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We study experimentally, numerically, and theoretically the elastic response of mechanical resonators along
which the temperature is not uniform, as a consequence of the onset of steady-state thermal gradients. Two
experimental setups and designs are employed, both using low-loss materials. In both cases, we monitor the
resonance frequencies of specific modes of vibration, as they vary along with variations of temperatures and of
temperature differences. In one case, we consider the first longitudinal mode of vibration of an aluminum alloy
resonator; in the other case, we consider the antisymmetric torsion modes of a silicon resonator. By defining the
average temperature as the volume-weighted mean of the temperatures of the respective elastic sections, we find
out that the elastic response of an object depends solely on it, regardless of whether a thermal gradient exists
and, up to 10% imbalance, regardless of its magnitude. The numerical model employs a chain of anharmonic
oscillators, with first- and second-neighbor interactions and temperature profiles satisfying Fourier’s Law to a
good degree. Its analysis confirms, for the most part, the experimental findings and it is explained theoretically
from a statistical mechanics perspective with a loose notion of local equilibrium.
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I. INTRODUCTION

An important property of structural materials is their ability
to regain the initial shape once a load is removed. This
is quantified by the elastic modulus. Hooke’s law predicts
a linear relationship between stress and strain, as long as
the stress remains below a given threshold, called elastic
limit, which depends on the material [1]. Given the wide
variety of working conditions of products in the real world,
it is important to know the elastic modulus as a function of
temperature, from the lowest ones up to near the melting
point. From a more fundamental perspective, the study of
the tunneling states in amorphous and disordered crystalline
solids [2,3] has also spread the interest in low temperature
elastic properties. Indeed, several studies have appeared in
the literature, reporting measurements of the elastic modulus
in wide temperature ranges for a large number of materials.
Laws to predict the behavior of elasticity versus temperature
have been proposed [4], sometimes also with some theoretical
justification [5]. Apart from a reduced class of materials,
including ferromagnetic ones, these laws describe the observed
behavior to a good approximation.

We note that all of the above-mentioned studies refer to
materials in thermodynamic equilibrium. On the contrary,
structural materials are more often employed in nonequilib-
rium states, either transient or stationary. Indeed, a number
of papers have appeared reporting vibration studies of pieces
under thermal gradients (e.g., Refs. [6,7]); this literature is
focused on the prediction of the eigenfrequencies for some
specific shapes (e.g., rectangular plates), of interest to space

technology and mechanical sciences, under the assumption of
a temperature field in the specimen and of a known change of
the elastic modulus with temperature.

Whether this simple approach is justified is not as obvious
as it might appear and is related to the validity of the local
equilibrium hypothesis, although such condition should be
commonplace for macroscopic objects. To our knowledge
there is very little reported in the literature about this issue, and
the only experimental study focuses on the frequency changes
of a piezoelectric ceramic subject to thermal differences
between −40 and + 50 ◦C [8]. In this paper we investigate
both experimentally and theoretically how the elastic behavior
of solids is affected by nonequilibrium steady states associated
to temperature differences.

For the experiment we employ resonators of two differ-
ent materials, a metal, namely an aluminum alloy, and a
semiconductor, namely single-crystal silicon; we investigate
how the oscillators resonance frequencies change with the
temperature from room temperature down to about 200 K,
with and without thermal differences across the oscillators
up to ∼15%. From the theoretical and numerical side we
develop a simple model for a solid resonator based on a chain
of anharmonic oscillators for which we predict analytically
the modulus of elasticity also in the presence of temperature
differences at the chain extremes, on the basis of the potential
between the chained oscillators. Then we implement molecular
dynamics simulations of such a model to compute the modulus
of elasticity and compare the numerical results with the
theoretical ones. This research is part of a wider scientific
effort [9] that focuses on the study of the statistical mechan-
ical properties of low-loss mechanical oscillators subject to
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steady-state thermal gradients. Our main concern is the
investigation of the spontaneous vibration fluctuations of
the nonequilibrium oscillators and how they differ from
the Gaussian distribution of the thermal noise predicted at
equilibrium by the fluctuation-dissipation theorem [10,11].

Description of the experimental setup is given in Sec. II
while the experimental measurements are reported in Sec. III.
The theoretical framework for predicting the elastic modulus
of our one-dimensional model of a solid resonator is described
in Secs. IV A and IV B for the equilibrium and nonequilibrium
cases, respectively; the numerical results obtained via molec-
ular dynamics simulations are shown in Sec. IV D. Then in
Sec. V we discuss the implications of the results obtained by
the two approaches.

