZL (ZR) not being considered.
Hence the effective system size is N = Z − ZL − ZR .

The starting point of our theoretical approach is the expres-
sion for the local heat flow inferred from the homogeneous
case. We recall that the Fourier law of thermal conduction
has been shown numerically to hold in the homogeneous
version (i.e., the bullets also have the same mass ml = m)
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FIG. 1. (Color online) The schematic plot of our model. Dotted
lines divide elementary unit cells. In each cell there is a bar which
is subjected to elastic collisions with both cell boundaries and with
neighboring bullets. The first (last) cell is coupled to a heat bath at
temperature τL (τR).

of our model [11]. We also recall that homogeneous lattice
models of oscillators with, e.g., quartic anharmonic on-site
potentials, have been studied by different analytical methods
[13–16] and shown to follow the Fourier law as well. It
implies that for these systems, in the steady state the local
heat current at position x is proportional to the temperature
gradient F(x) = −K(x)∇T (x), where the heat conductivity
K(x) is a function of the local temperature T (x) (and of
other parameters). Precisely, for the homogeneous models of
anharmonic oscillators, such a local expression reads

F = (Tj − Tj+1)/CT̄
β

j , (2)

where Tj is the local temperature at the j th site and
T̄

β

j = (T β

j + T
β

j+1)/2 with β ≈ 2. For the theoretical study
of rectification in our inhomogeneous chain, we start from the
inhomogeneous version of such equation, i.e., we write the
heat flow from cell j to j + 1 as

Fj,j+1 = −Kj (∇T )j =
(
Cj T

α
j + Cj+1T

α
j+1

)
2

(Tj − Tj+1).

(3)

Note that the homogeneous version of our model obeys the
Fourier law with a thermal conductivity that scales as T 1/2

(see the following), in contrast to the 1/T 2 behavior of the
above anharmonic oscillators models.

For the heat flow in the steady state we have

F1,2 = F2,3 = · · · = FN−1,N ≡ F . (4)

Hence, by summing up the (N − 1) equations in Eq. (3)
for j = 1,2, . . . ,N − 1, we get F = K(T1 − TN )/(N − 1),

where

K = (N − 1)

2

⎡
⎣N−1∑

j=1

1

Cj T
α
j + Cj+1T

α
j+1

⎤
⎦

−1

. (5)

Then the Fourier law follows in the case where the thermal
conductivity K remains finite when N → ∞.

From Eqs. (3) and (4), it follows that

(T1 − T2)
(
C1T

α
1 + C2T

α
2

) = (T2 − T3)
(
C2T

α
2 + C3T

α
3

)
= · · · = (TN−1 − TN )

(
CN−1T

α
N−1

+ CNT α
N

)
. (6)

Thus, given the temperatures of the first and the last cell, i.e.,
T1 and TN , by using the equations above we may determine
the inner temperatures T2,T3, . . . ,TN−1. As it may be a hard
problem to obtain the analytical solution of these equations,
we may turn to numerical computations, or else, as in Refs.
[8,9], we may assume small temperature gradients in order
to simplify the computations. In this latter regime, i.e., for
T1 = T + a1ε, TN = T + aNε, ε small, we have Tk = T +
akε + O(ε2), where ak have to be determined [we carry out
the computations only up to O(ε)]. Algebraic manipulations
give us ak = a1 + (aN − a1)C̃(k)/C̃(N ), for k = 2, · · · ,N −
1, where C̃(k) ≡ [(C1 + C2)−1 + (C2 + C3)−1 + · · · + (Ck−1 +
Ck)−1]. The thermal conductivity defined in Eq. (5) is therefore

K = (N − 1)T α

2

⎡
⎣N−1∑

j=1

{
1

(Cj + Cj+1)

− αε

T

(ajCj + aj+1Cj+1)

(Cj + Cj+1)2

}⎤
⎦

−1

. (7)

Now we analyze the heat flow for the system with inverted
thermal baths. In this case we denote the temperature of the j th
cell by T ′

j and assume that T ′
1 = TN and T ′

N = T1. We also write
T ′

k = T + a′
kε for k = 2,3, . . . ,N − 1, and after the computa-

tions we get a′
k = aN − (aN − a1) C̃(k)/C̃(N ). Recalling that

a′
1 = aN and a′

N = a1, one obtains for the thermal conductivity
K′ of the “inverted” system, an expression similar to K (with
a′

j replacing aj ). We then have

1

K − 1

K′ = 2α(TN − T1)

