
PHYSICAL REVIEW E 85, 066709 (2012)

Reconstruction of three-dimensional porous media using a single thin section
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The purpose of any reconstruction method is to generate realizations of two- or multiphase disordered media
that honor limited data for them, with the hope that the realizations provide accurate predictions for those
properties of the media for which there are no data available, or their measurement is difficult. An important
example of such stochastic systems is porous media for which the reconstruction technique must accurately
represent their morphology—the connectivity and geometry—as well as their flow and transport properties.
Many of the current reconstruction methods are based on low-order statistical descriptors that fail to provide
accurate information on the properties of heterogeneous porous media. On the other hand, due to the availability
of high resolution two-dimensional (2D) images of thin sections of a porous medium, and at the same time,
the high cost, computational difficulties, and even unavailability of complete 3D images, the problem of
reconstructing porous media from 2D thin sections remains an outstanding unsolved problem. We present a
method based on multiple-point statistics in which a single 2D thin section of a porous medium, represented by
a digitized image, is used to reconstruct the 3D porous medium to which the thin section belongs. The method
utilizes a 1D raster path for inspecting the digitized image, and combines it with a cross-correlation function,
a grid splitting technique for deciding the resolution of the computational grid used in the reconstruction,
and the Shannon entropy as a measure of the heterogeneity of the porous sample, in order to reconstruct
the 3D medium. It also utilizes an adaptive technique for identifying the locations and optimal number of
hard (quantitative) data points that one can use in the reconstruction process. The method is tested on high
resolution images for Berea sandstone and a carbonate rock sample, and the results are compared with the
data. To make the comparison quantitative, two sets of statistical tests consisting of the autocorrelation function,
histogram matching of the local coordination numbers, the pore and throat size distributions, multiple-points
connectivity, and single- and two-phase flow permeabilities are used. The comparison indicates that the proposed
method reproduces the long-range connectivity of the porous media, with the computed properties being in
good agreement with the data for both porous samples. The computational efficiency of the method is also
demonstrated.
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I. INTRODUCTION

Flow and transport properties of porous media are con-
trolled by the morphology of their pore space, namely,
the geometry—the shapes and sizes of the pores—and the
connectivity—the way the pores are connected and the
frequency of their interconnection [1–3]. Estimating such
properties requires, as the first step, accurate representation
of the pore space. Advances in instrumentations, such as
laser scanning confocal microscopy [4], serial sectioning
[5], x-ray computed microtomography (micro-CT) [6–10],
focused ion beams [11], and magnetic resonance computed
microtomography [7], have made it possible to obtain three-
dimensional (3D) images of porous media. Due to a variety of
factors, however, such as the unavailability of the instruments,
and their relatively low resolution and the high cost, the
application of such methods has not become widespread. On
the other hand, in contrast to 3D images, high resolution
2D sections of porous media can be obtained with relative
ease. One way of developing a model of a porous medium
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is by reconstruction [2,3]: given a certain amount of data
and information about the medium, one attempts to generate
realizations of the porous medium that honor the data, with
the hope that the reconstructed model provides accurate
predictions for those properties of the pore space for which
no data are available, or their measurement is difficult and
costly. Over the past two decades several methods have been
developed for reconstruction of 3D porous media. Generally
speaking, such methods may be divided into two groups.

In one group are what we refer to as stochastic recon-
struction methods. Most of such methods use some sort
of correlation functions, obtained from 2D thin sections,
to reconstruct 3D porous medium [12–16]. Typically, such
reconstruction techniques [17–20], as well as some of those
described below, are based on an optimization technique
such as, for example, simulated annealing [21] or the genetic
algorithm [22], whereby one tries to minimize the difference
between the data and the simulated (reconstructed) model
using the optimization techniques. The constraints (data) that
were used in the first of such techniques were mostly based on
two-points statistics that are too simple and cannot, in general,
reproduce accurately the variability and connectivity of the
pore space [10,19,23,24].
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In the second group are what we refer to as the process-
based reconstruction methods, whereby one tries to mimic
the processes that gave rise to the present rock and porous
media. The approach [25,26] is appealing, but has certain
limitations that were addressed later by others [27]. For
example, the require very large computer memory, and the
required computations are very intensive. In addition, being
based on the actual physical processes, such models are not
general enough, as they are developed for specific types
of porous media. For example, process-based reconstruction
methods have been developed for sandstone and carbonate
rock with various degrees of success [28–30].

To improve the stochastic reconstruction techniques, use
of other types of two-point correlation functions and statis-
tics has been proposed. Such statistics include lineal-length
[9,18,31–36] and chord-length distributions [19,24,37–40],
which represent, respectively, the probability of finding a line
of a given length fully in the pore or grain section, and that of
the length between two grain voxels for a specific direction.
Clearly, it is possible to increase the quality and accuracy of the
reconstruction techniques by adding higher-order statistical
measures. But, doing so increases the computation time
dramatically. In addition, measurement of high-order statistics
of disordered porous media is very difficult.

Almost all the aformentioned reconstruction methods have
the shortcoming that they cannot reproduce correctly the con-
nectivity of the matrix and the pore space. To our knowledge,
the first attempt to rectify this was that of Hamzepour et al.
[41]. They showed that if dynamic data, such as single-phase
fluid flow data that clearly depend on the connectivity of the
pore space, are included in the reconstruction method, not only
can the reconstructed model honor the data, but also provide
accurate predictions for two-phase flow properties of the same
pore space, which depend sensitively on the connectivity, even
if no data for such properties are included in the reconstruction
process. More recently, a two-point cluster function, which
is sensitive to the topological connectivity of the spatial
distribution of the phases within a multiphase system, was
proposed and used by Torquato and co-workers [42] that also
improved the accuracy of the reconstructed systems that they
studied.