II. THE EXPERIMENTAL SETUP

To study the elastic properties in the presence of nonequi-
librium states we have developed two mechanical oscillators
that we can subject to thermal differences. The oscillator
materials are chosen among low-losses ones; in fact, we intend
to study the nonequilibrium phenomena in situations similar
to those of high-precision experiments, such as gravitational
wave detectors, where the thermal noise associated to losses
needs to be minimized. One of the oscillators is realized in
an aluminum alloy, namely Al5056, which is used in the
marine industry and for cable sheathing and wire screens;
it meets our purposes since it shows very low mechanical
losses at cryogenic temperatures (intrinsic mechanical losses
�3 × 10−8 below 10 K), a feature that motivates its usage in
resonant gravitational wave detectors [12]. The other oscillator
is realized in single-crystal silicon. Silicon is the elective
material for most microelectromechanical systems(MEMS)
[13]; it shows mechanical losses as low as 5 × 10−10 at 3.5 K
and 10−8 at room temperature. The latter figure is one of
the main reasons for choosing silicon as elective material for
next-generation gravitational wave detectors [14].

A. The Al5056 oscillator

The Al5056 oscillator is described in Ref. [9] and briefly
in the following. It consists of a rod with cross-shaped
cross-section, fixed at one end and loaded by a mass (referred
to as ml in the following) at the other end. The rod is kept
along the vertical axis with the load mass at the bottom. The
first longitudinal mode occurs at fo ∼ 1.6 kHz and represents
the oscillator we focus on. Figure 1 represents the piece
displacement corresponding to the acoustic mode; continuous
line shows the shape of the piece at rest. Vibrations of the
load mass are measured by a capacitive readout coupled to
a low-noise amplifier. The capacitive sensor is realized by
facing an aluminum plate to the bottom surface of the load
mass; the plate is supported by two arms that extend along
the vertical direction at two sides of the rod. The 44-μm-wide
capacitor gap is realized by a teflon spacer between the arms
and the plate. The capacitive sensor works in a constant
charge configuration; measurements reported in this paper
were taken after biasing to 5V, corresponding to an electric
field of 1.1×105 V/m when no thermal differences are applied.
The corresponding displacement sensitivity is about 4 ×
10−14 m/

√
Hz around the oscillator resonance; this same

FIG. 1. (Color online) Maximum deformation of the oscillator
when vibrating at the first longitudinal mode, which resonates at about
1.6 kHz with a quality factor of about 103. The continuous line shows
the shape of the body when at rest. The vibration amplitude is shown
in color code (online only). The displacement scale has been amplified
to better show the displacement; the mechanical interference with the
electrode is only apparent.

capacitor has been biased up to 7.3 MV/m, demonstrating
a sensitivity of 6 × 10−16 m/

√
Hz.

With a high-stability negative temperature coefficient
(NTC) thermistor, we measured the temperature T1 of the rod
top end; the NTC resistance was measured using a four-wire
configuration. Using Peltier cells placed on top of the vacuum
box, we implemented an active feedback loop, which can
stabilize T1 to a set point just below room temperature, with a
residual variation within ±0.05 K over a period of one month
[17]. For the purpose of setting and controlling a temperature
difference across the oscillator, we faced the oscillating mass
to a thermal source on one side and to a thermopile on the
other side, as detailed in Ref. [17]; the thermopile gave a
measurement of the oscillating mass temperature T2.

The oscillator was placed in a vacuum box on top of a three-
stage mechanical suspension, which lowers the environmental
mechanical noise at the oscillator input by 180 dB [16], thus
reducing it to a negligible level. A piezoelectric actuator
was placed close to the oscillator and was used to exert a
mechanical excitation at its top end.

B. The silicon oscillator

We used a custom-made mechanical oscillator, which we
name the quadruple paddle oscillator (QPO), working at audio
frequency with low mechanical losses. Our resonator is similar
to the double paddle oscillator developed by Spiel et al. [18]
in the sense that it possesses a number of normal modes with
negligible clamping losses because of their good insulation
from the support frame; at the same time, it allows us to
integrate on one side of its structure a thermal source necessary
for the production of a thermal difference along the device.

