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Efficient computation of lattice defect geometries such as point defects, dislocations, disconnections, grain
boundaries, interfaces, and free surfaces requires accurate coupling of displacements near the defect to the
long-range elastic strain. Flexible boundary condition methods embed a defect in infinite harmonic bulk through
the lattice Green function. We demonstrate an efficient and accurate calculation of the lattice Green function
from the force-constant matrix for general crystals with an arbitrary basis by extending a method for Bravais
lattices. New terms appear due to the presence of optical modes and the possible loss of inversion symmetry. By
separately treating poles and discontinuities in reciprocal space, numerical accuracy is controlled at all distances.
‘We compute the lattice Green function for a two-dimensional model with broken symmetry to elucidate the role
of different coupling terms. The algorithm is generally applicable in two and three dimensions to crystals with
arbitrary number of atoms in the unit cell, symmetry, and interactions.
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I. INTRODUCTION

Atomic-scale modeling of lattice defect geometries such as
point defects, dislocations, disconnections, grain boundaries,
interfaces, and free surfaces is key for understanding many
material properties [1]. The anisotropic elasticity solutions
for the displacement fields are accurate at distances far from
the defects [2,3]; however, the solutions frequently diverge
near the defect center, requiring an atomistic approach to
determine the defect core geometry. For many defects, espe-
cially dislocations, the long-range strain field is incompatible
with periodic boundary conditions. To efficiently model these
defects, Sinclair et al. developed a flexible boundary condition
method based on the lattice Green function (LGF) [4]. The
technique was extended for crack propagation [5,6] using
empirical potentials and recently applied to isolated disloca-
tions with density functional theory (DFT) [7] and empirical
potentials [8,9]. Prior to this method, dislocation calculations
in DFT were limited to dipole [10,11] and quadrupole [12,13]
geometries due to the long-range strain field of an isolated
dislocation. The flexible boundary condition method couples
the simulation cell to infinite bulk by treating an intermediate
region away from the defect core as harmonic and relaxing
these forces with a LGF. Efficient numerical calculation of the
LGF for point defects in cubic lattices is well known [14—16].
An automated technique for efficiently calculating the lattice
Green function with arbitrary atomic interactions was only
applicable to Bravais lattices [17], making it unsuitable for
many materials with more than one atom in the crystal basis
such as hexagonal closed-packed (HCP) (e.g., Mg and Ti).

We extend this numerical technique to general crystals with
arbitrary numbers of atoms in the crystal basis. The extension
to multiple-atom unit cells requires a separate treatment for
acoustic and optical modes in the long wavelength limit,
but continues to rely on the same input information (force
constants) and shows similar efficiency [18]. Section II
contains a description of harmonic response in a multiatom
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basis and the general symmetries of the dynamical matrix and
lattice Green function. We present the numerical technique for
efficiently calculating the LGF for general crystals in Sec. III.
We compute the lattice Green function for a simple doubled
square lattice and new terms due to symmetry breaking in
Sec. IV. This symmetry breaking is manifest in both reciprocal
and real space. The result is an efficient, automated algorithm
for calculating the lattice Green function for general crystals
which can efficiently relax defect geometries; in particular, the
authors and collaborators used this technique to calculate the
LGF for the relaxation of dislocation geometries within DFT
in Mg [19], for the relaxation of a screw dislocation in DFT
and the modified embedded-atom model (MEAM) in Ti [20],
and for calculation of the bulk LGF as part of an interfacial
LGEF calculation of a twin boundary in Ti [21].

II. HARMONIC RESPONSE

Flexible boundary condition techniques allow for efficient
calculation of isolated lattice defects with a small number of
atoms by using the perfect lattice Green function to couple the
defect to bulk. We extend the numerical method for calculating
the LGF [17] to work with general crystals with multiple atoms
in the unit cell. The infinite harmonic crystal is well known
from classical and quantum theory [22,23]. For a crystal with
N atoms in }he basis, the 3N x 3N force-constant matrix
D;, ;s(R — R’) determines the force on basis atom i at lattice

site R in Cartesian direction « from a displacement of a basis
atom j at lattice site R’ in Cartesian direction 8:
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Note that we use underlines and tildes to represent ma-
trices in real and reciprocal space, respectively. Due to
independence of differentiation order and the inversion
symmetry of all Bravais lattices, the force-constant matrix
obeys D;, ;s(R) = D4 ,;,(—R). Unlike a Bravais lattice, a
general crystal does not necessarily have inversion symmetry.
Therefore, D4 ,;,(—R) = D4 ,,(R) is not guaranteed. The
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force-constant matrix obeys a sum rule,

Y Di () =0, Viap, )

