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Acoustic vector solitons
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A theory of an acoustic vector soliton of self-induced transparency is constructed. By using the perturbative
reduction method the magnetic Bloch equations and the equation of motion for the displacement field for the
small area pulse are reduced to a system of two coupled nonlinear Schrödinger equations. The shape of an acoustic
vector soliton with the sum and difference of the frequencies is presented. Explicit analytical expressions for
the parameters of an acoustic vector soliton are obtained as well as simulations of an acoustic vector soliton
presented with realistic parameters which can be reached in experiments. It is shown that the vector soliton in
the special case can be reduced to the breather solution, and these nonlinear waves have different profiles.
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The existence of acoustical nonlinear solitary waves is
one of the most interesting and important manifestations of
nonlinearity in various solids (crystals and nanostructures).
The determination of the mechanisms causing the formation
of acoustical nonlinear waves and the investigation of their
properties are among the principal problems of the physics of
acoustical nonlinear waves. Depending on the nature of the
nonlinearity, the resonant and nonresonant nonlinear waves
can be considered. The resonant acoustical nonlinear waves
can be formed with the help of the resonance (McCall-Hahn)
mechanism of the formation of nonlinear waves, i.e., from
a nonlinear coherent interaction of an acoustic pulse with
resonance impurity atoms, when the conditions of acoustic
self-induced transparency (SIT), ωTp � 1 and Tp � T1,2, are
fulfilled [1–3]. If the area of the pulse envelope as a measure
of the pulse-matter interaction strength � > π , a soliton is
formed, and if � � 1, a breather (pulsing soliton) is generated.
Here �, ω, and Tp are the acoustic pulse area, frequency, and
width, respectively, while T1 and T2 are the longitudinal and
transverse relaxation times of the resonant impurity atoms.

Originally acoustic SIT was investigated in atomic systems
but later the search for acoustical nonlinear waves was
extended to nanostructures. The acoustic nonlinear waves have
been experimentally observed in a variety of paramagnetic
crystals, including CaF2:U4+, MgO:Fe2+, MgO:Ni2+, and
LiNbO3:Fe2+ [1,4], as well as in superfluid 3He-A [5], in a
glass [6], in a liquid [7], and in nanostructures [8].

The theoretical development of the effect of acoustic SIT
is based on the magnetic Bloch equations and the equation
of motion for the displacement one-component field (see, for
instance, Ref. [9] and references therein). Such one-component
nonlinear waves form when a single acoustic pulse propagates
inside a medium containing resonance impurity atoms in such
a way that it maintains its state. When these conditions are
not satisfied, one has to consider interaction of two field
components at different frequencies or polarizations as a bound
state, and the magnetic Bloch equations and the equation of
motion for the displacement field are reduced to the coupled
nonlinear Schrödinger (NLS) equations. A shape-preserving
solution of these equations is an acoustic vector pulse because
of its two-component nature.
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It is very important to find two-component double
periodic solutions of nonlinear equations to provide more
information for understanding many physical phenomena
arising in numerous scientific fields and applications. In the last
few decades, direct search for double periodic solutions of dif-
ferent nonlinear equations has become increasingly attractive
[10–12]. The vector solitons arise in many physical phenomena
when two wave packets interact with each other, but double
periodic acoustic waves have not been considered up to now.

The purpose of the present work is to consider the
conditions of realization of the resonant acoustic vector soliton
of SIT with the sum and difference of the frequencies and
the determination of the explicit analytic expressions for the
parameters of the acoustic vector pulse.

We consider the formation of acoustical vector solitons
of SIT in paramagnetic crystals with cubic symmetry which
contain a small concentration of paramagnetic impurity atoms
n0, whose effective spin S = 1

2 . Suppose that an external
constant magnetic field H0 is applied parallel to one of the
crystal axes of the fourth order, which we will take to be
along the z axis (both the x and y axes are taken to be
parallel to the other crystal axes of the fourth order). We
shall consider a transverse circular-polarized acoustic pulse
with width Tp � T1,2, frequency ω � T −1

p , and wave vector
�k, propagating along the positive z axis and parallel to the
external constant magnetic field.

We model the paramagnetic impurity atoms with a two-
level system which can be described by states |1〉 and |2〉,
with energies E1 = 0 and E2 = h̄ω0, respectively, where |1〉
is the ground state and h̄ is Planck’s constant. We take ω0 =
γM H0 to be tuned to the Zeeman frequency, where γM is the
gyromagnetic ratio.

