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Numerical convergence of the self-diffusion coefficient and viscosity obtained
with Thomas-Fermi-Dirac molecular dynamics
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Computations of the self-diffusion coefficient and viscosity in warm dense matter are presented with an
emphasis on obtaining numerical convergence and a careful evaluation of the standard deviation. The transport
coefficients are computed with the Green-Kubo relation and orbital-free molecular dynamics at the Thomas-
Fermi-Dirac level. The numerical parameters are varied until the Green-Kubo integral is equal to a constant in
the t → +∞ limit; the transport coefficients are deduced from this constant and not by extrapolation of the
Green-Kubo integral. The latter method, which gives rise to an unknown error, is tested for the computation of
viscosity; it appears that it should be used with caution. In the large domain of coupling constant considered,
both the self-diffusion coefficient and viscosity turn out to be well approximated by simple analytical laws using
a single effective atomic number calculated in the average-atom model.
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I. INTRODUCTION

Viscosity and mutual diffusion are important input proper-
ties for treating the problem of interface stability which can
occur in particular in high-density high-temperature plasmas
[1]. A first step toward improving the computation of these
transport coefficients is to address self-diffusion and viscosity
of pure elements in the same thermodynamic conditions. High-
density high-temperature plasmas are in a thermodynamic
state where they are a complex mixture of various particles
(atoms, ions, electrons, molecules in a transient state). In such
a situation where it is not possible to describe the particles
and their interactions a priori, first-principles simulations,
regarding a plasma as a mixture of electrons and nuclei, are
highly useful to predict transport coefficients.

In quantum molecular dynamics (QMD), which treats the
nuclei classically and the electrons quantum mechanically
through finite-temperature density-functional theory [2], the
only approximation lies in the exchange-correlation func-
tional. QMD has been used for the determination of self-
diffusion coefficients and viscosities [1,3–8]. Unfortunately,
because of the Fermi-Dirac distribution of electronic quan-
tum states, QMD is generally restricted to relatively low
temperatures. In order to avoid the above limitation in the
high-temperature regime, it is possible, with a semiclassical
treatment of electrons (and a classical treatment of nuclei, as
with QMD), to use orbital-free molecular dynamics (OFMD)
in which the kinetic electronic free energy is a local functional
of the electronic density. OFMD can be used at high tem-
perature and, being orbital free, is relatively computationally
cheap. When the exchange-correlation contribution is taken
into account in the local-density approximation and the kinetic
electronic free energy is expressed with the Thomas-Fermi
approximation [9,10], OFMD is generally said to be applied
at the Thomas-Fermi-Dirac level and gives rise to Thomas-
Fermi-Dirac molecular dynamics (TFDMD); if the exchange-
correlation contribution is omitted, the approach is called
Thomas-Fermi molecular dynamics (TFMD).

*Corresponding author: luc.kazandjian@cea.fr

TFMD was first used by Zérah et al. [11] to determine self-
diffusion coefficients of hydrogen. More recently, TFDMD
has been used to calculate self-diffusion coefficients and
viscosities of heavier elements and of mixtures [1,7,8,12–14].
They are generally calculated through the Green-Kubo re-
lation. Unlike the self-diffusion coefficient, whose statistical
accuracy is improved by averaging over the particles, viscosity
depends on the entire system and needs long simulations to
gain statistical accuracy. In order to shorten the length of
simulations, some authors [1,7,8] have proposed to extrapolate
the off-diagonal stress tensor autocorrelation function in the
t → +∞ limit, which leads to an unknown error for the
viscosity; the same procedure is also sometimes applied
to the self-diffusion coefficient [1]. The main purpose of
this paper is to revisit the numerical convergence of the
self-diffusion coefficient and viscosity and to show, in the
framework of TFDMD and in a large domain of coupling
constant, that these transport coefficients and their statistical
errors can be computed without any extrapolation process. The
results thus obtained will be compared to simple analytical
models.

The remainder of this paper is organized as follows.
Section II describes the TFDMD formalism and the pre-
scriptions for computing the transport coefficients. Section III
indicates how numerical convergence is obtained, presents
various graphs of variation of the transport coefficients with
respect to the numerical parameters, and provides a few
tests of the extrapolation approach. Section IV compares the
results obtained to those given by simple analytical models.
Section V presents our conclusions. Atomic units are used
unless otherwise stated.