R.j
due to the absence of forces under a uniform translation of the
crystal. Under a uniform strain, there is no net force on the
unit cell. Hence, the force-constant matrix obeys

> Dy jp(RR+5% —%)p =0, Va. 3)
R.i.j.B

where the X; are the positions of the atoms within the unit

cell. Since there is no torque under a uniform rotation, the
force-constant matrix also obeys

D Dy s (RYR + X — %)y — Dy 1, (RNR + 51 — X))p]
R.j
=0, Viap,y. 4)

In the harmonic limit, the LGF G (R — I_é/) gives displace-

—ia, jp
ments (i;,) in response to forces ( f i8)s
uin(R) == Y Gy 1s(R— R) fip(R), )
R.j.p

where o and B index Cartesian directions, i and j index atoms
in the crystal basis, and R and R’ are lattice vectors. The LGF
is the pseudoinverse of the force-constant matrix:

Y Dy (R = RNG,, j5(R"— R)
ﬁ”,l,y

= 8;8ap8(R — R), Vi.j.a.B.R.R. (6)

The sum rule [Eq. (2)] guarantees that D, 8 (ﬁ ) has three zero

ia,j

modes (uniform translation); therefore D, j ﬁ(l_{”) is singular.

III. COMPUTATION OF THE LGF

For computational efficiency and control of numerical er-
rors, we compute the LGF by inverting the dynamical matrix in
reciprocal space. First, we Fourier transform the force-constant
matrix to the dynamical matrix. We then invert the dynamical
matrix using a block partitioning scheme by separating the
dynamical matrix into acoustic and optical modes in order
to isolate the poles and discontinuities. The inverse contains
first- and second-order poles and a discontinuity in reciprocal
space. For numerical efficiency and stability, we perform the
inverse Fourier transform to real space analytically for the
poles and discontinuities, and numerically for the smooth
semi-continuum correction. Finally, to get the real space LGF,
we rotate back into the crystal coordinate system to complete
the calculation.

Computing the LGF is more tractable in reciprocal space,
where the Fourier transforms of the LGF (similarly for the
force-constant matrix and dynamical matrix) are

Giajp k) = Zef’?-<ﬁ+ff—ff>c;. (R,

L

(7

Qia,jﬂ(ﬁ) e TR RER; 72")51'01.]';3(/2)
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for unit cell volume V. Note that we choose the Fourier phase
factor to correspond to the crystal vector between two atoms.
In reciprocal space, Eq. (6) becomes

> Giaiy®)Dry jp(K) = 81805, V k. ®)
Ly

The sumrule [Eq. (2)] means that fork = 0, 510, jp(0) has three
zero eigenvalues corresponding to the three uniform translatlon
modes. In addition, for small k three modes of Dm ]ﬁ(k)

will go as k?; this creates a singularity in G,a, B (k) atk =0,
corresponding to both second- and first-order poles. In addition
to these poles, the order k° term in 550,, ,-,3(12) has a dependence
on the direction of k leading to a discontinuity as k — 0.
Hence, we will expand the lattice Green function around k=0
and solve for the individual terms in the expansion from the
expansion of the dynamical matrix around k = 0.

To isolate the second-order pole in the elastic Green
function due to translational symmetry, we choose a basis
for atomic displacements and forces in the unit cell to separate
the acoustic and optical modes at k = 0. This involves the
eigenvectors of Djq jg(k = 0):

> " Dia.jp(O)ely, = 1€y, ©)

J.B
We identify the first three © =1...3 eigenvalues A* =0
as the acoustic modes and the remaining 3N — 3 as optical
modes with positive eigenvalues. The acoustic eigenvectors are
67 5 = Oup /v/N for u = 1...3, and the full set of eigenvectors
provide an orthonormal basis. In this new basis, the dynamical
matrix is
Dyt k) = +[ik - (R+ %) = %)

> (1

R.jylx

(k- (R+%; — )P s
_ 2!./ 4. e?ijy,zx(R)ew

(10)

where 0 = A for w = 1...3, and o = O otherwise, with a
similar relation between o’ and v. For the acoustic-acoustic
projection (o = o’ = A), the zeroth-order term is zero due to
the sum rule Eq. (2):

1 - 1 -
5 2 SRy (R =Y Dy, (R)=0. (D)
R.jy.l.x R.j

The remaining odd-order contributions in k to the acoustic-
acoustic quadrant are zero due to inversion symmetry of a
Bravais lattice (R — R) Thus, the AA term expands as

D 7 k- (R+3% — i)
B = 3 (- 1 ;1 )
R j.l :
l;~ 134_*._* 4
+[ ( 4)? x1)] +> mlv(R) (12)