The Hamiltonian and wave function of this system are
[9,13]:

Ĥ = ĤZ + V̂ , |�〉 =
∑
n=1,2

cn(t)e− i
h̄
Ent |n〉,

where ĤZ = h̄ω0ŝ
z is the Zeeman Hamiltonian of the two-level

spin-system, and V̂ = L
2 (ε+ŝ− + ε−ŝ+) is the Hamiltonian

of the spin-phonon interaction. The quantities E1 and E2 are
eigenvalues of the Hamiltonian ĤZ , cn(t) is the amplitudes of
probabilities of the corresponding states, ŝ± = ŝx ± iŝy, ε± =
εxz ± iεyz, ŝx,y,z are the x, y, and z components of the
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electron spin-operators for the paramagnetic impurity atoms,
and εxz and εyz are components of the deformation tensor [14].
L = β0H0Fxzxz, β0 is the Bohr magneton, and Fxzxz = Fyzyz

are components of the spin-phonon coupling tensor. We will
consider only a transversely circularly polarized acoustic
wave, and we also assume translational invariance in the x

and y directions so that all field quantities do not depend on
the coordinates x and y, i.e., ∂

∂x
= ∂

∂y
= 0.

The average values si of the spin operators ŝi for the state
|� >, are si = Tr< �|ŝi |� >, where i = x,y,z [13].

Using the method of slowly changing profile, we represent
the functions εxz and sx in the form

εxz = 1

2

∑
l=±1

ÊlZl, sx = − i

2

∑
l=±1

l ρ−lZl, (1)

where Êl and ρl are the complex envelope of the acoustic
field and spin variable, and Zl = eil(kz−ωt) contains the rapidly
varying phase of the carrier wave. To guarantee the reality of
the quantity εxz, we set Êl = Ê∗

−l .
The magnetic Bloch equations have the following

form:

∂ρl

∂t
= il�ρl − L

h̄
Ê−lsz,

∂sz

∂t
= L

2h̄

∑
l=±1

Êlρl, (2)

where � = ω0 − ω. Equations (2) are exact only in the limit
of infinite relaxation times.

To study acoustic solitons as self-consisted solutions of the
magnetic Bloch’s equations and the equation of the acoustic
field, we need, in addition to Eqs. (2) for the material, a
description of the pulse propagation in the medium by the
equations of the theory of elasticity for the transverse-polarized
acoustic pulse [14]:

∂2εxz

∂t2
= c2

t

∂2εxz

∂z2
+ Ln0

2ρ

∂2sx

∂z2
, (3)

where ρ is the density of the medium, and ct is the
velocity of the transverse-polarized linear acoustic wave in
medium.

Upon taking into account the dispersion law for the
transverse-polarized acoustic wave in a medium,

ω2 = c2
t k

2, (4)

for a complex envelope of the acoustic wave Êl we obtain

∑
l=±1

Zl

[
− 2ilω

∂Êl

∂t
− 2ilkc2

t

∂Êl

∂z
+ ∂2Êl

∂t2
− c2

t

∂2Êl

∂z2

− il
Ln0k

2

2ρ

∫
g(�)d�

1 + T 2
p �2

ρ−l|�=0

]
= 0, (5)

where g(�) is the inhomogeneous broadening function of the
spectral line of the impurities.

Equations (2), (4), and (5) are the general equations for the
slowly varying complex amplitudes Êl and ρl by means of
which we can consider a quite wide class of coherent acoustic
phenomena, for instance, Rabi oscillations, spin echo, acoustic
SIT, and others.

To further analyze these equations we make use of the
multiple scale perturbative reduction method [15], in the limit
that ψl(z,t) = ∫ t

−∞ Êl(z,t ′) dt ′ is O(ε), with its scale-length
being of order O(ε−1). This is the typical scaling for the
coupled NLS equations and would then also be the scaling for
two-component soliton. In this case ψl(z,t) can be represented
as

ψl(z,t) =
∞∑

α=1

εαψl
(α) =

∞∑
α=1

+∞∑
n=−∞

εαYl,nϕ
(α)
l,n (ζl,n,τ ), (6)

where ζl,n = εQl,n(z − vg (l,n)t), τ = ε2t,

Yl,n = ein(Ql,nz−�l,nt), vg (l,n) = ∂�l,n

∂Ql,n

,

and ε is a small parameter. Such a representation allows us to
separate from ψl(z,t) the still more slowly changing quantities
ϕ