II. FORMALISM

A. Thomas-Fermi-Dirac molecular dynamics

Simulations by TFDMD are performed with the electronic
structure package ABINIT [15,16]. The system is constructed
by replication of a finite sample of N atoms in a basic cubic
reference cell. The dynamics of the nuclei, located at the
position vectors Ri , is driven by nuclear Coulomb interactions
and by an effective potential Fe[n(r); {Ri}] equal to the
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electronic free energy [13]; for given Ri’s and thermodynamic
conditions, Fe is a functional of the electronic density n(r).
In the Thomas-Fermi-Dirac method, at given volume V ,
temperature T , and position vectors Ri , the electronic density
is obtained by minimizing the following functional under the
constraint of charge neutrality:

Fe[n(r); {Ri}] =
∫

F0(n)dr +
∫

Fxc(n)dr

+ 1

2

∫ ∫
n(r)n(r′)
|r − r′| dr dr′ +

∫
n(r)v(r)dr,

(1)

where F0(n) is the kinetic electronic free energy per unit
volume at electronic density n, Fxc(n) is the exchange-
correlation contribution to the free energy per unit volume,
and v(r) is the external potential acting on the electrons (in the
present case, it is due to the nuclei).Fxc(n) is taken equal to the
sum of the exchange energy of the electron gas at T = 0 K [10]
and of the correlation energy of the unpolarized electron gas
at T = 0 K proposed by Perdew and Zunger [17].

At each time step, for given Ri’s, the local electronic density
is obtained by minimizing Fe[n; {Ri}] under the constraint of
charge neutrality, and the forces acting on the nuclei are com-
puted. The nuclei are then moved in the isokinetic ensemble
[18,19]; other statistical ensembles can be used but the isoki-
netic ensemble allows one to regard temperature as exactly
known. For given Ri’s, the stress tensor is obtained as the
derivative of the total free energy with respect to strain, as
explained by Nielsen and Martin [20], with due simplification
of the kinetic term in the Thomas-Fermi framework.

In the ABINIT code, electronic density is expressed as an
expansion on a periodic plane-wave basis; the number of
terms in this expansion is chosen with the cutoff energy ecut.
The divergence of the electronic density in the neighborhood
of the nuclei is suppressed by replacing the Coulombic
nucleus-electron interaction by a regularized potential
constructed, at each thermodynamic condition, as explained by
Lambert et al. [21]; as a result, the nucleus-electron interaction
is no longer Coulombic below the cutoff radius rcut and it
must be verified that, as rcut is lowered, a result independent
of rcut is obtained [22]. Besides the cutoff energy ecut and the
cutoff radius rcut characterizing the regularized potential, the
main numerical parameters intervening in the ABINIT code are
the convergence parameter δEtol for the minimization of Fe,
the time step �t used to displace the nuclei, the number nstep

of time steps of the simulation (after the system has reached
an equilibrium), and the number N of nuclei in the basic
reference cell [22].

B. Transport properties

The self-diffusion coefficient is computed from the velocity
autocorrelation function by the Green-Kubo formula

D = lim
t→+∞ DGK(t), (2)

DGK(t) = 1

3N

N∑
i=1

∫ t

0
< vi(τ ) · vi(0) > dτ, (3)

where vi(τ ) is the velocity of nucleus i at time τ , and an
average over the particles is performed to improve statistical
precision [23]. In Eq. (3) and in Eq. (5) below, we use
the angular bracket notation to represent an average over
many time origins with each origin taken from a system at
equilibrium [23].

The viscosity η is computed from the autocorrelation
function of the off-diagonal components of the stress tensor
by the Green-Kubo formula [23,24]

η = lim
t→+∞ ηGK(t), (4)

ηGK(t) = 1

3V kBT

∑
α>β

∫ t

0
< σαβ(τ ) σαβ(0) > dτ, (5)

σαβ(t) =
N∑

i=1

mi viα(t) viβ(t) +
N∑

i=1

Riα(t) fiβ(t), (6)

where mi is the mass of nucleus i, viα is the α component
of vi , Riα is the α component of the position vector Ri of
nucleus i, fiβ is the β component of the force fi exerted
on nucleus i, V is the volume of the basic cell, kB is the
Boltzmann constant, and T is the temperature. The stress
tensor involves the entire system and not only one particle; as a
result, unlike the case of self-diffusion, the statistical precision
of viscosity cannot be improved by averaging over the N

nuclei.
The practical computation of DGK(t) and ηGK(t) is now

described. The trajectory of length (nstep − 1)�t taken into
account in the calculation of DGK(t) and ηGK(t) is obtained
after an equilibration phase of 2000 time steps. XD(k�t ; n�t)
and Xη(k�t ; n�t) are defined by

XD(k�t ; n�t) = 1

3N

N∑
i=1

∫ n�t

0
vi(τ + k�t) · vi(k�t) dτ,

(7)

Xη(k�t ; n�t)

= 1

3V kBT

∑
α>β

∫ n�t

0
σαβ(τ + k�t) σαβ(k�t) dτ, (8)

where k and n are positive integers and the integrals are
calculated with the trapezoidal rule.