As shown in Fig. 2, a QPO consists of three inertial
units, head and wings, which are connected by a torsion
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FIG. 2. (Color online) Design of the quadruple paddle oscillator
illustrating its different sections. A thin gold layer covers the resonator
and provides the electrodes for driving and displacement reading. The
head and the neck are not coated to avoid additional dissipation from
the metal film.

rod, called neck. Each couple of wings is connected to the
supporting structure by another torsion rod, the leg. One leg
is connected to the outer frame, the other to an intermediate
pad designed to host a heater. This system can be visualized
as a coupled oscillator consisting of three masses (head and
wings) and of three springs (neck and legs) that twist or bend
in different directions, originating several composite vibration
modes. Some of these modes, the so-called antisymmetric
torsion modes (AS), are of particular interest because of
their low internal losses. As shown in Fig. 3 they consist
of a twist of the neck around the QPO symmetry axis and
a synchronous oscillation of the wings around an axis on
the QPO plane and orthogonal to the QPO symmetry axis.
The oscillations of head and wings can be in phase (AS1
mode) or out of phase (AS2 mode). For the AS modes the
elastic energy is primarily located at the neck, where the
maximum strain field occurs during the oscillations, while
the leg remains at rest and the frame can be supported
by the sample holder with negligible energy dissipation.
Another mode that induces a negligible strain in the legs
is the wing torsion (WT) mode, where the head remains at
rest because the neck is twisted in the opposite direction
by the synchronized flapping of the wings. On the contrary,
in the simple flexural and torsional modes a reaction force from
the frame is needed to keep one end of the legs at rest, and the

FIG. 3. (Color online) Maximum deformation of the QPO os-
cillator when vibrating in the high Q resonant modes; the vibration
amplitude is shown in color code growing from blue to red (online
only). Mode frequency of AS1, WT, AS2 mode at room temperature
is, respectively, 3636.6, 3837.1, and 4057.3 Hz, the quality factor in
vacuum are 1.15 × 105–0.78 × 105 and 1.1 × 105. We note that for
these modes the motion of pad with the heater is negligible in this
scale, as the legs remain at rest during the motion.

resulting clamping losses is thus dependent on the mechanical
impedance of the sample holder and on its internal dissipation.

The resonator was obtained from a 300 ± 15-μm-thick,
float-zone-refined, double-side-polished, 〈100〉-oriented,
n-doped silicon wafer with a room temperature resistivity
higher than 20 k�-cm. A silicon-oxide etch mask with
the desired shape was first deposited on both sides of the
wafer, then the geometry was obtained by wet etching in
a Tetramethyl ammonium hydroxide water solution. This
is an easy and cost-effective method for the fabrication of
three-dimensional silicon microsensors, provided that specific
efforts are devoted to control anisotropy effects and ensure
strict dimensional tolerances for a proper functioning of the
oscillator [19]. After the realization of the device, the masking
oxide was etched in HF water solution and gold electrodes
were evaporated on the wings. The electrodes on the QPO
consist of a gold deposition of 50 nm over a 5-nm Cr adhesion
layer. The gold layer covers the leg and the frame, while
the head and neck were not coated in order to minimize the
energy loss caused by metal films (see Fig. 2).

III. EXPERIMENTAL RESULTS

We performed measurements of the resonant frequency of
the oscillator at different temperatures, in both equilibrium and
nonequilibrium states. To determine the resonant frequency we
excited mechanically the oscillators by feeding a sinusoidal
voltage at frequency fs close to the oscillator resonance (at
fo) to the piezoelectric actuator for the Al5056 oscillator
and to an external electrode assembly placed in front of
the electrodes evaporated on the wings (as in Ref. [19]) for
the silicon oscillator; we connected the amplified oscillator
output to a lock-in amplifier, which demodulated the oscillator
signal at fs . Hence, we removed the excitation and let the
oscillator energy decay. From a linear fit of the drift of the
phase change during the decay we inferred the difference
fs − fo and hence the oscillator resonance. From the decay
of the oscillation amplitude, we also measured the quality
factor of the resonance, which turned out to be, respectively,
about 103 for the aluminum oscillator, 1.15 × 105–0.78 × 105

and 1.1 × 105 in vacuum and at room temperature, for the
AS1-WT-AS2 resonant modes of the silicon oscillator. For the
latter case, all other modes showed quality factors in the range
103–104. These values are in good agreement with the limit
set by the thermoelastic dissipation in the device, evaluated by
a finite element procedure [19,20].

A. Al5056 oscillator

The time constant for the energy decay of the Al5056
oscillator is about 0.2 s; thus, each measurement of the
oscillator resonance lasted about 1 s. We collected 1467
measurements of the frequency of the first longitudinal mode
during about 3 months; during this same period we measured
the temperatures T1 and T2 with a sampling rate of 0.1 Hz. Part
of the measurements were performed with the control loop of
T1 off, some with the control loop on, and some also with the
thermal source on.