(α)
l,n . Consequently it is assumed that the quantities �l,n, Ql,n,

and ϕ
(α)
l,n satisfy the inequalities for any l and n: ω � �,

k � Q, ∣∣∣∣∂ϕ
(α)
l,n

∂t

∣∣∣∣ � �
∣∣ϕ(α)

l,n

∣∣, ∣∣∣∣∂ϕ
(α)
l,n

∂z

∣∣∣∣ � Q
∣∣ϕ(α)

l,n

∣∣.
We have to note that the quantities Q and � depend on l and
n, but for simplicity, we omit these indexes in equations where
this will not bring about any confusion. From the condition
Êl = Ê∗

−l it follows that ϕ∗(α)
l,n = ϕ

(α)
−l,−n.

Substituting Eq. (6) into Eqs. (2) and (5), we obtain the
nonlinear wave equation

∑
l=±1

∑
α=1

+∞∑
n=−∞

εαZlYl,n

{
W̃l,n + εJl,n

∂

∂ζ
+ ε2hl,n

∂

∂τ
+ ε2iHl,n

∂2

∂ζ 2

}
ϕ

(α)
l,n = −ε3i

L2α2
0

4h̄2

∑
l=±1

lZl

∫
∂ψl

(1)

∂t
ψ−l

(1)ψl
(1)dt ′ + O(ε4),

(7)

where

Wl,n = in�

(
Aln� − BlnQ + n2�2 − c2

t n
2Q2 − l

n

α2
0

�

)
,

Jl,n = nQ[2Al�vg − Bl(Qvg + �) + 3n�2vg − c2
t nQ(Qvg + 2�)], hl,n = −2nAl� + BlnQ − 3n2�2 + c2

t n
2Q2,

Hl,n = Q2
[ − Alv

2
g + Blvg − 3n�v2

g + c2
t n(2Qvg + �)

]
, Al = 2lω, Bl = 2lkc2

t , α2
0 = L2n0k

2

4ρh̄

∫
g(�) d�

1 + �2T 2
p

. (8)

067601-2



BRIEF REPORTS PHYSICAL REVIEW E 85, 067601 (2012)

To determine the values of ϕ
(α)
l,n , we equate to zero the

various terms corresponding to the same powers of ε. As a
result, we obtain a chain of equations. Starting with first order
in ε, we have ∑

l=±1

∑
n=±l

ZlYl,nW̃l,nϕ
(1)
l,n = 0. (9)

We shall be interested in localized solitary waves, which vanish
as t → ±∞. Consequently, according to Eq. (9), only the
following components of ϕ

(1)
l,n can differ from zero: ϕ

(1)
±1,±1

or ϕ
(1)
±1,∓1. The relation between the parameters � and Q is

determined from Eq. (9) and has the form

Aln�2 − BlnQ� + �3 − c2
t Q

2� − lnα2
0 = 0. (10)

Substituting Eq. (10) into Eq. (8), we easily see that
the following relation holds: J±1,±1 = J±1,∓1 = 0. To second
order in ε we obtain the relation for ϕ

(2)
l,n. From Eq. (7), to third

order in ε, we finally obtain two coupled NLS equations for
functions u± = εϕ

(1)
+1,±1 that describe the coupling between

two components of the pulse

i

(
∂u±
∂t

+ v±
∂u±
∂z

)
+ p±

∂2u±
∂z2

+ g±|u±|2u± + r±|u∓|2u± = 0, (11)

where

v± = vg(+1,±1) , p± = −H+1,±1

h+1,±1Q
2
±1

,

(12)

g± = −L2α2
0

4h̄2 h+1,±1
, r± = g±

(
1 − �∓1

�±1

)
,

�±1 = �ln≷0, Q±1 = Qln≷0. The nonlinear equations (11)
describe the slowly varying envelope functions u±, where
u+ describes the envelope wave of the frequency ω + �+1

and u− describes the wave with frequency ω − �−1. The
nonlinear coupling between the two waves is governed by the
terms r±|u∓|2u±. We must consider interaction of these field
components at different frequencies and solve simultaneously
a set of coupled NLS equations (11). A shape-preserving
solution of Eqs. (11) is a vector pulse because of its two-
component structure.