Since the leading-order term of the acoustic subspace of the
dynamical matrix is second order in k, the acoustic-acoustic
(AA) projection of the LGF will have a second-order pole
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in k. Similarly, the sum rule also requires the zeroth-order term of the acoustic-optical (AO) and optical-acoustic (OA)
projections of the dynamical matrix to be zero. The AO and OA projections have first-order poles, and the optical-optical (OO)
projection does not have a pole. In the rotated basis, we can perform a block inversion of the dynamical matrix,

GROT _ éAA|(~;Ao . 5AA|5A0 -
Goa | Goo 5};0 | Doo
—(— @AA - 5A05§(1) 52\0):] 1|—(5AA~— Dio ?6(1{)/10[1 5Alo Do (13)
—DooDho(Dar = DaoDobDho) | (Doo = Dlo DA Dao)~

where the roman indexes A and O correspond to the projection onto the acoustic and optical bases, respectively. This ensures
that the k2 divergence as k — 0 is contained in the acoustic-acoustic quadrant of the matrix. Divergences of order ik~ can
also appear at leading order in the acoustic-optical and optical-acoustic quadrants for crystals without inversion symmetry.
For crystals with inversion symmetry, only the even order terms in the acoustic-acoustic quadrant and the odd order terms in
the acoustic-optical and optical-acoustic quadrants of the dynamical matrix remain [Eq. (10)]. We write our expansion of the
dynamical matrix and LGF in power series,

o0 [o.¢]
Doorn®) =Y DY, KK, Gogr ) =Y Guo (KiK', (14)
n=0 n=-2

where o and ¢’ can be basis A or O, and 5:2, and éf,”;, are the nth coefficients of the power series. We compute the power series
coefficients for the dynamical matrix by calculating the nth term of the expansion in Eq. (10):

~ N k- (R+% — %) L
b= 3 Sl D, (Re (15)

As stated previously, 55& = IN)XA = 0,558()) = 582 = 0,5802) = 5(0_01) =0, and 55{02) = 5&‘2) =0.
In terms of these power series coefficients, the divergent and discontinuous terms of the LGF are

~(=2) _ A1 AED A 2)=1AB) A1 ~0) A Q=1 A& A @1 (2)—1 A (3) A (2)—1 A (3) A (-1
GAA =A s GAA =A AYA s GAA_A AV A — A AYA AYA R

~ED _ SAEDT 5 O-1 /5T A -1
Goa =Gao =—Doo Dao A ) (16)
SO0 _ SOF _ §O-135OfF 4 2)-1 NO-1 51 {O)-1 FDF 4 (2)—-1 NO—1 (DT A (2)—1 A 3) A (2)—1
Goa = Gao = Doo Dao A —Doo DooDoo  Dao A + Doo Dpo A ATA J
A0 _ (O SO -1 51\ —1
Goo = (Doo = Do Daa DAO) )
where
@ _ _p® AN JO-1 FDF
AT = =Dyp + DaoDoo Dao -
A _ _pb pO-151 _ @ 5O-1350F ; /O 5O-1 750 F50)-1FDF
A = =DyoDoo Dao = DaoPoo DPao + PaoPoo DPoolPoo Dao s (17)
@ _ _pb ((pO-152) 1501 NO-1 350 JFO-1 70 JFO-1) FDF N O-1 5t A 5O)-1 53T
A =—=Dyo (Doo DooDoo  — Doo  PooPoo  PooLoo ) Dyo +DaoDoo Dao +DaoPoo Dao
~G RO-1 35D _ /@ RO-1 350 FO-1J3MF _ ) FO-1 50 50)-1 5@ n®
+Dx0Doo Pao = ProPoo PooPoo Pao — PaoPoo PooPoo DPao — Paa-
For crystals with inversion symmetry, the relations for some of the terms are considerably simplified:
A0 FOF _ §O-11{DF A 2)—1 A 3) A -1 3) _ pD pO-1 351 JO-1 5T
Goa = Gao = Doo Dao A ATA s AT =DyoDoo DooDoo  DPao - (18)

@ _ ph pO-1756)f , 756G FO-175DOF _ F§&
A" = DyoDoo Dro + DpoDoo DPao — Daa-

Inverse Fourier transforming the divergent terms converges slowly. To efficiently calculate the LGF in real space, we integrate
these divergent terms analytically and integrate the remaining continuous terms numerically. To facilitate analytic integration,
we expand the divergent terms in spherical harmonics for a 3D LGF and in a Fourier series for a 2D LGF. We apply a smooth
spherical cutoff function feu(k/kmax),

1 0<x <a,
fau® =132 —2(2) ;a<x <1, (19)
0 1< x
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where kp.x is the radius of a sphere inscribed in the Brillouin zone, to the divergent terms so that they and their derivatives
are zero at the Brillouin zone edge. The LGF semicontinuum correction is defined as the term remaining after subtracting the

divergent and discontinuous terms,

G (k) = Ganth) — [ —
Gl = G35 (k) = G ao(k)