A promising technique to reconstruct disordered porous
media is the method of multiple-point statistics (MPS). Several
of such methods have been introduced in the literature on
mathematical geology. A comprehensive review of the current
MPS methods is given by Tahmasebi et al. [43]. In particular,
a promising MPS method was introduced by Strebelle [44],
usually referred to as the single normal equation simulation
(SNESIM). Okabe and Blunt [45] used the method to recon-
struct porous media. The connectivity of the reconstructed
models turned out to be more accurate than those reconstructed
by two-point statistics and various correlation functions. The
method requires, however, very demanding computations, and
also has difficulty reconstructing anisotropic porous media that
are, however, prevalent in practice, particularly in geological
formations. More recently, Hajizadeh et al. [46] used a
multiscale variation of the MPS method, which partially
overcame the limitations of the MPS method of Okabe and
Blunt [45].

In addition to its computational intensity, the MPS-
SNESIM algorithm, though promising, has several shortcom-
ings. One is that it requires very large computer memory.
Another problem is that the method usually fails if the medium
is highly heterogeneous, because in the MPS-SNESIM method
the data are stored in a search tree, but only the local patterns
of, or data for the medium that occur frequently enough in
the image, are stored. Thus, if a pattern is not repeated often
enough, the method deletes it from the image and repeats
the search. Such a reduction in the data leads the algorithm
to fail reproducing the large-scale connectivity of large-scale
porous media that are replete with rare events, i.e., patterns of
local variations in the properties that are repeated infrequently
throughout the pore space.

In this paper we present a MPS algorithm for reconstruction
that we refer to as the cross-correlation–based simulation
(CCSIM). The method is used to reconstruct 3D porous media
using a single 2D thin section. We demonstrate that the
reconstruction method possesses several desirable properties,
including low computational cost, the ability to generate
multiple highly accurate realizations of a pore space, and to
reconstruct nonstationary digitized images. The performance
of the method is demonstrated with two examples, and the
results are compared with the data.

The rest of this paper is organized as follows. In Sec. II
the CCSIM algorithm is described. Section III presents the
grid splitting and porous media reconstruction algorithm that
utilizes the CCSIM method. Section IV describes the results,
including the demonstration of the efficiency of the proposed
algorithm. The paper is summarized in Sec. V.

II. CCSIM METHOD

Similar to any MPS method, the CCSIM may also be used
in two distinct cases, namely, unconditional and conditional
simulations that are described below. But, let us first describe
the general formulation of the CCSIM, regardless of its
type.

A. Cross-correlation function

We first define the notations that are used throughout the
paper. The data are represented by a digitized image but, for
the sake of convenience, we only use image to refer to it.
The patterns in the image are used in order to reconstruct a
porous medium. Let us refer to the available data in a specific
template T at location u as a data event, and denote it by DT (u).
G denotes the computational grid used in the simulation.
The template by which the image is scanned is denoted by
T, and Dh

T (u) represents the hard—quantitative—data event.
Finally, the overlap region between the DT and the previously
simulated pattern is denoted by O (see below).

The main strategy in the CCSIM is using a one-dimensional
(1D) raster path, instead of a 2D or 3D random path, used in
the previous MPS methods. To accelerate the simulation, we
do not use all the data in DT , but consider the O regions
that help us preserve the continuity of the patterns at the
boundaries between various regions of the image. We utilize
a CC function along a raster path and, as described below,
combine it with efficient strategies to honor the continuity and

066709-2



RECONSTRUCTION OF THREE-DIMENSIONAL POROUS . . . PHYSICAL REVIEW E 85, 066709 (2012)

pattern reproducibility to generate realizations of the porous
medium that match the image.

Suppose that D(x,y) represents the datum at point (x,y)
of the image of size Lx × Ly , with x ∈ {0, . . . ,Lx − 1} and
y ∈ {0, . . . ,Ly − 1}. We scan the image, focusing on a portion
DT (u) with a size �x × �y , and generate it based on the data
such that it matches the corresponding portion in the image. To
do so we use a CC function to quantify the similarity between

the image and DT . It is defined by [47]

C(i,j ) =
�x−1∑
x=0

�y−1∑
y=0

D(x + i,y + j )DT (x,y), (1)

where i and j represent the shift steps in the x and y directions,
with 0 � i < Lx + �x − 1 and 0 � j < Ly + �y − 1. The CC
function may also be normalized:

CN (i,j ) =
∑�x−1

x=0

∑�y−1
y=0 {[D(x − i,y − j ) − 〈Di,j 〉][DT (x,y) − 〈DT 〉]}2

{(∑�x−1
x=0

∑�y−1
y=0 [D(x − i,y − j ) − 〈Di,j 〉]2

) (∑�x−1
x=0

∑�y−1
y=0 [DT (x,y) − 〈DT 〉]2

)}1/2 . (2)

Here, 〈Di,j 〉 is the local mean of D(x,y) over the DT

segment, shifted to (i,j ):

〈Di,j 〉 = 1

�x�y

i+�x−1∑
x=i

j+�y−1∑
y=j

D(x,y). (3)

In a similar fashion 〈DT 〉, the local mean of DT , is defined.
Equations (1) and (2) indicate that the desired position
of (i,j )—the best match with the corresponding point in
the image—is one that maximizes C(i,j ) or CN (i,j ). The
normalized CC is less sensitive to changes in the illumination
that is not related to a porous medium’s image. Due to its
simplicity and smaller computational cost, we used Eq. (1). If
an image for a heterogeneous porous medium is too complex,
the use of C(i,j ) is most appropriate [48], because it produces
results that preserve the global variations and continuity of the
image (see below).

