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State-space-split method for some generalized Fokker-Planck-Kolmogorov equations
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The state-space-split method for solving the Fokker-Planck-Kolmogorov equations in high dimensions is
extended to solving the generalized Fokker-Planck-Kolmogorov equations in high dimensions for stochastic
dynamical systems with a polynomial type of nonlinearity and excited by Poissonian white noise. The probabilistic
solution of the motion of the stretched Euler-Bernoulli beam with cubic nonlinearity and excited by uniformly
distributed Poissonian white noise is analyzed with the presented solution procedure. The numerical analysis
shows that the results obtained with the state-space-split method together with the exponential polynomial closure
method are close to those obtained with the Monte Carlo simulation when the relative value of the basic system
relaxation time and the mean arrival time of the Poissonian impulse is in some limited range.
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The investigation of the probabilistic solutions of nonlinear
stochastic dynamical systems is attractive in various areas of
science and engineering since many problems can be described
with nonlinear stochastic dynamical systems. The statistical
analysis of the nonlinear stochastic dynamical systems is
based on the available probability density function (PDF) of
the system responses [1–5]. When the noises are Gaussian
white noise, the PDF of the system responses is governed by
the Fokker-Planck-Kolmogorov (FPK) equations [6]. Various
method were developed or employed to solve the FPK equation
or the statistical quantities of the system responses [7–9].
However, obtaining the probabilistic solution of large-scale
nonlinear stochastic dynamical systems or the FPK equations
in high dimensions had been a challenge for almost a century
since the probabilistic explanation of the Brownian motion of
molecules by Einstein and the formulation of FPK equation by
Fokker and Planck thereafter until the state-space-split (SSS)
method was proposed recently for analyzing the probabilistic
solutions of the large-scale nonlinear stochastic dynamical
systems with a polynomial type of nonlinearity [10,11].

Gaussian white noise is a continuous process that can be
considered as a special case of Poissonian white noise when
the mean arrival rate of Poissonian impulse approaches infinity.
Many noises in the real world can be modeled more reasonably
with Poissonian white noise than Gaussian white noise because
there is a time step between any two sequential impulses even
if the time step can be small in many cases. Under the action
of Poissonian white noise, the PDF of the responses of the
nonlinear stochastic dynamical system is governed by the
generalized Fokker-Planck-Kolmogorov (GFPK) equation or
the Kolmogorov-Feller equation in the form of a truncated
series [12]. The solutions of some two-dimensional reduced
FPK and GFPK equations were analyzed with the exponential
polynomial closure (EPC) method [8,13]. However, there
are no reported solutions of the GFPK equations in higher
dimensions because of the difficulties in solving the GFPK
equation in high dimensions, although many problems in
science and engineering are described as multiple-degree-
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of-freedom systems or high-dimensional nonlinear stochastic
dynamic systems for which the PDF solution is governed by
the GFPK equation. The equivalent linearization (EL) method
was proposed and employed to analyze the multidimensional
nonlinear stochastic dynamic systems excited by white noises
to obtain the second moments of the system responses [1,14].
It is known that EL is suitable only for the weakly nonlinear
systems when the Poissonian excitations are close to Gaussian
or the ratio of the system relaxation time and the impulse mean
arrival time of Poissonian noise is large because the system
responses are close to Gaussian only in this case. The Monte
Carlo simulation (MCS) is a numerical integration procedure
[15]. With the MCS the computational effort is usually
unacceptable for estimating the PDF of the responses of the
large-scale nonlinear nonlinear stochastic dynamic systems,
especially for small probability problems. The numerical
convergence, stability, roundoff error, and requirement for
great sample size in simulating small values of the PDF
of system responses are inherent in the MCS in analyzing
large-scale nonlinear stochastic dynamic systems.

In this paper the state-space-split method developed for
analyzing the high-dimensional nonlinear stochastic dynamic
systems with a polynomial type of nonlinearity and Gaussian
white noise excitations or solving the FPK equation in high di-
mensions is further extended to analyze the high-dimensional
nonlinear stochastic dynamic systems with Poissonian white
noise excitations. The solution procedure is presented and the
numerical results are given to show the effectiveness of the
solution procedure. The limitations of the solution procedure
are also stated.