The steady-state solutions for complex amplitudes have the
following form:

u±(z,t) = A±
bTp

sech

(
t − z

V0

Tp

)
eiφ± (13)

which is a well-known steady-state 2π pulse (soliton) of SIT
[1]. Here V0 is the constant pulse velocity:

b2 = V 2
0

A2
+q+ + A2

−r+
2p+

, T −2
p = V 2

0

v+k+ + k2
+p+ − ω+

p+
.

(14)

Here φ± = k±z − ω±t are the phase functions, and A±, k±,

and ω± are all real constants. Derivatives of the phases φ±
are assumed to be small; i.e., the functions eiφ± are slow in
comparison with oscillations of the pulse, and consequently,
the inequalities k± � Q±1, ω± � �±1 are satisfied.

4 2 2 4
t 10 6s
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0.5

0.5

1.0

1.5

Εxz arb. units

FIG. 1. (Color online) εxz component of the deformation tensor
the two-component vector soliton is shown for a fixed value of z. The
nonlinear pulse oscillates with the sum ω + �+1 + ω+ and difference
ω − �−1 + ω− of the frequencies along the t axis.

Substituting the solutions for the functions u± Eq. (13)
of the coupled NLS equations (11) into Eqs. (1) and (6), we
obtain for the εxz component of the deformation tensor the
two-component vector soliton solution:

εxz = 1

bTp

sech

(
t − z

V0

Tp

)
{(�+1 + ω+)A+

× sin[(k + Q+1 + k+)z − (ω + �+1 + ω+)t]

− (�−1 − ω−)A− sin[(k − Q−1 + k−)z

− (ω − �−1 + ω−)t]}, (15)

where the relations between the parameters A± , ω±, and k±
have the form

A2
+ = p+q− − p−r+

p−q+ − p+r−
A2

−, k± = V0 − v±
2p±

,

(16)

ω+ = p+
p−

ω− + V 2
0 (p2

− − p2
+) + v2

−p2
+ − v2

+p2
−

4p+p2−
.

6 4 2 2 4 6
t 10 6s
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FIG. 2. (Color online) εxz component of the deformation tensor
the breather for the parameters [16] is shown for a fixed value of z.
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The appearance in expression (15) of the func-
tions sin[(k + Q+1 + k+)z − (ω + �+1 + ω+)t] and sin[(k −
Q−1 + k−)z − (ω − �−1 + ω−)t] indicates the formation of
double periodic beats with coordinate and time relative to the
frequency and wave number of the carrier wave (ω, k), with
characteristic parameters (ω + �+1 + ω+, k + Q+1 + k−) and
(ω − �−1 + ω−, k − Q−1 + k−), respectively, as a result of
which the one-component soliton solutions (13) for u+ and
u− is transformed into two-component vector soliton solution
(15) for the the εxz component of the deformation tensor of
the acoustic pulse. Equation (15) is an exact regular time and
space double periodic solution of the nonlinear wave equation
(7), which, like the one-component soliton and breather, loses
no energy in the process of propagation through a medium
over considerable distances.

We have shown that in the propagation of an acoustic
pulse through a resonance medium containing an impurity
atoms under the condition of SIT acoustic vector soliton
can arise. The explicit form and parameters of the acoustic
two-component vector soliton are given by Eqs. (8), (12),

(14), and (16). The dispersion equation and the relations
between quantities �±1 and Q±1 are given by Eqs. (4) and
(10), respectively.

Using typical parameters for the pulse, the materials, and
the paramagnetic impurities [16], we can construct a plot of the
εxz component of the deformation tensor for a two-component
vector soliton Eq. (15) (shown in Fig. 1 for a fixed value of the
z coordinate). This case corresponds to a bright-bright soliton
pair, because the conditions p+g+ > 0 and p−g− > 0, are
fulfilled, and both components of a vector soliton are bright
solitons.

The one-component breather is the special case of the vector
soliton. The profile of the breather with the same value of the
parameters as for a vector soliton [Eq. (15)] (for a fixed value of
z = 0) is shown in Fig. 2. It is obvious that the shape of the two-
component vector soliton (Fig. 1) is different in the comparison
with the shape of the one-component breather (Fig. 2).

We consider paramagnetic crystals, but these results also
can be transformed for the other physical systems, for instance,
in nanostructures.
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