B. Unconditional reconstruction

By unconditional reconstruction we mean one in which
the reconstructed realization does not have to honor exactly
specific hard data in the image. The raster paths that we
utilize have been also used in the past [49], and yielded
accurate results in some cases. A problem with the previous
applications was, however, preserving the continuity of the
porous medium’s image in the sectors for which hard data were

FIG. 1. Example of the raster path and the overlaps regions.

available. Figure 1 presents the main concepts that we develop
in this paper, while its implementation is summarized in Fig. 2.
The algorithm begins at the origin of the computational grid
G (region I in Fig. 1) and proceeds along a raster path
on G. Since the reconstruction is unconditional, at the
beginning G is completely empty, containing no hard data.
A random patch equal to T is selected and inserted into the
first DT , which is then used along an axis (horizontal axis in
Fig. 1) along the raster path. One then attempts to locate a
patch that matches its left-side overlap, Ol . The Ol region is
defined to preserve the continuity near the boundaries and to
generate a seamless realization. It is illustrated in Fig. 3, and is
the only section comparable with the image. Thus we ignore
the rest of the DT . Recall, as shown in Fig. 3(a), that the aim
is to determine the best matched pattern whose left section is
correlated with Ol . If, however, several patterns have the same
degree of correlations with Ol (the same level of similarity),
one of them is selected at random. The procedure continues
until inspecting the first line of the raster path is finished, i.e.,
the algorithm reaches Sec. III in Fig. 1. It then moves forward
along and beside the first replaced patch (segment IV in Fig. 1).
At that point either the first pattern is not selected randomly,
or it has the Ol region on its left side by which the patch
is identified; see Fig. 3(b). Next, the algorithm enters a more
complex section—segment V in Fig. 1— which is one in which
the data event DT has two overlap regions, Od at the bottom

D

(a)

O l

O
d

O d

T

(b)

FIG. 2. Three overlap regions that may be created in the simula-
tions with the raster path, with the overlap region that corresponds
to (a) the left-side region and (b) the reconstruction that involves the
internal nodes.
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FIG. 3. Adaptive recursive template splitting for the CCSIM. The
overlap regions, shown by the shaded gray, are for (a) the prototype
of CCSIM without any splitting, (b) when the DT is split into four
sections Ds1

T , each of which is simulated separately, and (c) when no
matching pattern is found, and Ds1

T is split into four equal smaller
sections Ds2

T .

and on the left side. Therefore, such regions are considered in
order to identify the matched pattern; see Fig. 3(c). Thus the
algorithm for unconditional reconstruction is as follows.

(i) One defines a raster path on the initial grid G according
to a given template T and overlap region O.

(ii) At each visited node of G, one extracts the DT that
consists of new nodes (of the computational grid) and the O

region:
(a) One separates the O from DT and uses it to calculate
the CC function.
(b) A new image is determined for comparing the
similarities between the O region and the image, based
on both the CC function and visualization.

(iii) Based on Eq. (1) and an acceptance threshold δ for the
O region, one determines the matched pattern. An acceptance
threshold δ = 0 implies that the error in the similarity between
the O region of the current pattern and the original one is
zero. δ > 0 generates an ensemble of patterns that do not
exactly match the image. In that case one selects a realization
at random.

(iv) The selected matched pattern is assigned to the DT

region.
(v) The algorithm moves to another node based on the given

parameters on the raster path and repeats the procedures until
all nodes of G have been visited and inspected, as described
above.
In the simulations that were carried out (see below), we used
δ = 0.2.

C. Conditional reconstruction

In conditional reconstruction the initial computational grid
G contains some hard data, which help generate a realization
of a porous medium with less uncertainty and a more accurate
structure. Conditioning to the hard data and, consequently, the
hard data event Dh

T , requires certain changes in the algorithm

for unconditional reconstruction, because the matched pattern
must honor the hard data, in addition to preserving the
continuity of the image. Thus one difference between the
algorithms for unconditional and conditional reconstruction is
that the latter involves a two-step searching. The first lookup
identifies the patterns that honor hard data, while the second
step tries to match DT . Thus the algorithm first computes the
CC functions in a manner similar to that for the unconditional
case and, according to an acceptance threshold δ, reexamines
them and the corresponding patterns.

Those that honor the hard data are identified, and one of
them is selected at random and inserted in the Dh

T . If Dh
T is

empty, the algorithm proceeds as in the case of unconditional
CCSIM. If, however, it is not totally empty, at least one pattern
may be identified that honors the hard data and matches the
image. A problem may arise when the template T is very
large, or if the generated realization is not informative enough
to honor the hard data, which can lead to discontinuities in
the reconstructed medium and prevent the algorithm from
identifying a pattern in the ensemble of the realizations that
honor the hard data. Such a situation, which arises very rarely,
can be addressed rather straightforwardly, due to the intrinsic
features of the CCSIM algorithm.