It is clear that when the temperature of the body is in
fast drift, the temperature profile cannot be known to a good
precision, since we only measure the temperature at the
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FIG. 4. (Color online) Plot of the absolute value of the normalized
time derivative of the temperature T1 and T2 corresponding to each
measurement of the resonant frequency of the oscillator. The solid
line encloses the data, which are selected as steady-state ones.

extremes of the oscillator. However, due to the simplicity
of the oscillator design, once the steady state is reached, it
suffices to know T1 and T2 to infer the linear thermal profile
along the rod given by the Fourier’s law. Thus, in the steady
states the temperature Tavg = (T1 + T2)/2 corresponds to the
average temperature of the rod, i.e., of the spring component
of the oscillator, in a lumped model; in the same model the
oscillator mass is at temperature T2.

To identify the steady states, we computed the time
derivative of T1 and T2 as the difference between two
consecutive measurements divided by the sampling time. Since
T2 suffers from electronic noise, which appears as a jitter of
±0.1 K, before computing its time derivative we passed the T2

data through a smoothing procedure based on a triangular
moving average performed on the time series.1 Figure 4
shows the absolute value of the time derivative for each
resonant frequency measurement, normalized by the measured
temperature. The time derivatives of the two temperatures
span several orders of magnitude, as expected, since we took
measurements both when T1 was controlled actively and when
the system was in temperature drift.

To select the steady-state measurements we put an
upper limit on the normalized total time derivative of the

temperature
√

( 1
T1

dT1
dt

)2 + ( 1
T2

dT2
dt

)2. We chose an upper limit

of 1.4 × 10−8/s, which corresponds to about 4 μK/s, thus
rejecting 90% of the measurements and keeping only 145
measurements.

Figure 5 shows how the (square of the) oscillator resonance
changes with the oscillator average temperature for the above
selected steady-state measurements; on the same graph, we

1Starting with the experimental data T2,n, the filtered data T̃2,n was
obtained by averaging over 2M + 1 points using the formula (M =
100):

T̃2,n = 1

(M + 1)2

M∑
m=−M

(M + 1 − |m|) T2,n+m. (1)

To simplify the notion, we use the symbol T2,n in the following instead
of the correct one, T̃2,n.

FIG. 5. (Color online) Plot of the square of the the oscillator
resonant frequency vs. the average temperature for the equilibrium
data (+) and nonequilibrium data [(purple) � for �T = 3.1 K, (green)
� for �T = 4 K, (red) • for �T = 5 K, (blue) � for �T = 7.5 K]
with constraints on time derivative.

plot the data taken with zero temperature difference (i.e.,
thermal source off; equilibrium data) and those taken with
a non-null-temperature difference (nonequilibrium data). The
latter points fit well in the same distribution as the equilibrium
data. We note that if we relax the criterion for choosing the
steady-state measurements, the scatter of the measurements
increases significantly; as discussed, the identification of the
average temperature as (T1 + T2)/2 is not justified when the
temperature of the metal piece is in drift.

The capacitor electric field exerts an attractive force
between the plates, which lowers the resonance frequency
with respect to the unbiased oscillator. We made sure that
during the measurements there was no significative charge
leakage. On the other hand, when a temperature difference is
present across the oscillator, the latter expands with respect
to the equilibrium state; thus, the gap is reduced and the
electric field is correspondingly larger. The thermal coefficient
of aluminum is α = 24 × 10−6/K around room temperature;
given a maximum difference of �Tmax = 9 K and a length
of the oscillator rod of L = 0.1 m, we estimate the rod to
have expanded by δL = 1/2αL�Tmax = 11 μm, the gap to
have reached the extreme value of 33 μm (a 25% change) and
correspondingly the electric field to have increased to 1.5 ×
105 V/m. On the other hand, from independent measurements
we estimated the effect of the electric field on the oscillator
resonance to be about 7×10−8 Hz m/V and, thus, our
measurements are affected by a maximal systematic error of
3×10−3 Hz, much less than the frequency change we observe
in Fig. 5. Thus, we conclude that the impact of the thermal
expansion on our measurements is negligible.

B. Silicon oscillator

In the case of the silicon resonator, the temperature of the
sample holder was measured by a Cernox resistor and kept
constant within 5 mK by a heater within a PID controller.
The thermal difference was applied by a separate heater (20�

resistor) fixed on to the pad prepared in the body of the
device. The pad hosts also a PT100 thermometer to provide
the measure of the applied temperature. The heater and the
thermometer are both glued by a thermal conductive epoxy.
We point out that, according to finite elements simulations, the
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FIG. 6. (Color online) Plot of the square of the WT mode
resonant frequency vs. the average temperature for the equilibrium
and nonequilibrium data. The three curves in nonequilibrium were
obtained by increasing the temperature of one side of the resonator,
while the other side is kept fixed at, respectively, 215 (purple •),
273 (red �), and 309 K (orange �). In these curves, each point is
plotted in correspondence of the average temperature of the resonator
(T1 + T2)/2. The maximum applied temperature difference was about
50 K (25 K for the data set starting at 309 K) and the stability of the
temperature of both sides during the measurement was better than
±5 mK. Modes AS1 and AS2 have a similar behavior.

mass of the attached components has negligible effects on the
frequencies and the quality factors of the modes under study.