DGK(t) and ηGK(t) are computed with two-stage sampling
[23]: For Y = D or η and for a given n, the XY (k�t ; n�t)
are divided into M equally long consecutive segments and the
value retained for each segment is the average of the original
values. If the segments are sufficiently long, DGK(t) and ηGK(t)
are thus sought from a random sample of M results. As a result
of two-stage sampling, the computation of DGK(t) and ηGK(t)
is performed as follows:

YGK(n�t) = 1

nstep2

nstep2−1∑
k=0

XY (k�t ; n�t), (9)

where Y = D or η depending on whether D or η is calculated,
and a single value of nstep2 is used for all n [so that the statistical
accuracy of YGK(n�t) does not depend on n through nstep2].
We have chosen nstep2 = nstep/2 (which implies n < nstep/2).
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FIG. 1. (Color online) DGK(t) for B1. The numerical parameters
are N = 300, �t = 12.53 a.u., ecut = 50 Ha, δEtol = 0.28 Ha, rcut =
0.54 rWS, and nstep = 6000. The horizontal line indicates the domain
of time used to calculate D and its standard deviation (written in
parentheses). The error bars, representing the standard deviation, are
displayed at each t (hence the area around the curve).

The standard deviation resulting from the above two-stage
sampling is [23]

σ [YGK(n�t)] = 1√
M(M − 1)

√√√√ M∑
j=1

[YGK(n�t) −Zj (n�t)]2,

(10)

Zj (n�t) = 1

L

k=ksup(j )∑
k=kinf(j )

XY (k�t ; n�t), (11)

where L [L = ksup(j ) − kinf(j ) + 1] is the number of time
steps (calculated for each n) in a segment, kinf(j ) is the first time
step of segment j , and ksup(j ) is the last time step of segment
j . The length of the segments, and therefore the value of M , is
evaluated at each n by computing a time correlation function
of the XY (k�t ; n�t), with 0 � k < nstep2, and retaining the
time at which the correlation function first cancels.

III. RESULTS

We apply the formalism described above to the cases
given in Table I. B1 and B2 designate Boron 10 at two
different thermodynamic conditions. We focus on B1 for the
presentation of the numerical convergence of the self-diffusion
coefficient and on Cu for the numerical convergence of

TABLE I. Cases for which the self-diffusion coefficient and
viscosity are computed. Z is the atomic number, A is the atomic
mass, ρ is the density, T is the temperature, and 
 is the coupling
constant.

Element Z A (g/mole) ρ (g/cm3) T (eV) 


B1 5 10.013 10 5 98.0
B2 5 10.013 1 5 45.5
Cu 29 63.546 67.4 100 168
D 1 2.014 1.5 2.5 7.11
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FIG. 2. (Color online) DGK(t) for B2. The numerical parameters
are N = 300, �t = 27 a.u., ecut = 40 Ha, δEtol = 0.02 Ha, rcut =
0.35 rWS, and nstep = 6000. The horizontal line indicates the domain
of time used to calculate D and its standard deviation (written in
parentheses). The error bars, representing the standard deviation, are
displayed at each t (hence the area around the curve).

viscosity. The coupling constant 
 is defined by


 = Z2

rWSkBT
, (12)

where Z is the atomic number and the Wigner-Seitz radius rWS

is

rWS =
(

3

4πni

)1/3

, (13)

where ni is the number density of atoms.

