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Free-energy calculation via mean-force dynamics using a logarithmic energy landscape
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A method for free-energy calculation based on mean-force dynamics (fictitious dynamics on a potential of
mean force) is presented. The method utilizes a logarithmic form of free energy to enhance crossing barriers on
a free-energy landscape, which results in efficient sampling of “rare” events. Invoking a conserved quantity in
mean-force dynamics, free energy can be estimated on-the-fly without postprocessing. This means that an estimate
of the free-energy profile can be locally made in contrast to the other methods based on mean-force dynamics
such as metadynamics. The method is benchmarked against conventional methods and its high efficiency is
demonstrated in the free-energy calculation for a glycine dipeptide molecule.
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I. INTRODUCTION

Reliable and efficient techniques for sampling energy
landscapes are crucial to obtain thermodynamic properties
and free-energy profiles of complex systems using molecular
simulations. This is particularly significant in biosystems that
usually exhibit rugged energy landscapes [1]. To tackle this
problem, methods that sample “rare” events efficiently, often
referred to as biased sampling approaches, have been widely
used [2]. Biased sampling such as umbrella sampling [3]
enables us to survey an energy landscape more than the sam-
pling based on the usual Boltzmann weight. Conformations
(or states) that are rarely realized in a normal thermostatted
MD run can be easily sampled using biased sampling and
thus it has been applied to a variety of complex systems [2].
Biased sampling is typically used for exploring potential-
energy landscapes. It however can also be applied to exploring
free-energy landscapes using “mean-force dynamics.”

Recently, to efficiently obtain free-energy profiles with
respect to a set of collective variables {X1,...,XN } (≡X),
mean-force dynamics (MFD) has been proposed [4] in which
X are treated as dynamical variables whose time evolution is
determined by dynamical equations of motion using “mean
force” (MF). MF is the force acting on X and is a slope of free
energy F (X) (or “potential of mean force”).

Metadynamics can be seen as a free-energy calculation
method based on MFD utilizing biased sampling [5]. In this
method, X are driven by MF and the additional force derived
from a time-dependent potential V (t), the latter being the key
to implementing the biased sampling of F (X). V (t) works as a
biased potential so that X show a random walk without being
trapped in local free-energy minima, compensating its original
free-energy landscape. F (X) is then estimated as −V (t → ∞)
once a flat free-energy surface (for X) is obtained.
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Adiabatic free-energy dynamics (AFED) [4,6] or
temperature-accelerated MD (TAMD) [7] are also free-energy
calculation methods based on MFD. Although the normal
Boltzmann distribution e−F/kBT

′
is designed to be sampled

in these methods, the temperature T
′

for X is artificially set
to be high enough to enhance crossing energy barriers on
a free-energy landscape, which is equivalent to the uniform
scaling of the free energy.

It has been demonstrated that both the methods are of use in
constructing free-energy profiles of complex systems [5,6,8,9].
However careful adjustments of the parameters used in the
methods are necessary, particularly in the former case [5].
Furthermore, an estimate of the free-energy profile in a certain
region does depend on how accurately the “whole” free-energy
landscape is sampled, which might degrade the efficiency in
free-energy calculations.

In this paper, we introduce a method for free-energy
calculation based on MFD. The method is developed to ideally
meet the following requirements: (1) Realizing rare events by
simple modification of the free-energy landscape, (2) the free
energy can be locally estimated, and (3) the free energy is
calculated on-the-fly without postprocessing. To meet (1), we
employ a logarithmic form of free energy as the potential
energy function in MFD. In the following, we show how the
method, logarithmic mean-force dynamics (LogMFD), yields
free-energy profiles satisfying these three requirements.

II. THEORY

We consider the following equations of motion (EOM) for
the dynamical variable Xi ,

Mi

..