GEo (k) = Goo(k) —

where we treat the semicontinuum terms through numerical
inversion and subtraction of the divergent and discontinuous
terms from Eq. (16). For small values of k (k < kpax/10),
numerical truncation error in the divergent terms dominates
the calculation. Instead of direct subtraction of the divergent
and discontinuous terms at small k, we define the leading-order
terms of the quadrants, E(lz), as

BE(k) = <

‘We then calculate the semicontinuum correction for small &k as

—23(=2)
—k 2G|
15D
—ik™ ' Gpy

G N
GOO

G¥(k) = {1 — E-'®)DU)1 ' —1}E' (k)
é(—l)o G(O) 5(0)
.7 —1 AA AA AO
e () (S5
OA

In 3D, a spherical harmonic expansion represents the angular
variation in the Green function power series. The spherical
harmonic coefficients are

Linax

Z Z Gao lelm(lz)y 23)

=0 m=—I

G, (k) =

where the series is truncated for [ > Ly,x and L. iS
chosen such that the /m components above L, are less
than 10712 of the largest Im component below L., and
Y,m(k) are the normalized real spherical harmonics for
k= (sin(0) cos(¢), sin(d) sin(¢h), cos(f)). Due to inversion
symmetry reciprocal space, for n even, only the even [
terms are nonzero, and for n odd, only the odd / terms
are nonzero. The spherical harmonic components are found
numerically by integrating over a uniform grid in ¢ and
with Gaussian quadrature in 6 [17]. Rotating back with the
eigenvectors e;.‘ and taking the inverse Fourier transform of
the divergent and discontinuous terms gives the real space
form [17]

(n) D
Gy i5(R)
Linax ~ R +E— ;
=2, Z Giajpan¥im | =—=—== | (=D
1=0 m=—1 |R+x,—x]|
PR VAR 2in ) T R
X = dk k7" feu(k [ kmax) jitk| R + Xx; — le)v
27'[2 0

(24)

kG0 — ik G (k) 4+ GAB)] Feuek/ Kmax),
— [ =ik G R + G E] Feulk/ kmax), (20)
(GOLME)) fruek/ kmax),

where j;(x) is the /th spherical Bessel function of the first kind
and V is the volume of the unit cell. The radial integrals
are calculated numerically using adaptive Gauss-Kronrod
integration [24,25]. Finally, the semicontinuum term is inverse
Fourier transformed using a uniform k-point mesh to a
tolerance of 10~7. The error in the numerical inverse Fourier
transform scales as N, : /4 for dimensionality d [18].

For a 2D LGF, such as one used to relax an infinite, straight
line defect, we expand in a Fourier series. The plane of the
2D LGF is normal to the threading vector 7 of the defect;
defines the periodicity of the defect. By summing along 7, the
Fourier transform of the LGF reduces to 2D in the Brillouin
zone normal to 7. The Fourier coefficients are

Minax

Grob) =2, Goine™. 25)

where k = (cos(0), sin(0)) and the Fourier series is truncated
at Mpnax so that components above M, are less than 10712 of
the largest component below M,,x. Due to inversion symmetry
in k space, the coefficients for even (odd) n are only nonzero
for even (odd) m. Rotating back with the eigenvectors e?ﬂ,
and taking the inverse Fourier transform of the divergent
and discontinuous terms of the 2D LGF gives the real space

form [17]

Gl 4(R)

Minax

i"A
_ G(n) 1m¢f¢+ii—2j (_ 1 )m/2 L

kmax —_
x / Ak K foa(k Kome) I KR+ 1 — 51), (26)
0

where J,,,(x) is the mth Bessel function of the first kind and
A = V|| is the area of the 2D unit cell. We then evaluate these
Bessel integrals numerically using adaptive Gauss-Kronrod
integration [24,25]. Finally, the semicontinuum term is inverse
Fourier transformed using a uniform k-point mesh to a
tolerance of 1077,