A. Self-diffusion coefficient

The function DGK(t) is expected to be a constant in
the t → +∞ limit, and this constant is equal to the
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FIG. 3. (Color online) DGK(t) for Cu. The numerical parameters
are N = 200, �t = 6.92 a.u., ecut = 100 Ha, δEtol = 10−6 Ha, rcut =
0.37 rWS, and nstep = 6000. The horizontal line indicates the domain
of time used to calculate D and its standard deviation (written in
parentheses). The error bars, representing the standard deviation, are
displayed at each t (hence the area around the curve).
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FIG. 4. (Color online) DGK(t) for D. The numerical parameters
are N = 300, �t = 8.77 a.u., ecut = 30 Ha, δEtol = 10−4 Ha, rcut =
0.59 rWS, and nstep = 6000. The horizontal line indicates the domain
of time used to calculate D and its standard deviation (written in
parentheses). The error bars, representing the standard deviation, are
displayed at each t (hence the area around the curve).

self-diffusion coefficient D. All the numerical parameters
evoked in Sec. II are determined by a systematic search
for numerical convergence, that is, for a situation where, in
the t → +∞ limit, a plateau independent of the parameters
(within one standard deviation) is obtained. The initial param-
eters ecut, rcut, and �t used in this search are determined by
the rules of thumb described in Ref. [22] for the calculation of
the thermodynamic properties (but numerical convergence is
assessed in relation to the quantity computed only, as it should
be). As rcut and N are physical characteristics of the system
(characterizing nucleus-electron interaction and periodicity),
we start our search of the right parameters at given rcut and
N ; then we let rcut and N vary with the other parameters
fixed. When the parameters are varied, the same set of initial
positions and velocities is used, and the independence (within
one standard deviation) of the self-diffusion coefficient to the
choice of this set is verified.
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FIG. 5. Variation of the self-diffusion coefficient D with respect
to nstep for B1. The numerical parameters are N = 300, �t =
12.53 a.u., ecut = 50 Ha, δEtol = 0.28 Ha, and rcut = 0.54 rWS. The
error bars represent the standard deviation.
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FIG. 6. Variation of the self-diffusion coefficient D with respect
to the time step �t for B1. The numerical parameters are N = 300,
ecut = 50 Ha, δEtol = 0.28 Ha, rcut = 0.54 rWS, and nstep = 6000. The
error bars represent the standard deviation.

It turns out that a plateau, i.e., a domain of time where
the fluctuations of DGK(t) around its mean value are small
compared to the standard deviation, is easily obtained for
DGK(t). The final graphs obtained for the cases of Table I are
shown in Figs. 1–4, where the areas around the curves result
from displaying the standard deviation at each t . The standard
deviation increases with t , since one integrates the statistical
error together with the exact signal, and varies roughly like√

t . The value of D, indicated by a horizontal line, is obtained
by averaging the value of DGK(t) between the time when the
velocity autocorrelation function (averaged over the atoms)
first cancels and nstep2�t ; the standard deviation of D is
evaluated by averaging the standard deviation of DGK(t) over
the same interval indicated by the horizontal line. In practice,
both D and its standard deviation depend little on the interval
of time chosen for averaging.

The variation of D with respect to nstep and �t , which
govern the exploration of the phase space, and to N and rcut,
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FIG. 7. Variation of the self-diffusion coefficient D with respect
to N for B1. The numerical parameters are �t = 12.53 a.u.,
ecut = 50 Ha, rcut = 0.54 rWS, and nstep = 6000; here δEtol is taken
proportional to N with δEtol = 0.28 Ha for N = 300. The error bars
represent the standard deviation.
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TABLE II. Self-diffusion coefficient D and its standard deviation
in parentheses, obtained by TFDMD. D̃ is obtained by the Daligault
fit [27] used with Zeff, defined in Eq. (17), instead of Z.

Element D (cm2/s) D̃ (cm2/s)

B1 2.39 × 10−3 (9.4 × 10−5) 2.33 × 10−3

B2 1.60 × 10−2 (6.9 × 10−4) 1.68 × 10−2

Cu 4.07 × 10−3 (2.0 × 10−4) 4.06 × 10−3

D 1.59 × 10−2 (5.8 × 10−4) 1.42 × 10−2

which characterize the system periodicity and the nucleus-
electron interaction, is shown in Figs. 5–8 for B1. It appears
that convergence is obtained, within one standard deviation, for
nstep equal to a few thousand and N = 20 (we have retained
N = 300 to get a smaller statistical error). A rapid change
occurs in the variation of D with N at N � 10 and with �t

at �t � 50 a.u. The standard deviation is about 4% of D; for
given thermodynamic conditions, it depends mainly on N and
essentially in 1/

√
N . That the standard deviation σ (D) of D

depends little on nstep comes from our process of evaluation;
in fact, for a given t , σ [DGK(t)] depends indeed on nstep but, as
σ (D) is evaluated by averaging σ [DGK(t)] over an interval of
length nstep2�t and as σ [DGK(t)] increases with t , the decrease
with nstep at given t is roughly compensated by the increase
of the domain of integration. Similar results have been found
for the other cases treated in the present work; the values of
D and of its standard deviation for these cases are given in
Table II.