One solution is to increase the threshold δ. In this case,
new patterns that have more significant differences with the
O region become candidates for inclusion in the ensemble
of the possible patterns. δ may be raised until a proper
pattern is identified and inserted in Dh

T . But, increasing δ

also allows the incorrect patterns to enter the ensemble,
which may subsequently lead to the generation of a poor
realization of a porous medium that contains discontinuity.
To overcome the problem, we may use another raster path in
a different direction to improve the quality of the realizations.
An alternative approach is to use an adaptive simulation that is
shown schematically in Fig. 3. First, the patterns that honor the
hard data with the initial threshold δ are identified. If, however,
no such pattern is found, the sector DT is split into smaller
data events Ds

T and the reconstruction continues with Ds
T . The

splitting continues until the ensemble of the patterns that honor
the hard data has at least one member. If the porous medium
is anisotropic (stratified), one proceeds as follows. The image
is first analyzed to determine the anisotropy direction. The
template is then shrunk or expanded in the anisotropy direction.
The rest of the reconstruction method is similar to that for
isotropic media.

Calculation of the CC function can be carried out in both
the spatial and Fourier domains. If the size of the image is not
too large, all the computations are carried out in the spatial
domain, as is done in the present paper. We will demonstrate
in a future paper that very significant savings in computation
time is achieved by computing the CC function in the Fourier
space, when the image is very large and contains millions of
grid blocks.

III. ALGORITHMS

A main idea of the proposed methodology is to use a single
2D section of a porous medium, which is obtained from, for
example, x-ray micro-CT and utilize it as the foundation—as
the image—for reconstruction of the 3D medium. The 2D thin
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section represents the first layer for which the next layer is
constructed and added to the evolving reconstructing medium,
based on the extracted hard data in the previous layer. Then,
the newly reconstructed layer acts as the new source of the
hard data for the next layer. This strategy reproduces very well
the continuity of the porous medium in the direction of layer
addition, since each layer has similarities with the previous
layer. One may also use the image of layer n as the image for
layer n + 1, although this might encounter some difficulties,
if the porous medium is highly disordered.

For example, any possible artifact in the previous layer
may be transferred hierarchically to the following layers. To
prevent this from occurring, we use a single image that is
representative of the microstructure of all the layers, which
is possible if the porous medium is stationary. The following
important questions then arise. (1) How should one select the
hard data? (2) How many hard data points should one select
for the next 2D section? (3) Where (in the image) should one
pick the hard data? In addressing such questions two points
must be kept in mind. If a large number of hard data points
are used, then the next layer or 2D section will be very similar
to the previous layer and, thus, the heterogeneity may not
be reproduced. On the other hand, if only a few hard data
points are used for the reconstruction of the next thin section,
the continuity will be lost and the layers will appear to be
independent of each other. Therefore, using an optimal number
of the hard data points and their spatial locations is an issue
that must be addressed.

A. Grid splitting

The hard data points are selected such that the pore and
grain phases do not undergo sudden changes, so as to preserve
the connectivity of the sample as more layers are added.
Therefore, the sampling strategy is neither fully random nor
completely deterministic. The most suitable of such strategies
is a multiscale sampling by which the “best” locations for the
sampling are identified such that not only are the shape and
states of the pores preserved, but also the pores can be extended
to the next layer, or close. This is achieved by a nonuniform
or adaptive sampling, called quadtrees, which partitions the
image into some subsections according to a set criterion. The
criterion used in the algorithm is the entropy S by which we
decide to continue or stop the partitioning. The entropy is a
statistical measure of the heterogeneity or stochasticity of the
patterns in the image. In other words, to each of the patterns
resulting from each partition is assigned an entropy that, given
the heterogeneity of the pore space, is a stochastic variable.
Then, the histogram of such entropies is constructed and used
as for a probabilistic selection. In this study the Shannon
entropy [50] is used as a criterion by which we partition
the image into some segments (subgrids) that enable us to
select the proper samples that convey the variability of the
connectivity of the image in all the directions. The Shannon
entropy S is computed based on the probability pi of having
states i in the image,

S =
n∑

i=1

pi ln pi, (4)

TABLE I. The splitting algorithm.

function GS → Grid Splitting (Im, bmin, ζ , Re)

1 Calculate the grain and pore proportions;
2 p ← the proportion of the pores in the image (or layer), and

g ← 1 − p (the grain proportion);
3 Im ← Input image;
4 bmin ← Minimum size of the blocks;
5 ζ ← Threshold entropy;
6 Re ← Proportion of the hard data is extracted;
7 Hard data are inserted in their locations;
8 Divide the image into four blocks;
9 for each block 1 to 4 do

10 if size (block) > bmin do
11 Calculate Ŝ;
12 if Ŝ > ζ do
13 Divide the block into four blocks;
14 else fix the block size; select Re% of the points in the block

randomly and add to the hard data;
15 end (for else in 14)
16 end (for if in 12)
17 else fix the block and select one of the nodes as hard data;
18 end (for if in 10)
19 end (for loop in 10)
20 according to p and g select the hard data for conditioning

in which n is the number of pixels in the block of the image
that we are considering, and pi is the probability of having the
ith pixel in the image. Each pixel is considered as a data point.
Thus, for different bins we determine the frequencies of the
pixels and compute their histogram. pi is then given by

pi = (histogram of sample i)/(length of the sample).

Normalizing the entropies by their maximum value yields
the normalized entropies Ŝ. A large Ŝ is indicative of high
complexity or heterogeneity of the image.