In summary, we (1) determine the acoustic-optical basis by
calculating the eigenvectors e, ;5 of the dynamical matrix at k=
0; (2) Fourier transform the force-constant matrix and rotate
the dynamical matrix into the acoustic-optical basis [Eq. (10)];
(3) determine the power series coefficients of the dynamical
matrix Df,n; ;w(k) [Eq. (15)] on an angular grid for analytic
block inversion of the divergent and discontinuous terms of
the LGF G™, (k) [Eq. (16) and Eq. (17)]; (4) determine

oo’y
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the 2D Fourier coefficients 5((7";,‘," [Eq. (25)] or 3D spherical

harmonic coefficients G [Eq. (23)]; (5) calculate the

oo’ lm

semicontinuum term 5“(1;) on a regular grid in reciprocal
space by interpolating the Fourier or spherical harmonic
expansion onto the grid and subtracting from the block inverse
of the dynamical matrix [Eq. (20) and Eq. (22)]; (6) inverse
Fourier transform the divergent and discontinuity terms into
real space analytically [Eq. (26) or (24)], numerically inverse
Fourier transform the semicontinuum terms; and (7) add all
contributions and rotate back to the original atomic basis to
get the LGF in real space. This automated algorithm directly
calculates the lattice Green function from the force-constant
matrix with controllable numerical errors for a general crystal
with any number of atoms in the crystal basis. The numerical
error scales with the number of k points Ny as N,f / d, where
d is the dimension of the system [18]. In the next section,
we determine leading-order corrections to the lattice Green
function in terms of force-constant symmetry breaking.

IV. SQUARE LATTICE MODEL

A. Single-atom unit cell

Figure 1 is a schematic of the doubled, elastically isotropic
square lattice with first- and second-nearest-neighbor radial
springs of spring constants 1 and 1/2 (§ =n =0) that
illustrates the additional terms added by a multiple-atom basis.
The single-atom lattice with lattice vectors d; = (a,0) and
d> = (0,a) has elastic constants

Ci=Cp=3 Cnp=Cu=3 Cex=3 20

This material is elastically isotropic (2C¢s = C1; — Cy) with
radial interactions for Cauchy symmetry (Ci, = Cgg); or 2D
Poisson ratio of 1/3, Young’s modulus of 4/3, and shear
modulus of 1/2. The Fourier transform of the LGF for the
single-atom case is shown in Fig. 2. The divergent and
discontinuous terms in the LGF for the single-atom square

FIG. 1. (Color online) Schematic of the two atom basis square
lattice nearest-neighbor interaction model with the spring constant
perturbations £ and 7 labeled. The unit cell is shaded in gray. Two
different asymmetries are considered: 7 describes the asymmetry
between the white-white and black-black atom interactions (along
y), and & describes the asymmetry between the white-black unit cell
spring and the white-black neighboring cell interactions—a left-right
asymmetry. The diagonal second-neighbor “bond-bending” springs
of strength 1/2 are shown in red; these springs stabilize the lattice
and produce isotropic elastic response when n = & = 0.

PHYSICAL REVIEW E 85, 066706 (2012)
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FIG. 2. (Color online) Contour plot of the Fourier transform of the
lattice Green function for an isotropic square lattice (§ = n = 0) over
the first Brillouin zone (BZ). The LGF is Hermitian, thus the bottom
left is the Hermitian conjugate of the upper right. All components
show a second-order pole at k = 0; cf. Fig. 4.

lattice are

~ > 2 —cos20 —sin20
(=2) _
¢ = 3k2a? ( —sin20 2+ cos29>’
(28)
GO®) = 1 (7—4c0s20+cos 46 0
) 0 T4+4cos20+cos46 |-

B. Doubled unit cell

Figure 1 shows the doubled square lattice with lattice
vectors d; = (2a,0) and a = (0,a) and crystal basis: X, =
(0,0) and X, = (a,0) (for “black” and “white” atoms). We
consider the same interactions as in the single-atom case.
The Fourier transform of the two-atom LGF is shown in
Fig. 3. The acoustic-acoustic quadrant, which corresponds to
the summed interactions of the black and white atoms, is the
same as the LGF for the single-atom case except for the halved
Brillouin zone. The divergent and discontinuous terms in the

LGF are
G 2 2 —cos20 —sin26
AA T 3p2,2\ —sin20 2+ cos20 )’
GUD Z GEnt o,
0A AO 29)
GO _ 1 (7—4cos20+cos 46 0
AATTTD 0 7+4 cos 20+ cos46 )’

é(o) _ 1 1 0
00 — 6 0 3)
with all other quadrants zero, and the same elastic constants
as the single-atom case.
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FIG. 3. (Color online) Contour plot of the Fourier transform of
the lattice Green function for a doubled isotropic square lattice (§ =
n = 0) over the first Brillouin zone (BZ) in the acoustic-optical (A-O)
rotated basis. The BZ is cut in half along the k, direction due to the
doubling of the lattice along the x direction. Doubling the cell also
results in the appearance of optical quadrants in the LGF. The LGF
is Hermitian, thus the bottom-left triangle is the Hermitian conjugate
of the upper-right triangle. The acoustic-acoustic quadrant, which
corresponds to the collective motion of all the atoms, corresponds to
the single-atom unit cell LGF, and has a second-order pole at k = 0;
cf. Fig. 4.