B. Viscosity

Unlike the self-diffusion coefficient, which involves aver-
aging over the atoms, viscosity depends on the whole system
so that long trajectories are necessary to improve statistical
accuracy; as a consequence, viscosity is generally obtained by
extrapolation of the off-diagonal stress tensor autocorrelation
function [5] or of its partial integral [1,7,8], which gives rise
to an unknown error. In the present work, in order to get rid
of this error, we do not resort to extrapolation. The function
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FIG. 8. Variation of the self-diffusion coefficient D with respect
to rcut for B1. The numerical parameters are N = 300, �t =
12.53 a.u., δEtol = 0.28 Ha, and nstep = 6000 (ecut varies with rcut).
The error bars represent the standard deviation.

0 1000 2000 3000 4000 5000 6000
0

0.02

0.04

0.06

0.08

n
step

=20000

n
step

=30000

n
step

=40000

n
step

=50000

n
step

=60000

n
step

=80000

t (a.u.)

η G
K

(P
a

s)

FIG. 9. Sensitivity of ηGK(t) to nstep for Cu. The numerical pa-
rameters are N = 20, �t = 6.92 a.u., ecut = 100 Ha, rcut = 0.37 rWS,
and δEtol = 10−6 Ha. The standard deviation is not represented.

ηGK(t) is expected to be a constant in the t → +∞ limit, and
this constant is equal to the viscosity η. The search for the
right numerical parameters is carried out as indicated for the
self-diffusion coefficient but the new aspect here is that it is
difficult to obtain a plateau [i.e., a domain of time where the
fluctuations of ηGK(t) around its average are small compared
to the standard deviation] for the curve ηGK(t). We have found
that the possibility of obtaining a plateau is sensitive to the
choice of nstep; as illustrated in Fig. 9 for Cu, increasing nstep

tends to straighten ηGK(t). Let tp designate the time at which
the first maximum of ηGK(t) occurs. We have proceeded by
increasing nstep, with all the other parameters fixed, until the
curve ηGK(t) shows a plateau, mainly independent of nstep

(within one standard deviation), with a length of the order of
tp at least. With this choice of nstep, in the four cases treated, we
have found it possible to choose numerical parameters giving
a plateau with a length of the order of tp, and to verify that the
value of this plateau has indeed converged (within one standard

0 500 1000 1500 2000 2500 3000
0

0.01

0.02

0.03

0.04

0.05

t (a.u.)

η = 4.11 × 10−2 (2.6 ×10−3) Pa s

η G
K

(P
a

s)

FIG. 10. (Color online) ηGK(t) for Cu. The numerical parameters
are N = 20, �t = 6.92 a.u., ecut = 100 Ha, δEtol = 10−6 Ha, rcut =
0.37 rWS, and nstep = 60 000. The horizontal line indicates the domain
of time used to calculate η and its standard deviation (written in
parentheses). The error bars represent the standard deviation.
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TABLE III. Viscosity η and its standard deviation in parentheses,
obtained by TFDMD. η̃ is obtained by the Bastea fit [28] used with
Zeff, defined in Eq. (17), instead of Z.

Element η (Pa s) η̃ (Pa s)

B1 3.57 × 10−3 (2.2 × 10−4) 3.59 × 10−3

B2 9.18 × 10−4 (1.2 × 10−4) 1.07 × 10−3

Cu 4.11 × 10−2 (2.6 × 10−3) 4.22 × 10−2

D 1.23 × 10−3 (1.2 × 10−4) 1.34 × 10−3

deviation) with respect to the parameters. The common domain
of time over which ηGK(t) remains mainly constant for all the
(sufficiently large or small) parameters considered is used to
average ηGK(t) and its standard deviation; it is thus implicitly
assumed that the stress tensor autocorrelation function no
longer contributes to the viscosity beyond this domain (whose
length is of the order of tp in practice). The curve ηGK(t) finally
found for Cu is shown in Fig. 10, where the domain of time
used to average ηGK(t) and its standard deviation is indicated
by a horizontal line. The sensitivity of ηGK(t) to N and rcut is
shown in Figs. 11 and 12. The variation of η with N and rcut

is shown in Figs. 13 and 14.
The curves ηGK(t) finally obtained for the three other cases

of Table I are shown in Figs. 15–17. The values of η and
of its standard deviation are given in Table III. For the four
cases treated, numerical convergence is obtained, within one
standard deviation, for N equal to 20 and nstep equal to a few
tens of thousand. The standard deviation of η is here between
6 and 13% of η. As in the case of diffusion, the standard
deviation of ηGK(t) increases with t and varies roughly like