The Shannon entropy is not by itself enough for deciding
the extent of the partitioning of the grid. We also use a
quadtree-based partitioning based on the Shannon entropy.
Such an adaptive technique makes it possible to pick the
samples very efficiently and “carry” the spatial variability to
the next layer. Therefore, if a block meets the criterion, i.e., its
normalized entropy is smaller than a threshold entropy ζ , it is
homogeneous enough that it need not be divided any further.
If, on the other hand, the block’s normalized entropy exceeds
ζ , it is divided into four blocks and the new smaller blocks
are also compared based on their own entropies and whether
they exceed the set threshold. The structure of the splitting
algorithm is given in Table I, and an example is presented in
Fig. 4. A physical constraint that is imposed is that we are
not allowed to generate a pore or grain proportion (volume
fraction) that is larger than that of the image.

B. Reconstruction algorithm

To refine the algorithm further, we use a strategy called
frame instruction. Before reconstructing the layers, we con-
struct four frames for the front, right, back, and left sides of the
3D grid, which preserve the continuity of the porous medium
in its exterior view and constrain it near the boundaries. Thus
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FIG. 4. (a) Original image, (b) the representation of (a) by
quadtree decomposition, and (c) the superposition of (a) and (b).

the front layer of the 3D grid, conditioned to an overlap band
with the image, is constructed. Then, the right side of the
3D porous medium, conditioned to the front and the image,
is constructed. The procedure continues for the remaining
two sides of the computational grid. Figure 5 illustrates the
procedure schematically. Once the porous medium’s frame is
constructed, the reconstruction commences.

First, the algorithm determines the optimal locations of the
hard data according to the algorithm shown in Table I. In
each layer the edges are conditioned to the front, right, back,
and left sides to preserve their continuity. Then, according
to the extracted hard data and by implementing the CCSIM
algorithm, a new layer is reconstructed. The threshold ζ that

FIG. 5. Four initial steps for constructing the external view of the
Berea sandstone.

FIG. 6. 2D section of the carbonate rock used as the image. The
regions encircled by the ellipses correspond to those in Fig. 8.

we used for the normalized entropies (see Table I) was ζ = 0.5.
The procedure continues until all the layers of the given grid
are reconstructed. Finally, the reconstructed layers are stacked
together to complete the reconstruction of the 3D porous
medium.

IV. RESULTS AND DISCUSSION

We selected two sample porous media for reconstruction,
the carbonate rock presented by Okabe and Blunt [45], and a
Berea sandstone from the group at Imperial College of London
[51]. Therefore, a comparison of our results, in terms of both
the computation time and the quality of the reconstructed
samples, with the previous efforts is also made.

A. Carbonate rock

The carbonate porous sample consists of limestone, and is
classified as bioclastic packstone or grainstone [45]; see Fig. 6.
It exhibits a variable local porosity ranging from 0.25 to 0.4.
We did not have access to the complete original 3D sample, but
only the 2D image presented [45]. But, on the other hand, the
reconstruction procedure is also based on a single 2D image.
A template size of 35 × 35 and an overlap region O of size of
5 were used in the reconstruction of the sample.

B. Berea sandstone

The 2D section of the sample Berea sandstone used as the
image is shown in Fig. 7. It has a size of 200 × 200 pixels. The
sample does not exhibit much variability, with the one used
used in the reconstruction having a porosity of 0.2, compared
with the porosity of 0.22 for the 3D sample. Therefore, the
sample used contains the heterogeneity of the original rock. In

FIG. 7. 2D thin section of the Berea sandstone used as the image.
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FIG. 8. Reconstructed 3D carbonate rock sample. The regions
indicated by the ellipses correspond to those shown in Fig. 6.

this case, an original 3D sample was available with which the
reconstructed model can be compared directly. The size of the
template T used in the reconstruction was 20 × 20, and that
of the O region was 4—weaker heterogeneity requires smaller
templates and O regions. Altogether, 5% of the data for both
sample porous media was used in the reconstruction.

C. Reconstructed porous media

The reconstructed carbonate porous medium is shown in
Fig. 8, which has a size of 200 × 200 × 200 pixels. The
complete 3D view, the cross sections and the transparent view
of the reconstructed sample are presented in Fig. 9.

The result for the reconstructed Berea sandstone is shown in
Fig. 10, where it is compared with the 3D image of the original
sample, and in Fig. 11 where the side views of the reconstructed
sample are compared with the original data. They indicate
that the reconstructed sample has reproduced the structure and
connectivity of the original system. Thus, at the visual level,
the CCSIM method is capable of preserving the connectivity
of the samples in the direction of stacking the 2D images that it
reconstructs, as well as the variability in the spatial distribution
of the pores.

If the image represents a stationary structure, the proposed
algorithm reproduces accurate reconstruction of porous media.
But, at the same time, unlike many methods proposed in
the past, even a sample with a nonstationary structure can
be reconstructed accurately by the proposed method, except
that one must use a number of 2D sections that convey
the nonstationarity of the sample’s properties. Consider, for
example, the large and continuous substructures shown by
the two ellipsoids in Fig. 6. They are reproduced correctly
in Fig. 8, whereas the SNESIM method used by Okabe and
Blunt [45] did not reproduce such large structures. At the same
time, it should be pointed out that the algorithm of Okabe and
Blunt is sensitive to the stationarity of the image. Due to the

FIG. 9. (a) 3D exterior view of the reconstructed carbonate
sample; (b) a cross section of the reconstructed sample, and
(c) the transparent view of the porous medium in which the gray
color represents the pore space.

flexibility of our algorithm for using a large template T, both
large- and small-scale structures are reproduced. Moreover, if
in the application of the SNESIM one uses a larger template to
capture the large-scale structures, the search tree will ignore
the small replicas and, as a result, cannot reproduce them
accurately. Furthermore, using a large template leads the
SNESIM to require large computer memory and will be very
demanding computationally. For example, the algorithm by
Okabe and Blunt [45] took about 14 CPU hours to reconstruct
the sample, whereas our proposed methodology took only
about 1.25 CPU hours with a comparable computer, a factor
of about 14 faster. In addition to the aforementioned reasons
for the differences between the CCSIM and SNESIM, one
must also recognize that the latter is a pixel-based algorithm
that reconstructs one pixel at a time, whereas the former is
a pattern-based method that reconstructs a large number of
points simultaneously.