(N − 1)T α+1C̃(N )

{
(C1 − C2)

(C1 + C2)3
+ (C2 − C3)

(C2 + C3)3
+ · · · + (CN−1 − CN )

(CN−1 + CN )3

}
. (8)

The homogeneous model, where all bars have a unit mass
and all bullets have mass m, has been shown [11] to follow the
Fourier law and the thermal conductivity κ(m,T ) at tempera-
ture T = 1 is as shown in Fig. 2. As the dynamics of our model
can be essentially described by a series of particle collisions,
which is invariant under a time rescaling t → t/γ (with γ be-
ing a positive constant), or equivalently a temperature rescaling
T → √

γ T , we have κ(m,T ) = κ(m,1)
√

T . Therefore, in the
limit of small temperature gradients, Eq. (3) leads to α = 1/2.

To conclude our theoretical analysis we still have to determine
the coefficients Cj . The behavior of these coefficients as
function of m can be deduced from Fig. 2 for the homogeneous
chain. Indeed, let us also assume for our inhomogeneous
system a small mass gradient and determine such coefficients
by properly relating them to their homogeneous versions, i.e.,
Cj = [κ(mj+ZL−1,1) + κ(mj+ZL

,1)]/2.
The qualitative picture which now emerges is quite clear:

From Eq. (8), in particular, from the difference between
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FIG. 2. (Color online) The numerically computed heat conductiv-
ity for the homogeneous chain of size N = 45 at temperature T = 1
(see Ref. [11]). The bars have unit mass and the bullets have the same
mass m. The two solid (dotted) lines indicate the bullet mass region
used for the simulations in Fig. 3(b) [Fig. 3(c) ].

the local thermal conductivities, we predict, and will later
numerically confirm, the properties of rectification. First, from
Eq. (8) it immediately follows the existence of rectification
which is particularly clear when κ(mj,1), and so Cj has a
monotonic behavior. It also follows that rectification increases
with the gradient of temperature. Moreover, from Eq. (8),
one can predict a larger flow from a smaller to larger mass
direction in the region where κ(mj,1) decreases with mj , and
the opposite behavior in the region where κ(mj,1) increases
with mj . The fact that our approach allows to predict not
only rectification of the heat current but also its direction is
quite interesting. In this respect we recall that rectification in
a graded system with the heat current larger in the direction of
decreasing particle masses has been observed experimentally
in nanotubes with nonhomogeneous external mass loading [10]
and numerically in the mass graded Fermi-Pasta-Ulam model
[5]. Instead, a case with the heat current larger in the reversed
direction (of increasing masses) has been found by molecular
dynamics simulations in mass graded ideal gases [6] and some
carbon nanotubes [7].

We now turn to the molecular dynamics studies of our
system which not only confirm our theoretical predictions
but also extend, in fact, our analytical results to regimes
beyond small gradients of temperature and mass, where the
rectification phenomena become more relevant. To this end
let us consider first a chain of Z = 32 cells with the bullets’
masses increasing in the range (1,2) (i.e. the interval between
the two solid vertical lines in Fig. 2) with ml = 1 + l/Z. After
the steady state is reached we calculate the time averaged
temperature profile and the heat current. Averages are taken
over a number of collisions per particle larger than 2 × 109.
In Fig. 3(a) we show the computed temperature profile for
τL = 1.2 and τR = 0.8, as well as for τ ′

L = 0.8 and τ ′
R = 1.2.

To evaluate the heat conductivity K and K′ we neglect the
first (last) ZL (ZR) cells in order to get rid of the boundary
effects. The values of ZL and ZR are determined by ensuring
that T1 = T ′

N and TN = T ′
1. (Note that Tl = τl+ZL

and T ′
l =

τ ′
l+ZL

for l = 1, . . . ,N .) In this case we have ZL = 5 and
ZR = 2. [See Fig. 3(a).] The value of thermal conductivity
K = F(N − 1)/(T1 − TN ) is then calculated over the central

FIG. 3. (Color online) (a) Temperature profile of the graded chain
with bullets’ masses increasing in the interval (1,2) for τL = 1.2
and τR = 0.8 (red dots), and, inversely, τ ′

L = 0.8 and τ ′
R = 1.2 (blue

squares). The dashed lines indicate the end temperatures T1 (T ′
N )

and TN (T ′
1) of the central segment considered in our computations.