√
t ;

a variation like approximately
√

t has also been obtained by
Alfè and Gillan for liquid aluminum and liquid iron-sulfur [6].
We have also found that this standard deviation varies like
1/

√
nstep �t ; an explanation of this variation can be found in

Ref. [25]. As t increases, the standard deviation of ηGK(t) can
therefore be controlled by increasing nstep. We have verified
that the values of ηGK(t) obtained at any time are compatible
within statistical error with the value of η calculated.
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FIG. 11. Sensitivity of ηGK(t) to N for Cu. The numerical
parameters are �t = 6.92 a.u., ecut = 100 Ha, δEtol = 10−6 Ha,
rcut = 0.37 rWS, and nstep = 60 000. The standard deviation is not
represented.
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FIG. 12. Sensitivity of ηGK(t) to rcut for Cu. The numerical
parameters are N = 20, �t = 6.92 a.u., ecut = 100 Ha, δEtol = 10−6

Ha, nstep = 60 000 for rcut/rWS = 0.37 and rcut/rWS = 0.45, nstep =
80 000 for rcut/rWS = 0.55, and nstep = 100 000 for rcut/rWS = 0.65.
The standard deviation is not represented.

It is interesting to observe what results are obtained when
the partial integral of the off-diagonal stress tensor autocorre-
lation function, assumed to be proportional to 1− exp(−t/τ ),
is extrapolated to the t → +∞ limit. Here, the partial integral
computed is fitted over the interval [0,tex] with three possible
values of tex defined by ηGK(tex) = 0.63η, 0.86η, or 0.95η

(respectively corresponding to tex = τ , 2τ , or 3τ with the
exponential time dependence assumed). The viscosities thus
obtained are given in Table IV, where it appears that a viscosity
calculated by extrapolation can be very different from the exact
result. This is so in the cases B1 and Cu (Table IV) whereas,
in the cases B2 and D (Table IV), the viscosity obtained by
extrapolation is in agreement, within one standard deviation,
with the exact result. The apparent difference between the
cases B1 and Cu on the one hand and B2 and D on the other
hand is the number of time steps in the fitting interval [0,tex]
(for instance, when tex = τ , 6 for B1 and Cu, 24 for B2, and 27
for D). However, for Cu and B2, for instance, we have found by
changing �t that the difference of agreement between the exact
result and the extrapolation result remains even when the same
number of time steps (12) is used in [0,tex = τ ]. Therefore it is
not the number of time steps in the fitting interval but rather the
shape of ηGK(t) that causes the difference of agreement. This
observation leads us to suggest caution about the extrapolation
approach.

TABLE IV. Viscosity (in Pa s) obtained by extrapolation of
the partial integral of the off-diagonal stress tensor autocorrelation
function, assumed to be proportional to [1 − exp(−t/τ )], fitted on
the interval [0,tex].

Element tex = τ tex = 2τ tex = 3τ

B1 7.11 × 10−3 5.19 × 10−3 4.42 × 10−3

B2 8.69 × 10−4 9.03 × 10−4 9.03 × 10−4

Cu 8.15 × 10−2 5.93 × 10−2 5.05 × 10−2

D 1.17 × 10−3 1.22 × 10−3 1.25 × 10−3
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FIG. 13. Variation of the viscosity η with respect to N for Cu.
The numerical parameters are �t = 6.92 a.u., ecut = 100 Ha, δEtol =
10−6 Ha, rcut = 0.37 rWS, and nstep = 60 000. The error bars represent
the standard deviation.