Xi = −
(

αγ

αF + 1

)
∂F

∂Xi

− MiẊi η̇, (1)

Q
..
η =

(∑
i

MiẊ
2
i − NkBTX

)
, (2)

where Mi is the fictitious mass for Xi , η is the thermostat
variable in the Nosé-Hoover thermostat [10] that controls
the temperature for Xi , TX, and Q is the mass for η.
The force acting on Xi comes from the logarithmic form
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of F (X), γ log(αF + 1), where α and γ are the positive
parameters we set so as to efficiently sample the landscape
of F (X) (for simplicity, γ can often be taken to be 1/α).
To avoid (αF + 1) < 1, F is shifted by c, if necessary, so that
F = F

′ + c > 0 for the whole X range we focus on. −∂F/∂Xi

is the mean force estimated by the following relation:

∂F (X0)

∂Xi

= 1

Z

∫
dq

[
∂�(q)

∂Xi

]
Xi=X0

e−�(q)/kBT

� 1

τ

∫ τ

0
dt

[
∂�(q)

∂Xi

]
Xi=X0

, (3)

where

Z =
∫

dqe−�(q)/kBT , (4)

and �(q) is the potential energy of the system, being a function
of particles’ positions q. As discussed in detail in Ref. [4], the
right-hand side of Eq. (3) is assumed to be obtained by a
short-time average of ∂�/∂Xi in a thermostatted (canonical)
MD simulation. Thus, a short canonical MD run with fixed X
is performed each time X is updated by Eqs. (1) and (2) (each
MFD step may consist of ∼5–100 MD steps). X itself can be
either dependent on or independent of q [11]. In the former
case, a harmonic restraining potential is often used to fix X in
the short MD run as 1/2k[X(q) − X̃]2, where k is the spring
constant. X̃ are independent of q and are treated as dynamical
variables instead of X.

We note that in metadynamics and AFED (TAMD), X̃ and q
evolve simultaneously with the same time step using large Mi ,
which ensures their adiabatic separation as in the Car-Parinello
MD [12]. This can also be followed in LogMFD. A multiple
time scale algorithm such as r-RESPA [13] is particularly
effective in this case. One however should take notice that
forces on q and X̃ are derived from different energy functions
in LogMFD, while they are from the same energy function in
metadynamics and AFED (TAMD).

F (X) at t should be known to calculate the force on Xi [see
Eq. (1)], while F (X) itself is the property we are to obtain.
This seemingly critical problem can be obviated by invoking
a conserved quantity, ĤMFD,

ĤMFD =
N∑
i

1

2
MiẊ

2
i + γ log[αF (X) + 1]

+ 1

2
Qη̇2 + NkBTXη, (5)

which necessarily exists when a Nosé-Hoover type thermostat
is employed. [ĤMFD in Eq. (5) applies to the case where a
single Nosé-Hoover thermostat is used. ĤMFD should contain
additional terms when multiple thermostats are used. See
Ref. [14] for details.] F (X) at t is then obtained from Eq.
(5) as

F (X) = 1

α

{
exp

[
1

γ

(
ĤMFD −

∑
i

1

2
MiẊ

2
i

− 1

2
Qη̇2 − NkBTXη

)]
− 1

}
. (6)

We do not need to set c, but instead ĤMFD needs to be set at
the beginning of a MFD run to ensure F (=F

′ + c) � 0. This
means that ĤMFD should be chosen to satisfy the following,(

ĤMFD −
∑

i

1

2
MiẊ

2
i − 1

2
Qη̇2 − NkBTXη

)
≡ Flog � 0.

(7)

Since the kinetic energy of Xi and the terms associated with
the thermostat variables are easily estimated for a preset
temperature TX, one can roughly estimate an appropriate value
of ĤMFD. In order to take full advantage of the logarithmic
form, it is desirable that Flog/γ is close to 0 at X = X

′

where F (X
′
) is the bottom of the free-energy landscape, i.e.,

F (X
′
) ∼ 0. Unfortunately, we do not know in general the exact

position of X
′
before running a MFD calculation. However the

LogMFD results are not sensitive to the choice of ĤMFD; thus
only a rough estimate of ĤMFD is sufficient.

Equation (6) clearly shows that a free-energy profile is
constructed on-the-fly (in principle) as X evolves in a LogMFD
run. If MF is accurately calculated using Eq. (3), a reasonable
estimate of F (X) is obtained from Eq. (6). It may not be
valid, however, to regard ĤMFD as a constant [Eq. (6) may lose
its validity], unless MF is well estimated. We expect that in
practice, an average of more than one F (X) trajectories will
give a reasonable estimate of F (X).