When the heater was powered, the temperature of the pad
remained constant within 5 mK after a transient time of about
15 min. We point out that the thermal control of the silicon
oscillator is much less demanding than that of the aluminum
one. In fact, in the former case the mass is much lower
and the thermal response time of the system is about two
orders of magnitude faster, allowing an higher closed-loop
gain of the thermal control without the risk of auto-oscillations.
The residual temperature drift was about 5 μK/s. As shown
in Fig. 6, we first measured the temperature dependence
of (square of) the resonant frequency in equilibrium over
a temperature range between 215 and 330 K; then the
temperature of the sample holder was kept fixed at 215, 273,
and 309 K and the heater on the device was powered. The
resonant frequency was measured for thermal differences up
to 50 K. For the data set starting from 309 K we limited
the thermal difference to 25 K to avoid the overheating of
the epoxy glue used to fix the thermometer and the heater
onto the pad. As reported in Fig. 6 for one of the resonant
modes under observation, the measured frequency, when a
temperature difference �T = T2 − T1 is applied, approaches
very well the frequency measured in equilibrium at the average
temperature (T1 + T2)/2.

IV. NUMERICAL MODEL

In order to investigate the statistical mechanical properties
of our oscillators in nonequilibrium steady states, we have
developed a numerical model of a solid bar. We keep the

model as simple as possible and consider the case of a linear
chain of nonharmonic oscillators; we aim to explain in a
general fashion, rather than quantitatively, its elastic response
to nonequilibrium conditions, namely, as they compare to equi-
librium ones. The model considers N particles, constrained to
move in one dimension, each interacting with a fixed number
of neighboring particles via some interaction potential W (r).
The boundary conditions replicate different phenomenological
setups, like a rod with fixed ends, or a rod with one fixed and
one free end, and so on.

In spite of its simplicity, we have already proved [15] that
with an informed choice of the interparticle potential, our
model is able to reproduce main thermomechanical traits of
most solids, namely the thermal expansion and the variation of
the elasticity modulus with temperature. The only hypotheses
we required to be satisfied by the model is that at equilibrium
the probability for a microscopic configuration to be visited
is well approximated by a canonical distribution. Here we
extend our investigation of the model to nonequilibrium
steady states; thus, we add a second requirement, namely that
out of equilibrium, such distribution becomes modified in
such a way that it nonetheless satisfies some notion of local
equilibrium, to be specified later.

To compare with the experimental results, we consider a
linear chain with particles moving along the x coordinate, with
the left edge that is fixed and a force F that is applied to the right
edge, pointing toward the left. The average length L = L(F )
is a function of such force, and from its rate of change in the
limit of vanishing F we extract the elastic response of the
chain. Thus, we define the elastic coefficient E to be

E = − L(0)
∂L
∂F

∣∣
F=0

. (2)

If we are given the probability distribution p(L,F ) that
a microscopic configuration be found with (L,F ) in the
(length,force)-space, then it follows that

L(F ) =
∫ ∞

0
Lp(L,F ) dL. (3)

Each choice of the interaction potential W (r) generates its own
probability distribution p(L,F ), which is implicitly a function
of N , the number of particles. At equilibrium, p(L,F ) is also a
function of the temperature T , while when the temperature is
not uniform (like when a difference is generated between the
two ends), its dependence on the temperature profile may be
nontrivial. In the following, we discuss briefly the theoretical
results regarding the equilibrium case derived in Ref. [15] so
as to extend them to the non-equilibrium case in Sec. IV B.
Then, in Sec. IV C we consider explicit calculations for the
modulus of elasticity. Finally, in Sec. IV D we compare the
theoretical results with numerical simulations.

A. The equilibrium case

In this case, the form assumed by p(L,F ) is [15]

p(L,F ) =
e
− FL

kB T
∫ L

0 dr1
∫ L
r1

dr2 . . .
∫ L
rN−1

drNG(r1, r2, . . . ,L)∫ ∞
0 dL e

− FL
kB T

∫ L
0 dr1

∫ L
r1

dr2 . . .
∫ L
rN−1

drNG(r1, r2, . . . ,L)
, (4)

066605-5



LIVIA CONTI et al. PHYSICAL REVIEW E 85, 066605 (2012)

where

G(r1, r2, . . . ,L) = ψ(r1)ψ(r2 − r1) . . . ψ(L − rN ), (5)

with ψ(r) the Boltzmann factors

ψ(r) = e
− W (r)

kB T , (6)

where the kinetic terms in the numerator and the denominator
cancel each other out.