In the following discussion the summation convention
applies unless stated otherwise. The random state variable or
vector is denoted by a capital letter and the corresponding
deterministic state variable or vector is denoted by the same
letter in lowercase. Consider the coupled Langevin equations
or Ito differential equations

dXi

dt
= fi(X) + gijWj (t), (1)

where the state vector process X ∈ Rnx , Xi (i = 1,2, . . . ,nx)
are components of the state vector process X; fi(X) : Rnx →R;
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and Wj (t) (j = 1,2, . . . ,m) are independent Poissonian white
noises. The Poissonian white noise is formulated as

Wj (t) =
Nj (T )∑
k=1

�jkδ(t − τk), (2)

where N (T ) is the total number of impulses that arrive in
the time interval (−∞,T ]; �jk is the impulse amplitude of
the kth impulse arriving at time τk for Wj (t); and δ(t) is the
Dirac delta function. In this paper Nj (T ) is a counting process
yielding the Poissonian law with a constant impulse arrival
rate λj . The impulse amplitudes �jk [k = 1,2, . . . ,Nj (T )]
are independent, identically distributed random variables with
zero mean and also independent of the impulse arrival time
τk . The ith moment of �jk [k = 1,2, . . . ,Nj (T )] is denoted
by E[�i

j ] in view of �jk being identically distributed random
variables for any k.

The state vector X is Markovian and the PDF p(x,t) of
the Markovian vector is governed by the GFPK equation. The
stationary PDF of the Markovian vector is governed by the
reduced GFPK equation

∂[fi(x)p(x)]

∂xi

− 1

2!

Gij∂
2p(x)

∂xi∂xj

+ 1

3!

Gijm∂3p(x)

∂xi∂xj ∂xm

− 1

4!

Gijmn∂
4p(x)

∂xi∂xj ∂xm∂xn

+ · · · = 0 (xi,xj ,xm,xn ∈ Rnx ), (3)

where x is the deterministic state vector, x ∈ Rnx , Gij =
λsE[�2

s ]gisgjs , Gijm = λsE[�3
s ]gisgjsgms , and Gijmn =

λsE[�4
s ]gisgjsgmsgns . It is assumed that

lim
xi→±∞

{
fi(x)p(x) − 1

2!

Gij∂p(x)

∂xj

+ 1

3!

Gijm∂2p(x)

∂xj ∂xm

− 1

4!

Gijmn∂
3p(x)

∂xj ∂xm∂xn

+ · · ·
}

= 0 (xi,xj ,xm,xn ∈ Rnx ),

(4)

which can usually be fulfilled by the responses of the systems
with a polynomial type of nonlinearity and white noise
excitations.

With the SSS method [10,11], separate the state vector X
into two parts X1 ∈ Rnx1 and X2 ∈ Rnx2 , i.e., X = {X1,X2} ∈
Rnx1 × Rnx2 . Denote the PDF of X1 by p1(x1). In order to
obtain the governing equation for p1(x1), integrating both sides
of Eq. (3) over Rnx2 by part and noting Eq. (4) gives∫

Rnx2

∂fi(x)p(x)

∂xi

dx2 − 1

2!

Gij∂
2p1(x1)

∂xi∂xj

+ 1

3!

Gijm∂3p1(x1)

∂xi∂xj ∂xm

− 1

4!

Gijmn∂
4p1(x1)

∂xi∂xj ∂xm∂xn

+ · · · = 0 (xi,xj ,xm,xn ∈ Rnx1 ),

(5)

which can also be written equivalently, by exchanging the
order of integral and derivative, as

∂
∫
Rnx2 fi(x)p(x)dx2

∂xi

− 1

2!

Gij∂
2p1(x1)

∂xi∂xj

+ 1

3!

Gijm∂3p1(x1)

∂xi∂xj ∂xm

− 1

4!

Gijmn∂
4p1(x1)

∂xi∂xj ∂xm∂xn

+ · · · = 0 (xi,xj ,xm,xn ∈ Rnx1 ).

(6)

Separate fi(x) into two parts as

fi(x) = f I
i (x1) + f II

i (x). (7)

Then Eq. (6) can be written as

∂
[
f I

i (x1)p1(x1) + ∫
Rnx2 f II

i (x)p(x)dx2
]

∂xi

− 1

2!

Gij∂
2p1(x1)

∂xi∂xj

+ 1

3!

Gijm∂3p1(x1)

∂xi∂xj ∂xm

− 1

4!

Gijmn∂
4p1(x1)

∂xi∂xj ∂xm∂xn

+ · · · = 0 (xi,xj ,xm,xn ∈ Rnx1 ). (8)

Set f II
i (x) = ∑

k f II
i (x1,zk) in which zk ∈ Rnzk ⊂ Rnx2 and

nzk
denotes the number of the state variables in zk . Then Eq. (8)

can be expressed as

∂
[
f I

i (x1)p1(x1) + ∑
k

∫
Rnzk

f II
i (x1,zk)p(x1,zk)dzk

]
∂xi

− 1

2!