IV. APPROXIMATION BY SIMPLE MODELS

We now compare the transport coefficients obtained above
by TFDMD to the results given by simple analytical mod-
els. The self-diffusion coefficient and viscosity are usually
expressed as dimensionless quantities D∗ and η∗ defined by

D∗ = D

ωp r2
WS

, (14)

η∗ = η

ni m ωp r2
WS

, (15)

where m is the mass of a nucleus, and the plasma frequency
for ions ωp is defined by

ω2
p = 4πniZ

2

m
. (16)
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FIG. 14. Variation of the viscosity η with respect to rcut for
Cu. The numerical parameters are N = 20, �t = 6.92 a.u., ecut =
100 Ha, δEtol = 10−6 Ha, nstep = 60 000 for rcut/rWS = 0.37 and
rcut/rWS = 0.45, nstep = 80 000 for rcut/rWS = 0.55, and nstep =
100 000 for rcut/rWS = 0.65. The error bars represent the standard
deviation.
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FIG. 15. (Color online) ηGK(t) for B1. The numerical parameters
are N = 20, �t = 12.53 a.u., ecut = 50 Ha, δEtol = 2 10−7 Ha, rcut =
0.54 rWS, and nstep = 40 000. The horizontal line indicates the domain
of time used to calculate η and its standard deviation (written in
parentheses). The error bars represent the standard deviation.

Lambert et al. [12] have proposed to calculate the self-diffusion
coefficient and viscosity by using the one component plasma
(OCP) model [26] with an effective atomic number Zeff defined
by

Zeff = 4
3π r3

WS nAA(rWS), (17)

where nAA(rWS) is the electronic density at the atom surface in
the average-atom model [9] for the thermodynamic conditions
considered.

Here, in a similar way, we calculate an approximate value
of the self-diffusion coefficient, D̃, by using the Daligault fit
of D∗ for the OCP [27] with Zeff instead of Z. Likewise,
for viscosity, we calculate an approximate value η̃ by using
the Bastea fit of η∗ for the OCP [28] with Zeff instead of Z.
The results, given in Tables II and III, turn out to be in good
agreement with the values obtained by TFDMD over a range

0 2000 4000 6000 8000 10000 12000 14000 16000
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FIG. 16. (Color online) ηGK(t) for B2. The numerical parameters
are N = 20, �t = 27 a.u., ecut = 40 Ha, δEtol = 2 10−7 Ha, rcut =
0.35 rWS, and nstep = 40 000. The horizontal line indicates the domain
of time used to calculate η and its standard deviation (written in
parentheses). The error bars represent the standard deviation.
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FIG. 17. (Color online) ηGK(t) for D. The numerical parameters
are N = 20, �t = 8.77 a.u., ecut = 90 Ha, δEtol = 10−6 Ha, rcut =
0.59 rWS, and nstep = 40 000. The horizontal line indicates the domain
of time used to calculate η and its standard deviation (written in
parentheses). The error bars represent the standard deviation.

of coupling constants between 7 and 170 (between 2.4 and 23
if calculated with Zeff instead of Z).

V. CONCLUSION

In the framework of OFMD at the Thomas-Fermi-Dirac
level, we have carried out an extensive study of the numerical
convergence of the self-diffusion coefficient D and viscosity η,
calculated by the Green-Kubo formula, in four cases covering
a large domain of coupling constant. We have shown that it is

possible to calculate the viscosity by OFMD at the Thomas-
Fermi-Dirac level without resorting to the extrapolation of
the off-diagonal stress tensor autocorrelation function, thereby
eliminating the unknown error due to extrapolation; the key
point in obtaining a plateau for ηGK(t) is to sufficiently increase
the number of time steps used in the calculation. Convergence
for viscosity is reached at N = 20 per basic cell and at
nstep equal to a few tens of thousand; for the self-diffusion
coefficient, convergence is reached at N = 200 or 300 (or
smaller N if larger statistical errors are accepted) and at nstep

equal to a few thousand. For given thermodynamic conditions,
and with our conventions for calculating D and η, the standard
deviation of D varies mainly with the number of atoms in the
basic cell N , essentially in 1/

√
N , and the standard deviation

of η varies mainly with the number nstep of time steps and with
the time step �t , essentially in 1/

√
(nstep �t).

We have found that extrapolating the partial integral of
the off-diagonal stress tensor autocorrelation function may
lead to large errors; we therefore suggest caution about using
extrapolation in the calculation of viscosity.

Finally, for the cases considered (which cover a large
domain of coupling constant), the self-diffusion and viscosity
are well approximated, respectively, by the Daligault fit [27]
and by the Bastea fit [28] used with a single effective atomic
number calculated with the average-atom model.
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(2001).
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