The useful quantity in the calculation is the integral ap-
pearing in the denominator of Eq. (4), call it Z = Z(F,T ,N ),
which can be recognized as a Laplace transform of a chained
convolution product, thus expressible as

Z = [j0(F ; T )]N ; jk(F ; T ) =
∫ ∞

0
rke

− Fr
kB T ψ(r) dr. (7)

This explicit expression of Z is useful if we revert to Eq. (3)
and recognize that

L(F ) = − kBT

Z
∂Z
∂F

= Nj1(F ; T )

j0(F ; T )
. (8)

We note that for phenomenological interaction potentials,
the low dimensionality of the system causes a few pathologies,
as in the case of L(0), the equilibrium length when no force
is applied, which is defined in Eq. (8) via diverging integrals.
To avoid these problems we constrain our system to be bound
by some recoil force, which prevents the particles to separate
more than a certain distance R (much larger than the average
interparticle distance). Formally, all throughout we replace
jk(F = 0; T ) with Jk(T )(R) = ∫ R

0 rkψ(r) dr , now convergent.
Provided R is large enough, the rationale for this is that, in the
low-temperature ordered state, large interparticle separations
are very rare and the measure is dominated by separations
which are never too large. This in turn implies that Jk(T )(R)

is only weakly dependent on R and for simplicity, in the
following, we shall omit the R-dependence.

With this in mind, we can now give a meaning to the
definition of E in Eq. (2), from Eq. (8), now reading

E = −NJ1(T )

J0(T )

J0(T )2

N [J0(T )j ′
1(F ; T )|F=0 − J1(T )j ′

0(F ; T )|F=0]

= kBT J0(T )J1(T )

J0(T )J2(T ) − J1(T )2
. (9)

B. The nonequilibrium case

In order to extend our results out of equilibrium we
must implement some reformulation of p(L,F ). Rather than
developing a rigorous treatment, here we adopt a modified
expression under the strong assumption that the distribution
is locally canonical (when the marginal distribution of the
particles’ coordinates is considered) down to the particle-
by-particle scenario. This is somewhat consistent with the
observation that in these models a local version of the virial
theorem typically holds (as we have also verified for our
models). Thus, we make the replacement

ψ(ri − ri−1) → ψi(ri − ri−1) = e
− W (ri−ri−1)

kB Ti , (10)

with Ti the “local” temperature along the chain. This leads to

Z =
N∏

i=1

j0(F ; Ti), (11)

and, therefore, to

L(F ) = − kBT

Z
∂Z
∂F

=
N∑

i=1

j1(F ; Ti)

j0(F ; Ti)
= 1

N

N∑
i=1

L(F ; Ti)

(12)

∂L

∂F

∣∣∣∣
F=0

= 1

N

N∑
i=1

∂L(F ; Ti)

∂F

∣∣∣∣
F=0

= − 1

N

N∑
i=1

L(0; Ti)

ETi

,

(13)

where L(F ; Ti) and ETi
are, respectively, the average length,

when a force F is applied, and the modulus of elasticity that
the system would have if the entire chain were at equilibrium at
the temperature Ti . From the general definition of E [Eq. (2)]
and from Eqs. (12) and (13), we have

E =
∑N

i=1 L(0; Ti)∑N
i=1

L(0;Ti )
ETi

. (14)

It is more instructive to consider E−1, which is seen to be the
weighted average of its values along the chain, with weights
L(0; Ti), i.e.,

E−1 =
∑N

i=1 E−1
Ti

L(0; Ti)∑N
i=1 L(0; Ti)

= 1

N L(0)

N∑
i=1

E−1
Ti

L(0; Ti).