Figure 4 shows polar plots of the divergent and discon-
tinuous LGF terms. Inversion symmetry requires the acoustic-
optical quadrant to be purely imaginary; since this is a doubled
single-atom system, the acoustic-optical quadrants are zero.
The acoustic-optical quadrants correspond to the response of
the internal degrees of freedom of the system to elastic strain.
The doubled system behaves just as the single-atom system;
thus, there is no internal relaxation. The second-order pole and
the discontinuity correction in the acoustic-acoustic quadrant
are the same as the single-atom case. This is because both
cases describe the long-range elastic behavior summed over all

PHYSICAL REVIEW E 85, 066706 (2012)

A0
0
A0
1 0
(kay
O:A 004 00/
0 0 0
0,A 0,A| 0,04 0,0/
0 0
AO AO
0
AYOY
0
+ (ka)® x
O.A, O.A, 0.0, 0,0,
1
0 0 : 0
0,A] 0,A) 0,0 0,0,
0 0 0 1

FIG. 4. The directional dependence of the leading-order divergent
and discontinuous terms of the lattice Green function for a doubled
square lattice. The elastic Green function corresponds to the 1/k?
term. The optical-optical quadrant is not discontinuous because the
leading order corresponds to the inverse of the optical modes at
k = 0. The magnitude along & in the polar plots is the multiplier
for the LGF for direction k; dashed lines correspond to negative
multipliers.

atoms. The leading-order optical-optical constants correspond
to the inverse of the optical phonon frequencies at the I" point
and are not discontinuous. Since the cell is doubled along
X, the doubled system is stiffer along the xx mode than the
yy mode because the xx mode involves both bond-stretching
and bond-bending springs, but the yy mode only involves
bond-bending springs.

C. Breaking single-atom symmetry

We introduce small perturbations that break the single-atom
symmetry of the doubled lattice to produce changes in the
LGF. We break the symmetry of the black-whiteatoms by
changing the black-black spring constant to (1 + 1) and the
white-white spring constant to (1 — n) as in Fig. 1. This has
no effect on long-range elastic behavior, so the poles of the
LGF are unmodified by this perturbation. To leading order
in 7, the interaction adds a discontinuity correction in the
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A RA] RO
0 0 ] 0
Nk
AyAY AVA A0 | A0,
i
E X
AA] A0y
0 0 0
AVAY AA A0
0 0 0
+ M(ka)® x
O.A] OA] 0,0]
0 0
\@ loy{}ngf\' 0,0 0,0
a\\\ kx /: \‘/\\ kx 0 0
\\ \\‘ (/ )

FIG. 5. Leading-order divergent term corrections of the lattice
Green function for a doubled square lattice as a function of the scaled
relative spring constants 7 (black-black and white-white coupling)
and & (black-white and white-black coupling). The magnitude along
k in the polar plots is the multiplier for the LGF for direction k; dashed
lines correspond to negative multipliers.

acoustic-optical mode:
~0) _ ~OT
Goa = Gao

o 0 0
T 12\ 2sin20—sin40 —3+4 cos 20+ cos 40
+ 0. (30)

The acoustic-acoustic discontinuity term is modified at second
order in 7. Figure 5 shows polar plots of these perturbations.
The acoustic-optical quadrants of the LGF correspond to the
response of internal modes to collective motion. However,
breaking the black-white atom symmetry alone is not enough
to generate internal relaxation in response to long-range elastic
waves as there is no adjustment to the 1/k> or i / k poles of the
LGF. The leading-order adjustment occurs in the discontinuity
correction, which only depends upon the direction of k. Thus,
there is an angular-dependent change due to the different
stiffnesses of the black-black and white-white interactions.

PHYSICAL REVIEW E 85, 066706 (2012)

To break symmetry and introduce internal relaxation, we
set the in-cell black-white spring constant to (1 4 &) and the
white-black spring constant to neighboring cells to (1 — &) as
shown in Fig. 1; this is a left-right asymmetry. This spring
constant change causes a change in the long-range elastic
behavior of the model. The C,; elastic constant becomes, to
second order, 3/2 — £2/12 due to internal relaxation of the
atoms in the unit cell in response to strain, while Cy, remains
3/2. Linear order in £ introduces the acoustic-optical i / k pole:

2&i cos O ( —2+4cos 26 sin26

~ED . mEDE
GOA - GAO - 9ak 0 0

) + O(&?).
(31)

At second order in &, there are changes in the acoustic-
acoustic second-order pole and discontinuity correction, and
the optical-optical discontinuity correction. Figure 5 shows
polar plots of the first-order perturbations. By breaking the
in-cell symmetry, an imaginary term now appears in the
acoustic-optical quadrants of the LGF. This i/k pole comes
from internal relaxation of atoms in the unit cell due to a
long-wavelength elastic wave. Breaking the internal symmetry
causes the black and white atoms to respond differently to a
long-range strain and shift from their strained simple square
lattice sites in response. This term is important for describing
the internal response of a multiatom basis crystal and does not
appear in the single-atom Bravais lattice case.