III. RESULTS AND DISCUSSION

We now demonstrate how the logarithmic form enhances
energy barrier crossing. To this end, we perform a MD
simulation for a one-dimensional one-particle system using
Eqs. (1) and (2) which can be applied to normal MD as well
as MFD. Xi and F are in this case replaced with q and �,
respectively, where q is the particle position and � is the
double-well potential, �(q) = 3(q2 − 1)2. Figure 1(a) shows
how the energy barrier is reduced by the logarithmic form.
It is clearly seen that as α increases keeping γ = 1/α, the
barrier height is substantially lowered. The time evolution
of q [Fig. 1(b)] shows that the logarithmic MD trajectory
samples a wider range of q and realizes barrier crossing more
frequently than the standard canonical MD trajectory. The
notable point is that correct canonical distributions can be
easily recovered by reweighting [15]. As shown in Fig. 1(c),
the position distribution P (q) recovered from the logarithmic
MD result using a reweighting technique exhibits two peaks
with almost the same height, while the standard canonical MD
fails to reproduce the double peaks, which again illustrates the
advantage of the logarithmic form.

Next, we show how to construct the free-energy profile
using LogMFD. We consider the free-energy profile of a
glycine dipeptide molecule in vacuum at 300 K along the
dihedral angle ψ , F (ψ), constraining another dihedral angle
φ at −80 degrees (see Fig. 2). ψ is the collective variable but
is dependent on q. We thus introduce a restraining potential
and an auxiliary variable X̃ that is treated as the dynamical
variable as in metadynamics or TAMD. Specifically, two
harmonic potentials were used to keep the dihedral angles
at desired values; one is 1/2k[ψ(q) − X̃]2 and another is
1/2k[φ(q) − φ0]2, where k is 100 kcal/(mol rad2) and φ0 is
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FIG. 1. (Color online) (a) Overall shape of � = 3(q2 − 1)2

(normal) and its logarithmic form, γ log(α� + 1) (α = 1 and 2 with
γ = 1/α). (b) Time evolution of q in the logarithmic MD (with
α = 1.3 and γ = 0.5) and the standard MD simulations. The mass
and the temperature are set to 1 and the time step is 0.0025. Two
Nosé-Hoover thermostats are recursively attached to the particle,
which ensures better sampling of the canonical distribution than
the linearly chained Nosé-Hoover thermostats [14]. (c) Position
distribution from the logarithmic MD and standard MD trajectories.
Its canonically reweighted distribution is also shown.

−1.3962634 in radians (−80 degrees). To efficiently sample
the whole range of ψ , we used the following parameter
set: α = 3, γ = 1/α, ĤMFD = 1, and M = 106. Although
TX need not be the same as the temperature for q, both
the temperatures were maintained at 300 K by attaching the
recursive Nosé-Hoover (RNH) thermostat [14] to each particle
and X̃, with each containing two thermostats [16]. The glycine
dipeptide molecule was described by the CHARMM 22

FIG. 2. (Color online) Structure of a glycine dipeptide molecule
in vacuum.

force field [17] and the EOM for q were integrated with a
time step of 0.5 fs. Using the r-RESPA algorithm, MF on X̃

was updated every 20 MD steps; i.e., MF on X̃ was obtained
by averaging k(ψ − X̃) over 20 MD steps (we may perform
MFD runs without r-RESPA, in which M and the time step
for X̃ can be chosen independently of those for q). The MFD
run consisted of 20 000 MFD steps where each MFD step was
updated by a 20 MD step calculation; thus 4 × 105 MD steps
in total were calculated.

We also performed thermodynamic integration (TI) [2]
to benchmark LogMFD against TI, which demonstrates the
efficiency and accuracy of the LogMFD method. The TI
calculation was performed at 100 evenly spaced points in the
ψ range of [−π : π ]. At each point the MF (slope of F ) was
evaluated by averaging k(ψ − X̃) over 30 000 MD steps using
the RNH thermostat. This number of MD steps is found to
be necessary to obtain a fully converged MF. (Note that the
convergence rate is found to be worse when the Nosé-Hoover
chain thermostat [18] is used instead of the RNH thermostat.)
As in the LogMFD calculation, harmonic potentials with the
same force constant k were used to fix φ to −1.3962634 and
ψ to each grid point.