Visual inspection and similarities between the image and
the reconstructed media are not sufficient for judging the
accuracy of the method. Hence we now present a more
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FIG. 10. (a) 3D view of the original Berea sandstone and (b) the
reconstructed porous medium.

quantitative comparison between the computed results and
those of the image.

D. Autocorrelation function

The void-void (pore-pore) autocorrelation function (ACF)
is defined by

R(u) = 〈[I (r) − φ][I (r + u) − φ]〉
φ − φ2

, (5)

where the averaging is over all locations r within the system,
and I (r) is an indicator function, such that I (r) = 1 if r is in

FIG. 11. Results for the reconstructed Berea sandstone (right) and
their comparison with original 3D porous medium (left). (a) Full 3D
view in which the black areas represent the pores and the gray shows
the grains, (b) cross sections of the two porous media, and (c) the
transparent view that shows the pores.

the pore space, and I (r) = 0 otherwise. The porosity is simply
φ = 〈I (r)〉. We compare the ACFs of the image, the micro-CT
image of the porous media, and the reconstructed carbonate
sample, but one must keep in mind that the ACF is not by
itself sufficient as a test of the accuracy of the reconstructed
media. The ACFs were computed in the three orthogonal
directions for the Berea sandstone, for which we had access
to the full 3D image, and in two orthogonal directions for the
carbonate sample, for which only a 2D image was available.
The comparisons for the Berea sandstone and the carbonate
sample are presented in Figs. 12 and Fig. 13, respectively.

It is clear that the ACFs of the reconstructed porous media
match the actual data. In particular, the results for Berea
sandstone are very accurate.

E. Porosity distribution

The variations of the porosity of various layers of the micro-
CT image of the Berea sandstone are compared in Fig. 14
with those in the reconstructed porous medium. The patterns
are similar. Moreover, except for a few points, the numerical
values of the two porosities are also close everywhere. While
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FIG. 12. Comparison of ACFs for three images, in (a) the x

(horizontal) direction, (b) the y (vertical) direction, and (c) the
z direction (perpendicular to the page). The results are for Berea
sandstone.

the porosity does not vary greatly, the similarity of its variation
in the reconstructed sample with that of the image is notable.

F. Multiple-point connectivity probability

Multiple-point connectivity is a measure of the connectivity
of the system within an image [52]. It is a concept more general
than the coordination number that characterizes the local
connectivity of the pores, and is concerned with determining
the probability p(h; m) of having a sequence or a continuous
string of m points in a structure in any given direction, such as
pores in a pore space. It is defined by

p(h; m) = Prob{I (u) = 1,
(6)

I (u + h) = 1, . . . ,I (u + mh) = 1},
where h is a unit vector in the direction along which p(h,m)
is estimated. The advantage of such a connectivity function,
in addition to its global nature, is that it allows one to account
for curvilinearity of the system by considering a tolerance core
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FIG. 13. Comparison of the ACFs for two images, in (a) the x

direction and (b) the y direction. The results are for the carbonate
sample.

around a target direction. The results for the Berea sandstone in
the three orthogonal directions, and for the carbonate sample
in two orthogonal directions are shown in Figs. 15 and 16,
respectively. Both sets of results indicate the accuracy of the
reconstructed models.

G. Single- and two-phase flow characteristics

Although the comparisons made so far indicate the accuracy
of the proposed algorithm, they were based on some limited
statistics. It is entirely possible for two models to have the
similar such statistics, but very different flow characteristics.
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FIG. 14. Comparison of the porosity distribution in the recon-
structed Berea sandstone with that of its micro-CT 3D image.
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FIG. 15. Comparison of the multiple-point connectivity proba-
bility for three images of the Berea sandstone in the (a) x, (b) y, and
(c) z directions (see Fig. 12 for the directions).

Therefore, in this section we present a comparison between
the flow properties of the reconstructed models and those of
the image.

We first compare the Darcy permeability for single-phase
flow in the porous medium. While, due to the complex structure
of the pore space, a technique such as the lattice Boltzmann
simulation may be more accurate, we wish to make only a
preliminary comparison between the effective permeabilities
of the reconstructed porous medium and the image’s. Thus the
FLOWSIM package [53] was used for the flow simulation and
computation of the permeability. A constant pressure gradient
was applied across the model in one direction, while no flow
boundary conditions were used on the remaining faces. A
computational grid of the size of 30 × 30 × 30 was used. The
simulator generates the (average) pressure in each grid block
and computes the input and output flows (which are equal
under steady-state condition). We assumed the permeabilities
of the pores and grains to be 100 and 0.01 mD, respectively.
Strictly speaking, the latter must, of course, be zero, but we
set it to be a small value to avoid numerical difficulties in
the simulations. The results for the effective permeabilities Ke

of the Berea sandstone in the three orthogonal directions are
presented in Table II, indicating reasonable agreement between
those for the reconstructed model and those of the original
Berea sandstone. But, perhaps the most reliable indicator of
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FIG. 16. Same as in Fig. 15, but for the carbonate porous medium,
in the (a) x and (b) y directions.

the accuracy of the reconstructed porous media is their relative
permeabilities (RPs) to two-phase flow through their pore
space, because the RPs are sensitive to the connectivity of
the pores [3,41]. The RP of a fluid phase is defined as the
effective permeability of that part of the pore space occupied
by the fluid, divided by the overall single-phase permeability
of the pore space.