D. The simple square lattice in real space

Figure 6 shows the real space LGF for the single and
doubled unit cells in crystal space by taking the inverse
Fourier transform. Without interaction perturbations, both are
identical to 1077 for a 40 x 80 k-point mesh for the doubled
cell and an 80 x 80 k-point mesh for the single cell. Since

006
XX
3 il [l
> 0
-3 [ [l
006
0.61
&
o o
- J— 0 3 g ol
X

FIG. 6. (Color online) LGF in real space for an isotropic square
lattice (¢ = n = 0). The LGF is only defined at crystal sites. Red
(thin lines) and blue (thick lines) coloring, respectively, corresponds
to negative and positive values of the LGF at those crystal sites. The
two-atom LGF is identical to the single-atom LGF at the crystal sites
to 107 for a 80 x 80 (40 x 80) k-point mesh for the single- (double-)
atom cell.
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FIG. 7. (Color online) Change to the black atom LGF due to the &
(black-white and white-black coupling) and n (black-black and white-
white coupling) perturbations. The LGF is only defined at crystal
sites, with red (thin lines) and blue (thick lines) coloring, respectively,
corresponding to negative and positive values. The change in LGF
for white atoms is opposite to the change for black atoms.

both have the same interactions, both methods yield the same
harmonic response in a different basis. The LGF plot shows the
linear relationship between force and displacement for atoms

PHYSICAL REVIEW E 85, 066706 (2012)

separated by R + X; — X ;. The elastic LGF is logarithmic in
IR+ % — X ;| and dominated by the inverse transform of the
k=2 pole at long range.

To first order, neither the n or & perturbations modify
the k=2 pole of the LGF. Therefore, at long range in real
space, the LGF is still dominated by the original isotropic
elastic behavior. Considering the inverse transforms of the
perturbed interactions, the n perturbation results in opposite
yy response for the black-black and white-white interactions
as expected since itis a change in the yy spring strengths. The &
perturbation results in opposite x x response for the black-white
and white-black interactions. The effects of & are seen in the
ik~! pole and only visible at short to intermediate range with
a decay of 1/R, while 7 first appears in k° component of the
LGEF, and is only seen at short range since it decays as 1/R>.
Figure 7 shows the first-order real-space response to & and n
perturbations.

V. CONCLUSIONS

The direct, automated algorithm can efficiently and accu-
rately calculate the lattice Green function for general crystals
with more than one atom in the unit cell basis and arbitrary
interactions. Additional terms describing the response of
internal degrees of freedom of the system corresponding to
optical modes appear in this formalism that did not appear
in a treatment for a Bravais lattice. Including the additional
optical terms of the lattice Green function extends the previous
automated calculation of the LGF for long-range interactions
[17] to general crystals. This technique efficiently calculates
defect structures in HCP metals such as Mg [19], Ti [20],
as well as semiconductors and intermetallics using flexible
boundary condition methods [7]. In particular, reducing the
number of atoms required for accurate calculation of isolated
dislocation core geometries provides efficient use of density
functional theory.

ACKNOWLEDGMENTS

This research was sponsored by NSF through the GOALI
program, Grant No. 0825961, and with the support of General
Motors, LLC. The code is publicly available due to hosting
support of the NSF MatForge project [26].

[1] P. Haasen, Physical Metallurgy, 3rd ed. (Cambridge University
Press, Cambridge, 1996) translated by J. Mordike.

[2] A. N. Stroh, J. Math. Phys. 41, 77 (1962).

[3] D. J. Bacon, D. M. Barnett, and R. O. Scattergood, Prog. Mater.
Sci. 23, 51 (1980).

[4] J. E. Sinclair, P. C. Gehlen, R. G. Hoagland, and J. P. Hirth, J.
Appl. Phys. 49, 3890 (1978).

[5] R. Thomson, S. J. Zhou, A. E. Carlsson, and V. K. Tewary, Phys.
Rev. B 46, 10613 (1992).

[6] L. M. Canel, A. E. Carlsson, and R. Thomson, Phys. Rev. B 52,
158 (1995).

[7] C. Woodward and S. Rao, Phys. Rev. Lett. 88, 216402 (2002).

[8] S. Rao, C. Hernandez, J. P. Simmons, T. A. Parthasarathy, and
C. Woodward, Philos. Mag. A 77, 231 (1998).