(b)–(d) Heat conductivity measured over the central segment of the
graded chain with (b) and (c) for bullets’ masses increasing in the
interval (1,2) and (0.4,0.8), respectively (all bars have unit mass),
and (d) for the graded chain where all the masses of bars and bullets
increase in the interval (1,2). See text for details.

segment of N = 25 cells with numerically measured F , T1,
and TN . K′ is computed in the same way.

The dependence of the heat conductivity K and K′ on �T

for T = 1 is given in Fig. 3(b). Here T1 = T ′
N = T + �T

and TN = T ′
1 = T − �T . It is clearly seen that a system

with graded mass particles does present rectification, and
that rectification increases with the temperature gradient. In
addition, as in this case Cj decreases monotonically (see the
region between two solid vertical lines in Fig. 2), according to
our theoretical analysis the value of K for T1 > TN should be
larger than K′ for T ′

1 < T ′
N . This is confirmed by the numerical

results.
One advantage of our model is that, as shown in Fig. 2, it can

display regions where Cj decreases with j as well as regions
where Cj increases with j as, e.g., in the interval between the
two dashed vertical lines in Fig. 2. In the latter situation we
predict that the behavior of K and K′ will be opposite to the
previous case, i.e., that K for T1 > TN will be smaller than K′
for T ′

1 < T ′
N . This is confirmed by Fig. 3(c) where we present

the numerical results for a graded chain with the masses of
bullets in the interval (0.4,0.8) with ml = 0.4(1 + l/Z). All
the computations are done as before with Z = 32, ZL = 3,
ZR = 4, N = 25, and T = 1.

An obvious interesting question is how to enhance rec-
tification in our graded chain. As our theoretical analysis
suggests, a possible way to increase rectification is to increase
the asymmetry of the system. We have therefore analyzed
the case where the masses of the bars are also allowed to
have a graded distribution. To be precise, all the masses are
graded in between 1 and 2. Namely, Ml = 1 + (l − 0.5)/Z
for l = 1, . . . ,Z and ml = 1 + l/Z for l = 1, . . . ,Z − 1. Here
we take Z = 32, ZL = 5, ZR = 1, N = 26, and T = 1. The
results are depicted in Fig. 3(d) and show a significant increase
in rectification. We stress that the increase of rectification with
asymmetry is an important effect which may be of practical
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FIG. 4. (Color online) The rectification measured over the central
segment of the graded chain where all the masses of bars and bullets
increase linearly in the interval (1,2). The dots, squares, triangles,
and stars represent the results for system size Z = 32, 64, 128, and
256, respectively.

interest: Similar mechanisms may be present in more realistic
models due to graded interparticle interactions and/or graded
on-site potentials, in addition to graded masses.

Finally, we remark that for the case presented in Fig. 3(d) the
heat conductivity K and K′ essentially do not change with the
system size. This has been verified by additional simulations

with Z = 64, 128, and 256 (with ZL = 8, 15, and 29, ZR =
2, 4, and 8, and N = 54, 109, and 229, respectively). The
rectification, defined as fr ≡ (K − K′)/K′, does not change
with the system size, as clearly illustrated in Fig. 4. The fact
that rectification does not vanish with increasing the system
size is an important property, which is absent in the known
diode models given by the sequential coupling of different
segments.

In summary, in this work, we have performed analytical
and numerical investigations of the heat flow in a simple
model, devoid of intricate interactions, in order to find results
of general validity. Our results demonstrate that thermal
rectification takes place in asymmetric systems with local heat
flow proportional to the temperature gradient and with the
local conductivity depending on temperature. This conclusion
is also supported by additional numerical investigations [17],
along the lines of Refs. [11] and [18], of the energy diffusive
behavior and of correlation properties of energy fluctuations.
Finally, it is interesting to notice that in our model the diffusive
behavior (typical of the Fourier law) is associated with the
thermal rectification phenomenon.
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