One way of computing the RPs is by first developing
the equivalent pore network model of the porous medium,
represented by a network of pores and throats, for which
various methods have been proposed [3]. In this work we
used the method proposed by Dong and Blunt [54] who used
the maximal ball algorithm to extract the sizes of the pores
and throats from images of the porous medium. Figure 17
compares the distributions of the local coordination numbers,
and the size distributions for the pores and throats in the
reconstructed Berea sandstone and its actual 3D image. The
two sets of results agree well. Once the network equivalent
model was constructed, two-phase flow simulations of oil
and water in the Berea sandstone were carried out, using
a method similar to that of Valvantne and Blunt [55]. The
network size was 200 × 200 × 200, the oil and water density
were assumed to be 900 and 1000 kg/m3, respectively, the
water-oil surface tension was taken to be 3 × 10−2 N/m,
while the oil and water viscosities were assumed to be
1.2 × 10−3 and 1.0 × 10−3 kg/m s, respectively. We simulated
the primary drainage—displacement of a nonwetting phase
(oil) by the wetting phase—followed by the reverse imbibition
process. The simulator combines the topologically disordered
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TABLE II. Comparison of the computed effective permeabilities for the original micro-CT image
and the reconstructed Berea sandstone.

Micro-CT porous media Reconstructed porous media

Ke (x) Ke (y) Ke (z) Ke (x) Ke (y) Ke (z)

Max 100 100 100 100 100 100
Upper quartile 100 100 100 100 100 100
Median 100 100 100 93.85 93.65 91.01
Lower quartile 49.38 49.47 51.36 58.89 57.50 43.1
Min 0.1 0.1 0.1 0.1 0.1 0.1
Mean 73.73 73.64 74.23 75.01 74.54 70.12

prenetwork that represents the image and its reconstructed
version with detailed two-phase flow displacement mecha-
nisms [3] for any sequence of water and oil flooding, and any
wettability of the pores’ surface. During the primary flooding
the pore network is assumed to be strongly wetted by the
wetting phase (water for the water-oil systems and oil for the
oil-gas system, or oil in carbonate rock) with a receding contact

angle of 0◦. During the secondary flooding the advancing
contact angles will be larger (than zero), due to roughness
of the surface and minor wettability alteration [3].

The computed results for both the reconstructed sample
and the original 3D Berea sandstone are presented in Fig. 18.
The agreement between the two sets of results is excellent,
indicating the accuracy of the reconstructed model.
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FIG. 17. Distributions of (a) the coordination number, (b) the throat sizes, and (c) the pore sizes for the Berea sandstone. On the left are the
results for the original sandstone and on the right for the reconstructed one.
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FIG. 18. Comparison of the computed relative permeabilities to
the oil and water phases during (a) drainage and (b) imbibition.

V. SUMMARY

We proposed and developed a multiple-point statistic
(MPS) method with the goal of reconstructing 3D porous
media from a single 2D thin section. To preserve the long-range
(global) connectivity of the pore space, we utilized a MPS
method method based on a cross-correlation function that has
been used in image processing. Based on a digitized image
of a thin (2D) section of a porous medium, a second thin
section is reconstructed, which is then used to reconstruct
a third layer, and so on. The reconstructed layers are then
stacked together to generate the entire reconstructed 3D porous
medium. To do so successfully, a most important issue was
addressed, namely, how to select the amount and location of
the hard data that are used to constrain the reconstruction.
We developed an adaptive grid splitting method based on the
entropy of the blocks. A distinct advantage of the method
is the possibility of using a large template in the CCSIM
method, which allows reconstructing nonstationary images,
whereas most of the previous algorithms, and in particular the
SNESIM method, are applicable only to stationary images. The
method was tested for a Berea sandstone and the 2D image of a
carbonate porous sample. The properties of the reconstructed
models agreed well with those of the actual samples. Given
the computational efficiency of the proposed method, as well
as its accuracy, we believe that the algorithm suggested in this
paper has potential applications to reconstruction of a wide
variety multiphase systems, some of which will be studied and
reported in the near future.
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[48] F. Höppner and F. Klawonn, in Proceedings of the 8th Inter-

national Symposium on Intelligent Data Analysis, Advances in
Intelligent Data Analysis VIII, 2009 (unpublished), p. 71.

[49] C. Daly, in Geostatistics, edited by O. Leuangthong and C. V.
Deutsch (Springer, New York, 2004), p. 215; A. El Ouassini,
A. Saucier, D. Marcotte, and B. Favis, Chaos Solitons Fractals
36, 418 (2008); G. Mariethoz, P. Renard, and J. Straubhaar,
Water Resour. Res. 46, W11536 (2010).

[50] C. E. Shannon, Bell Syst. Tech. J. 27, 379 (1948).
[51] [http://www3.imperial.ac.uk/earthscienceandengineering/

research/perm/porescalemodeling].
[52] S. Krishna and A. G. Journel, Math. Geol. 35, 915 (2003).
[53] C. V. Deutsch, FLOWSIM: [http://www.ualberta.ca/∼cdeutsch].
[54] H. Dong and M. J. Blunt, Phys. Rev. E 80, 036307 (2009).
[55] P. H. Valvatn and M. J. Blunt, Water Resour. Res. 40, W07406

(2004).