(15)

C. Physical approximations

In principle, Eqs. (14) and (15) can imply nontrivial results
for E. Nevertheless, the situation is not as severe as it
looks at a first glance, if we implement physical assumptions
consistent with the experimental conditions. Therefore, we
assume that the equilibrium elastic constant E varies linearly
with T [4], throughout the range of temperatures of interest.
We define T1 and T2 (T1 < T2), the temperatures at the left and
right extremes of the chain, respectively. Equally consistently
with the real situation, we restrict our analysis to the case
1
L

dL
dT


 1
E

dE
dT

inside the [T1,T2] range. Accordingly, we always
consider L(0) to be almost constant and well approximated by
the average length of the chain if it were at equilibrium at the
average temperature T = T1+T2

2 , which is L(0; T ). In Eq. (2),
this corresponds to the case in which the change of ∂L

∂F
|F=0

carries most of the change of E with temperature. Under the
assumed linearity of E for T ∈ [T1,T2], ETi

decreases linearly
with Ti , i.e.; if we pass to the continuum limit,

E(T ) = α − β T ; α = ET1T2 − ET2T1

�T
, β = �E

�T
,

(16)
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with �E = E1 − E2 and �T = T2 − T1. Then, if L(T ) is
slowly varying,

E−1 �
∫ T2

T1
E(T )−1 L(T )dT∫ T2

T1
L(T )dT

= 1

�T

∫ T2

T1

dT

α − βT

= 1

�E
log

E1

E2
. (17)

We define E = ET , the modulus of elasticity one would have
with the chain at equilibrium at the average temperature T

(i.e., if the entire chain were at T ). Equation (17) implies a
general inequality E � E ≡ ET . When the relative difference
is small, i.e., �E 
 E, Eq. (17) further implies E � E, so the
modulus of elasticity of the chain with a standing temperature
difference is approximately equal to the modulus of elasticity
of a chain that is at equilibrium at the average temperature.
This is precisely what we see in the experiments. Adding the
next correction in �E

E
into Eq. (17) is also straightforward,

leading to

E ∼= E

[
1 − 1

12

(
�E

E

)2]
, (18)

and, therefore, the first correction is quadratic in �E/E.
The result relating E to E is sufficiently robust to also hold,

at the lowest order, if L(T ) is not a constant but linear in T ,
i.e., if L(T ) � γ + δ T (here we omit the proof).

D. Simulations

We have tested the theoretical results against computer
molecular dynamics simulations. We considered Lennard-
Jones (LJ) potential for the interparticle interaction W (r):

W (r) = ε

[(
r0

r

)12

− 2

(
r0

r

)6]
. (19)

The canonical ensemble, at equilibrium, is attained with the
implementation of Nosé Hoover thermostats at the boundaries
[23]. Out of equilibrium, the thermostats are set to two different
target temperatures. The temperature at each point along the
chain is identified with the average kinetic temperature of each
individual particle. A known preliminary problem for these
models with first-neighbor interaction is that the temperature
profile, i.e., the profile of the average kinetic temperatures, is
not linear but somewhat S-shaped [21]. As an example, Fig. 7
shows the typical temperature profile that we obtain with our
simple model.

To circumvent this limitation, we developed a refined model
with first- and second-neighbors interactions. To preserve the
stability of the “crystal” structure, the range of the interaction
between two particles which are second-next neighbors is
tuned at exactly twice the range of the interaction between
two particles which are first-neighbors. Therefore, in the bulk,
each particle has direct interaction with four rather than two
neighbors. The depths of the well were chosen to be the same,
which means that (because of the modified range) the strength
of the bonds between second-neighbors is approximately one
quarter of that between first neighbors. Nevertheless, the
bonds are reinforced and thus the elastic recoil constants are.
More explicitly, if Eq. (19) represents the interaction between
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FIG. 7. Typical temperature profile, as a function of the reduced
coordinate r/L, of a linear chain with only nearest-neighbor interac-
tions.

two particles which are first neighbors, then between second
neighbors we would have,

W (r) = ε

[(
2r0

r

)12

− 2

(
2r0

r

)6]
. (20)

In this model we have four Nosè-Hoover thermostats, each
acting individually on one specific particle to guarantee that its
average kinetic energy is the one set as target temperature. The
four thermostatted particles are: the two leftmost particles, at
T1; the two right-most particles, at T2. At the two extremes,
two additional virtual particles are added to represent the walls,
i.e., the fixed boundaries. The length separating them is such
that the average force exerted by the whole chain on the walls
is approximately zero.

The result for the new temperature profile can be seen in
Fig. 8, for three choices of temperatures and, correspondingly,
two choices of relative temperature differences. The temper-
ature profile is now almost linear in the bulk, in the range
between a temperature which is slightly higher than T1 and
one which is slightly lower than T2. Indeed, and unpredicted,
we can see a slight temperature jump at the points of contact of
the chain with the thermostatted boundaries, a sort of “contact
resistance,” which has been usually found in one-dimensional
systems, cf. [22]. Despite this effect, which slightly limits our
capacity to control the temperature gradient exactly, for all
other practical purposes we are well within the theoretical
requirements discussed in the previous sections.