Figure 3 shows the free-energy profile along ψ while
keeping φ = −1.3962634. The solid (red) line indicates the
result by LogMFD, while filled (green) circles denote the
result by TI. It is remarkable that both the results are almost
coincident with each other. X̃ in this LogMFD run gradually
moved from X̃ = 1 toward higher X̃ and overcame the hill
around ψ ∼ −2 after passing the periodic boundary, and then
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FIG. 3. (Color online) Free-energy profile of a glycine dipeptide
molecule in vacuum as a function of the dihedral angle ψ while
constraining the dihedral angle φ at −1.3962634 (−80 degrees).
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FIG. 4. (Color online) Same as Fig. 3 except that the profiles are
obtained by AFED using various parameter sets.

came back to the initial position. Since ĤMFD was nicely
conserved in this run, a single sweep over the whole ψ range
was sufficient to construct F (ψ) with high accuracy. A longer
MFD trajectory in which X̃ sweeps repeatedly the whole ψ

range (including stochastic changes of direction due to the
perturbation by the thermostat) was found not to be necessary
in the present case. F (ψ) shows the minimum at ψ ∼ 1 (57.3◦)
and the maximum at ψ ∼ −2 (−114.6◦). The free-energy
barrier is thus about 9.3 kcal/mol, which is much larger than
kT of 300 K indicating the effectiveness of the logarithmic
form. What should be stressed here is that only ∼13% of
the computation cost for the TI calculation was needed for
the LogMFD calculation to construct F (ψ) maintaining the
same accuracy. This clearly shows the high efficiency of the
LogMFD method for free-energy calculation.

In addition to TI, AFED was also performed for the same
system and F (ψ) thus obtained is shown in Fig. 4. Similar to
the LogMFD calculation, the MF was calculated by averaging
k(ψ − X̃) over 20 MD steps. We tried several parameter sets
for the temperature and mass of X̃ which are tuned to enhance

barrier crossing [4]. Although long MFD runs (6 × 106 MD
steps in total) were carried out, none of the parameter sets used
in the AFED calculation succeeds in reproducing F (ψ) with
the same accuracy as in LogMFD or TI. It is seen that F (ψ)
around the maximum (ψ ∼ −2) is particularly constructed
with less accuracy. This indicates that correct sampling of that
region is quite difficult only by increasing the TX (this is not
due to insufficient MFD steps as the profile obtained using
4 × 106 MD steps is almost the same as shown in Fig. 4). It
is thus strongly indicated that techniques to effectively reduce
energy barriers such as a logarithmic form are highly desirable
in free-energy calculation based on MFD.

We have attempted several parameter sets for α, M , and TX

in the LogMFD calculations and found that the LogMFD result
is not sensitive to the parameter sets as long as the displacement
of X̃ at each MFD step is small enough to ensure the adiabatic
separation. It should be remarked that while very large
α (= 1/γ ) would be of use to enhance crossing energy barriers,
it demands extremely precise calculations to reduce numerical
errors originated from the logarithmic (exponential) form. In
the present system, α >∼ 5 is found not to be necessary.

IV. CONCLUSION

We have proposed the logarithmic mean-force dynamics
for free-energy calculation. The method enables us to easily
sample rare events and to calculate free-energy profiles locally,
showing that free-energy profiles can be obtained on-the-fly
without any postprocessing. The LogMFD method thus allows
us to perform remarkably efficient free-energy calculations,
which has been demonstrated by applying the method to
a glycine dipeptide molecule making a comparison with
conventional TI and AFED methods. It is also worth noting
that although TI may not be effective in constructing more than
one-dimensional free-energy profiles, LogMFD can easily
handle multidimensional free-energy landscapes.

We have examined the effect of the parameter sets used
in LogMFD and found that the results are not sensitive to the
choice of the parameter sets. We will discuss more details about
the protocol for choosing the parameters and multidimensional
free-energy construction in LogMFD elsewhere.
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