066709-13

http://dx.doi.org/10.1103/PhysRevE.56.3203
http://dx.doi.org/10.1023/A:1006557614527
http://dx.doi.org/10.1023/A:1006557614527
http://dx.doi.org/10.1006/jcis.2000.7055
http://dx.doi.org/10.1016/S0920-4105(98)00077-1
http://dx.doi.org/10.1103/PhysRevE.57.495
http://dx.doi.org/10.1103/PhysRevE.58.224
http://dx.doi.org/10.1103/PhysRevE.58.224
http://dx.doi.org/10.1016/S0001-8686(98)00042-6
http://dx.doi.org/10.1016/S0920-4105(00)00008-5
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1016/j.ces.2007.07.070
http://dx.doi.org/10.1016/j.ces.2011.03.013
http://dx.doi.org/10.1016/j.ces.2011.03.013
http://dx.doi.org/10.1007/BF00616924
http://dx.doi.org/10.1007/BF02768903
http://dx.doi.org/10.1007/BF02768903
http://dx.doi.org/10.1006/jcis.2000.7115
http://dx.doi.org/10.1006/jcis.2000.7115
http://dx.doi.org/10.1016/S0927-7757(02)00049-3
http://dx.doi.org/10.1103/PhysRevB.31.5990
http://dx.doi.org/10.1103/PhysRevB.31.5990
http://dx.doi.org/10.1190/1.1442252
http://dx.doi.org/10.1190/1.1442252
http://dx.doi.org/10.1103/PhysRevA.46.2004
http://dx.doi.org/10.1190/1.1443781
http://dx.doi.org/10.1007/BF00614635
http://dx.doi.org/10.1007/BF00614635
http://dx.doi.org/10.1002/aic.690390303
http://dx.doi.org/10.1002/aic.690390303
http://dx.doi.org/10.1103/PhysRevE.55.1959
http://dx.doi.org/10.1103/PhysRevE.55.1959
http://dx.doi.org/10.1680/geot.2001.51.10.871
http://dx.doi.org/10.1680/geot.2001.51.10.871
http://dx.doi.org/10.1016/S0032-5910(01)00493-4
http://dx.doi.org/10.1016/S0032-5910(01)00493-4
http://dx.doi.org/10.1023/A:1015031122338
http://dx.doi.org/10.1016/S0920-4105(03)00062-7
http://dx.doi.org/10.1016/S0920-4105(03)00062-7
http://dx.doi.org/10.1016/S0378-4371(98)00607-4
http://dx.doi.org/10.1016/S0378-4371(99)00248-4
http://dx.doi.org/10.1103/PhysRevE.75.061303
http://dx.doi.org/10.1103/PhysRevE.75.061303
http://dx.doi.org/10.1023/A:1006696301805
http://dx.doi.org/10.1103/PhysRevA.45.922
http://dx.doi.org/10.1103/PhysRevA.45.7292
http://dx.doi.org/10.1103/PhysRevA.45.7292
http://dx.doi.org/10.1063/1.359134
http://dx.doi.org/10.1103/PhysRevE.62.893
http://dx.doi.org/10.1103/PhysRevE.62.893
http://dx.doi.org/10.1016/S0920-4105(02)00148-1
http://dx.doi.org/10.1016/S0920-4105(02)00160-2
http://dx.doi.org/10.1023/A:1015650705205
http://dx.doi.org/10.1007/s11242-008-9242-8
http://dx.doi.org/10.1007/s11242-011-9726-9
http://dx.doi.org/10.1103/PhysRevE.47.2950
http://dx.doi.org/10.1111/j.1365-2389.1996.tb01844.x
http://dx.doi.org/10.1111/j.1365-2389.1996.tb01844.x
http://dx.doi.org/10.1103/PhysRevE.59.4953
http://dx.doi.org/10.1103/PhysRevE.74.026308
http://dx.doi.org/10.1103/PhysRevE.75.056311
http://dx.doi.org/10.1103/PhysRevE.75.056311
http://dx.doi.org/10.1073/pnas.0905919106
http://dx.doi.org/10.1073/pnas.0905919106
http://dx.doi.org/10.1103/PhysRevE.84.056102
http://dx.doi.org/10.1103/PhysRevE.84.056102
http://dx.doi.org/10.1007/s10596-012-9287-1
http://dx.doi.org/10.1007/s10596-012-9287-1
http://dx.doi.org/10.1023/A:1014009426274
http://dx.doi.org/10.1103/PhysRevE.70.066135
http://dx.doi.org/10.1016/j.petrol.2004.08.002
http://dx.doi.org/10.1016/j.advwatres.2011.06.003
http://dx.doi.org/10.1016/j.advwatres.2011.06.003
http://dx.doi.org/10.1016/j.patrec.2005.03.022
http://dx.doi.org/10.1016/j.patrec.2005.03.022
http://dx.doi.org/10.1016/j.chaos.2006.06.100
http://dx.doi.org/10.1016/j.chaos.2006.06.100
http://dx.doi.org/10.1029/2008WR007621
http://www3.imperial.ac.uk/earthscienceandengineering/research/perm/porescalemodeling
http://www3.imperial.ac.uk/earthscienceandengineering/research/perm/porescalemodeling
http://dx.doi.org/10.1023/B:MATG.0000011585.73414.35
http://www.ualberta.ca/%7Ecdeutsch
http://dx.doi.org/10.1103/PhysRevE.80.036307
http://dx.doi.org/10.1029/2003WR002627
http://dx.doi.org/10.1029/2003WR002627