[9] L. H. Yang, P. Soderlind, and J. A. Moriarty, Philos. Mag. A 81,
1355 (2001).

[10] T. A. Arias and J. D. Joannopoulos, Phys. Rev. Lett. 73, 680
(1994).

[11] S. L. Frederiksen and K. W. Jacobsen, Philos. Mag. 83, 365
(2003).

[12] J. R. K. Bigger, D. A. Mclnnes, A. P. Sutton, M. C. Payne,
L. Stich, R. D. King-Smith, D. M. Bird, and L. J. Clarke, Phys.
Rev. Lett. 69, 2224 (1992).

[13] S. Ismail-Beigi and T. A. Arias, Phys. Rev. Lett. 84, 1499
(2000).

[14] V. K. Tewary, Adv. Phys. 22, 757 (1973).

[15] I. R. MacGillivray and C. A. Sholl, J. Phys. F 13, 23
(1983).

066706-8


http://dx.doi.org/10.1016/0079-6425(80)90007-9
http://dx.doi.org/10.1016/0079-6425(80)90007-9
http://dx.doi.org/10.1063/1.325395
http://dx.doi.org/10.1063/1.325395
http://dx.doi.org/10.1103/PhysRevB.46.10613
http://dx.doi.org/10.1103/PhysRevB.46.10613
http://dx.doi.org/10.1103/PhysRevB.52.158
http://dx.doi.org/10.1103/PhysRevB.52.158
http://dx.doi.org/10.1103/PhysRevLett.88.216402
http://dx.doi.org/10.1080/01418619808214240
http://dx.doi.org/10.1080/01418610108214446
http://dx.doi.org/10.1080/01418610108214446
http://dx.doi.org/10.1103/PhysRevLett.73.680
http://dx.doi.org/10.1103/PhysRevLett.73.680
http://dx.doi.org/10.1080/0141861021000034568
http://dx.doi.org/10.1080/0141861021000034568
http://dx.doi.org/10.1103/PhysRevLett.69.2224
http://dx.doi.org/10.1103/PhysRevLett.69.2224
http://dx.doi.org/10.1103/PhysRevLett.84.1499
http://dx.doi.org/10.1103/PhysRevLett.84.1499
http://dx.doi.org/10.1080/00018737300101389
http://dx.doi.org/10.1088/0305-4608/13/1/005
http://dx.doi.org/10.1088/0305-4608/13/1/005

DIRECT CALCULATION OF THE LATTICE GREEN ...

[16] V. K. Tewary, Phys. Rev. B 69, 094109 (2004).

[17] D. R. Trinkle, Phys. Rev. B 78, 014110 (2008).

[18] M. Ghazisaeidi and D. R. Trinkle, Phys. Rev. E 79, 037701
(2009).

[19] J. A. Yasi, T. Nogaret, D. R. Trinkle, Y. Qi, L. G. Hector Jr., and
W. A. Curtin, Modelling Simul. Mater. Sci. Eng. 17, 055012
(2009).

[20] M. Ghazisaeidi and D. R. Trinkle, Acta Mater. 60, 1287
(2012).

[21] M. Ghazisaeidi and D. R. Trinkle, Phys. Rev. B 82, 064115
(2010).

PHYSICAL REVIEW E 85, 066706 (2012)

[22] M. Born and K. Huang, Dynamical Theory of Crystal Lattices
(Oxford University Press, London, 1954).

[23] A. A. Maradudin, E. W. Montroll, and G. H. Weiss, Theory
of Lattice Dynamics in the Harmonic Approximation, 2nd ed.,
Solid State Physics Supplement, Vol. 3 (Academic, New York,
1971).

[24] M. T. Heath, Scientific Computing: An Introductory Survey, 2nd
ed. (McGraw-Hill, 2002).

[25] A. S. Kronrod, Nodes and Weights of Quadrature Formulas
(Consultants Bureau, New York, 1965).

[26] http://matforge.org/redmine/projects/lgf

066706-9


http://dx.doi.org/10.1103/PhysRevB.69.094109
http://dx.doi.org/10.1103/PhysRevB.78.014110
http://dx.doi.org/10.1103/PhysRevE.79.037701
http://dx.doi.org/10.1103/PhysRevE.79.037701
http://dx.doi.org/10.1088/0965-0393/17/5/055012
http://dx.doi.org/10.1088/0965-0393/17/5/055012
http://dx.doi.org/10.1016/j.actamat.2011.11.024
http://dx.doi.org/10.1016/j.actamat.2011.11.024
http://dx.doi.org/10.1103/PhysRevB.82.064115
http://dx.doi.org/10.1103/PhysRevB.82.064115
http://matforge.org/redmine/projects/lgf