Gij∂
2p1(x1)

∂xi∂xj

+ 1

3!

Gijm∂3p1(x1)

∂xi∂xj ∂xm

− 1

4!

Gijmn∂
4p1(x1)

∂xi∂xj ∂xm∂xn

+ · · · = 0 (xi,xj ,xm,xn ∈ Rnx1 ), (9)

in which p(x1,zk) denotes the joint PDF of {X1,Zk}. Because
p(x1,zk) = p1(x1)q(zk; x1) in which q(zk; x1) is the condi-
tional PDF of Zk for given X1 = x1, Eq. (9) can then be written
as

∂
[
f I

i (x1)p1(x1) + p1(x1)
∑

k

∫
Rnzk

f II
i (x1,zk)q(zk; x1)dzk

]
∂xi

− 1

2!

Gij∂
2p1(x1)

∂xi∂xj

+ 1

3!

Gijm∂3p1(x1)

∂xi∂xj ∂xm

− 1

4!

Gijmn∂
4p1(x1)

∂xi∂xj ∂xm∂xn

+ · · · = 0 (xi,xj ,xm,xn ∈ Rnx1 ). (10)

By approximately replacing q(zk; x1) by the conditional PDF
q(zk; x1) of Zk for given X1 = x1 obtained from the EL method
Eq. (10) is approximately written as

∂
[
f I

i (x1)p1(x1) + p1(x1)
∑

k

∫
Rnzk

f II
i (x1,zk)q(zk; x1)dzk

]
∂xi

− 1

2!

Gij∂
2p1(x1)

∂xi∂xj

+ 1

3!

Gijm∂3p1(x1)

∂xi∂xj ∂xm

− 1

4!

Gijmn∂
4p1(x1)

∂xi∂xj ∂xm∂xn

+ · · · = 0 (xi,xj ,xm,xn ∈ Rnx1 ). (11)

By setting

fi(x1) = f I
i (x1) +

∑
k

∫
Rnzk

f II
i (x1,zk)q(zk; x1)dzk, (12)

Eq. (11) can be finally written as

∂[f i(x1)p1(x1)]

∂xi

− 1

2!

Gij∂
2p1(x1)

∂xi∂xj

+ 1

3!

Gijm∂3p1(x1)

∂xi∂xj ∂xm

− 1

4!

Gijmn∂
4p1(x1)

∂xi∂xj ∂xm∂xn

+ · · · = 0 (xi,xj ,xm,xn ∈ Rnx1 ),

(13)

which is the approximate GFPK equation for the joint PDF of
the state variables in the substate space Rnx1 .

When the derivative terms that are higher than fourth order
are neglected because the contribution of the higher-order
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terms is small when the mean arrival time of the Poissonian
impulse is usually small enough and within some limited range,
Eq. (13) can be reduced to

∂[fi(x1)p1(x1)]

∂xi

− 1

2!

Gij∂
2p1(x1)

∂xi∂xj

+ 1

3!

Gijm∂3p1(x1)

∂xi∂xj ∂xm

− 1

4!

Gijmn∂
4p1(x1)

∂xi∂xj ∂xm∂xn

= 0 (xi,xj ,xm,xn ∈ Rnx1 ). (14)

If x1 is chosen to have few-state variables, for instance,
two-state variables, the resulting GFPK equation is of low
dimension and the EPC method can be employed to solve
Eq. (14) [8,13]. The numerical analysis is based on Eq. (14)
in the following discussion.

Consider the stretched Euler-Bernoulli beam with a con-
stant cross section. The governing equation about the motion
of the beam is

ρÿ(x,t) + cẏ(x,t) + EI
∂4y(x,t)

∂x4

−EA

2L

∂2y(x,t)

∂x2

∫ L

0

[
∂y(x,t)

∂x

]2

dx = q0W (t), (15)

where y(x,t) is the deflection of the beam, L is the length of
the beam, E is Young’s modulus, I is the moment inertia of
the cross section of the beam, A is the area of the cross section
of the beam, ρ (kg/m) is the mass density of the beam, c is
the damping constant of the beam, q0W (t) is the distributed
loading laterally applied on the beam, W (t) is Poissonian white
noise whose impulse amplitude is zero-mean Gaussian with
mean square E[�2], and q0 is a constant. For the beam with
two ends supported with hinges, the boundary conditions of
the beam are

y(0,t) = y(L,t) = ∂2y(0,t)

∂x2
= ∂2y(L,t)

∂x2
= 0. (16)

In order to solve this problem using the Galerkin method,
y(x,t) is expressed as

y(x,t) =
2m−1∑

i=1,3,...

ai(t) sin
iπx

L
. (17)
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FIG. 1. The PDF of the beam deflection at x = 0.5L.