To calculate the elastic coefficient E from simulations,
we have used the same method as the one described in
Ref. [15]. For each temperature, and temperature difference,
the simulations are run with the two ends clamped. After some
appropriate averaging, the total distance between the two ends
is routinely varied, and in each instance the average force
exerted on the clamped particle by the neighboring ones is
calculated. There will be a distance, which previously we have
called L(0; T ), in correspondence of which such average force
is null. In the proximity of L(0; T ), the same force will be pro-
portional to �L

L
. The proportionality constant is, therefore, E.
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FIG. 8. (Color online) Temperature profile, as a function of the
reduced coordinate r/L, of a linear chain with only nearest and
second-nearest neighbor LJ interactions. The temperature is presented
in units of the LJ energy scale ε. If we take as a reference the (black) ×
points, referring to a relative difference �T×/T× = 0.2, and the
corresponding T× average temperature, then the (blue) � points refer
to T = 0.9 T× and �T/T = 0.2, and the (red) � points refer to
T = T× and �T/T = 0.4.

In Fig. 9 we present results for the elasticity modulus E,
in function of T for the equilibrium case, and in function of
T = (T1 + T2)/2 for the nonequilibrium cases. The relative
differences are such that �T/T = 0.2 or �T/T = 0.4. N =
128 for all cases but one among the two in which �T/T = 0.4,
in which case N = 256. When �T/T = 0.2, our results are
entirely consistent with the theoretical predictions of the
previous sections (despite the fact that now the interaction
includes second-neighbors bonds, which was not part of the
derivation). That is, one would not be able to distinguish
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FIG. 9. (Color online) The modulus of elasticity E as a function
of the temperature, i.e., equilibrium temperature for equilibrium
simulations with N = 128 [the (blue) © points and the (blue) linear
fit]; average temperature T for nonequilibrium simulations. The
(black) × points are for the case N = 128 and �T/T = 0.2. The
(red) � point is for N = 128 and �T/T = 0.4. The (wine) ♦ point
is for N = 256 and �T/T = 0.4.

between a chain with a temperature difference actively
sustained between the two extremes and one which is at
equilibrium at the temperature T . On the other hand, the
situation changes when �T/T = 0.4. In this case, E is
noticeably larger than expected. For the reasons explained
in the preceding sections, this difference cannot be explained
away invoking some correction originating from the increased
magnitude of �E/E, as this would be smaller, as well as
pointing toward smaller rather than larger values of E. For this
particular case, we have also used N = 256, which maintains
the same particle-to-particle temperature difference as the one
established when �T/T = 0.2 and N = 128, but this has not
resolved the anomaly. We argue that this anomaly might be
model-related. For example, the hypothesis that the system
is locally canonical, or effectively equivalent to a locally
canonical system, is not justified when the relative difference,
hence the dissipation, is too large. It is also known that many
thermostats used in molecular dynamics simulations fail to
behave in a physically sound manner when �T/T or, more
generally, the dissipation exceeds certain limits [24–26], and
this could have nontrivial repercussions on the elastic behavior
of the chain. By converse, the case �T/T = 0.2 shows
impressive agreement with both the theoretical predictions
and the elastic properties described by the experiments.

V. CONCLUSIONS

We have demonstrated with both experimental and nu-
merical investigations that, as far as the elastic behavior
is concerned, a solid-body subject to steady-state thermal
differences is equivalent to the same body in equilibrium at
the average temperature. Here, by average temperature we
mean either the volume averaged temperature of a body which
is symmetric with respect to an axis orthogonal to the thermal
gradient (as in Secs. III B and IV D) or the volume averaged
temperature of the elastic component of the body in a lumped
scheme (as in Sec. III A). The symmetry properties of our
experimental setup make it easy to measure such average
temperature. In general, this is not the case; indeed, the
resonant frequency of an acoustic mode can be used to infer
its average temperature. This finding is true both in the case
of a metal and of a semiconductor. We have also developed
a theoretical explanation of the above findings, under the
assumption of local equilibrium. This suggests that, insofar
as the elastic properties are considered, there is a consistency
between the temperature that a thermometer measures and
the notion of local-equilibrium temperature. Or, differently
said, it shows that the purely elastic response is unaffected by
the magnitude of the standing heat flux. On other grounds,
whether this is a general fact for nonequilibrium observables
remains an open question in the thermodynamics community
(see Ref. [27] and references therein). Further, we have
shown that violations of Fourier’s Law in models consisting
of one-dimensional chains of anharmonic oscillators can be
overcome by taking into account longer-range interactions.
We have also observed a discrepancy on the Young’s modulus
with the numerical experiment, but this only emerges at a
level of relative thermal differences (40%) much larger than
the relative thermal differences set in the experimental work
(�15%).
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