With the Galerkin method, the following equations are
obtained:

äi + c

ρ
ȧi + EIπ4i4

ρL4
ai + EAπ4i2

4L4ρ

2m−1∑
j=1,3,...

j 2aia
2
j = βiW (t),

i = 1,3, . . . ,2m − 1, (18)

in which βi = 4q0

iπρ
.

Equation (18) represents a coupled nonlinear stochastic
dynamic system with m degrees of freedom, a polynomial type
of nonlinearity, and excited by Poissonian white noise. Many
systems similar to Eq. (18) can be obtained from practical
problems in science and engineering. In order to conduct
a numerical analysis, a four-degree-of-freedom nonlinear
stochastic dynamic system is formulated by setting m = 4 in
Eq. (18). Taking the deflection and the velocity in the middle
of the beam with x = 0.5L as the state variables formulating
the substate vector X1, the PDF solutions of the deflection
and the velocity in the middle of the beam are analyzed
using the SSS-EPC method. The Monte Carlo simulation is
also conducted to verify the effectiveness of the SSS-EPC
method in solving the GFPK equations in high dimensions or
analyzing the PDF solution of the multiple-degree-of-freedom
systems with a polynomial type of nonlinearity and excited by
Poissonian white noise. In the numerical analysis, the param-
eter values are given as L = 5 m, E = 2.1 × 1011 N/m2, I =
2.17 × 10−4 m4, A = 8.6112 × 10−3 m2, ρ = 67.598 kg/m,
c = 103 N s/m2, and q0 = 104 N/m. The mean arrival rate λ

of the Poissonian impulse equals 0.1 and λE[�2] = 2.
Figures 1 and 2 present the PDFs and logarithmic PDFs

of the deflection in the middle of the beam, respectively.
The MCS is conducted to verify the effectiveness of SSS-
EPC method in this case. The MCS was conducted on the
original multiple-degree-of-freedom system rather than the
low- or two-dimensional systems. The sample size used in
the simulation is 108. From Fig. 1 it can be seen that the
PDF of the deflection obtained by the SSS-EPC method with
the polynomial degree n being four in the EPC procedure
is close to that obtained by the MCS. The tails of the PDF
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FIG. 2. The logarithm of the PDF of the beam deflection at
x = 0.5L.
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FIG. 3. The PDF of the beam velocity at x = 0.5L.

of the deflection and their comparison are shown clearly in
Fig. 2, from which it can be seen that the PDF value of the
deflection obtained by the SSS-EPC method is also close to
that obtained by the MCS even in the tails of the PDF. The
PDFs of the velocity in the middle of the beam obtained by
the SSS-EPC method, EL, and MCS are compared in Figs. 3
and 4, respectively. It can also be observed that the PDF and
the tails of the PDF of the velocity obtained by the SSS-EPC
method are close to those obtained by the MCS. In Figs. 1–4
it is shown that the results obtained by EL deviate greatly
from those from the MCS, but it should be mentioned that
the result obtained by EL is needed in the solution procedure
with the SSS-EPC method. The numerical results obtained by
the SSS-EPC method are better than those obtained by EL
because the results from EL are only used to approximately
transform the state variables in X2 into the state variables in
X1 as shown in Eq. (11) and the obtained approximate FPK
equation is solved by the EPC method with which the obtained
solution of the nonlinear system is of higher accuracy than that
obtained by EL.

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0
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FIG. 4. The logarithm of the PDF of the beam velocity at
x = 0.5L.

The above numerical analysis shows that the SSS-EPC
method is also effective in analyzing the PDF of the responses
of the multiple-degree-of-freedom nonlinear stochastic dy-
namic systems with some polynomial type of nonlinearity
and excited by Poissonian white noise. When the ratio of the
relaxation time corresponding to the dominate frequency of the
system responses and the impulse mean arrival time is greater
than some value, e.g., 10, the terms with fifth-order and higher
derivatives in the GFPK equations can be neglected because the
coefficients of the higher derivatives become small compared
to those of other terms. Otherwise, neglecting these terms can
lead to large error in the solution.
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