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Frequency-dependent shear viscosity of a liquid two-dimensional dusty plasma
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The viscoelasticity of a two-dimensional (2D) liquid stronglycoupled dusty plasma is studied experimentally,
without macroscopic shear. Positions and velocities of the dust particles, measured by video microscopy, are
used as the inputs to the generalized Green-Kubo relation to obtain the complex viscosity η(ω). The real part of
η(ω) (which corresponds to dissipation) diminishes gradually with frequency, while the imaginary part (which
corresponds to elasticity) is peaked at a frequency below the 2D dusty plasma frequency. The viscoelastic
approximation is found to accurately describe the 2D experimental results for η(ω), yielding the Maxwell
relaxation time τM = 0.10 s. Results for η(ω) are compared to 2D molecular dynamics Yukawa simulations and
to a previous experiment that was performed using an oscillating macroscopic shear.
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I. INTRODUCTION

Liquids behave as a viscous continuum in the hydrodynamic
regime of large distances and long times, but in the kinetic
regime where distances and times are comparable to molecular
scales, liquids can also exhibit elastic effects [1]. Viscous
effects correspond to energy dissipation, while elastic effects
correspond to energy storage. When they occur at the same
time, as they can in a liquid in the kinetic regime, the
phenomenon is called viscoelasticity [2].

To characterize the viscoelasticity of a liquid quantitatively,
one can generalize the concept of viscosity, so that it is
dependent on both frequency ω and wave number k [3,4].
It is common, however, to report a simplified quantity
that depends only on frequency η(ω), which is a complex
function:

η(ω) = η′(ω) − iη′′(ω). (1)

The real part η′(ω) corresponds to the liquidlike property
of viscous dissipation, while the imaginary part η′′(ω) cor-
responds to the solidlike property of elasticity [5–7]. By deter-
mining η(ω), one can compare the effects of energy storage and
dissipation of a liquid for a particular time scale ω−1. A simple
model of the frequency-dependent viscosity is predicted by
the viscoelastic approximation [1], which has two parameters:
the Maxwell relaxation time τM and the static viscosity η0,
as will be discussed in Sec. II A. The latter quantity is the
same as η(ω) in the hydrodynamic limit of ω → 0 [3]. Aside
from η(ω), one can also characterize viscoelasticity using the
wave-number–dependent viscosity η(k), as has been done in
molecular dynamics (MD) simulations of liquids consisting
of particles that interact through various potentials [7–11] and
also in a two-dimensional (2D) dusty plasma experiment [11].

In this paper, we will investigate viscoelasticity of 2D
liquids by performing experiments with video microscopy
observations of particle motion in a liquid. There are several
2D physical systems that allow this kind of direct observa-
tion of individual particle motion. These include colloidal
suspensions [12,13], granular materials [14], a Wigner lattice
of electrons on a liquid helium surface [15], ions confined

*yan-feng@uiowa.edu

magnetically in a Penning trap [16], vortex arrays in the mixed
state of type II superconductors [17], and strongly coupled
dusty plasmas levitated in a single layer [11,18].

A dusty plasma [19–25], sometimes termed complex
plasma, is a partially ionized gas containing solid micron-size
particles, which we will refer to in this paper as dust particles.
Due to their large length scales and slow time scales [21], dusty
plasmas allow imaging by video microscopy and tracking of
individual particle motion [20]. Dust particles are negatively
charged, with typically thousands of elementary charges. As
a result, an ensemble of mutually repulsive dust particles
is strongly coupled [26,27]. Dusty plasma experiments can
be performed with all the dust particles located in a single
horizontal layer that is perpendicular to the ion flow; under
these conditions, the collection of dust particles behaves
essentially as a 2D system, with interparticle interactions that
can be modeled through a repulsive Yukawa potential [28,29]
with a screening length λD . Using various heating methods
[30–34], the kinetic temperature [33] can be adjusted so that
the suspension of dust particles behaves like a liquid or a solid.
In previous dusty plasma experiments, elasticity in solids [35]
and viscosity in liquids [36–39] have been studied by applying
shearing stress using laser beams.

We will obtain η(ω) for a 2D dusty plasma using ex-
perimental data in the generalized Green-Kubo relation, as
discussed in Sec. II C. In our literature search, we have not
found any previous report, for any substance, of a similar
use of the generalized Green-Kubo relation with an input of
experimental data. The experimental data we use is from a
2D dusty plasma experiment that was performed earlier in our
laboratory [40], to maintain a 2D liquid under well-controlled
steady conditions. These conditions are desirable for using the
generalized Green-Kubo relation.

We also test the expressions of the viscoelastic approxi-
mation, which is a standard theory for simple liquids that has
previously been tested experimentally for liquid argon and
other 3D liquids [1], but not, to the best of our knowledge, for
2D liquids or dusty plasmas. We perform this test by fitting
the equations for the viscoelastic approximation to the η(ω)
measured in two experiments, from our laboratory [40] and
the laboratory of Hartmann et al. [18], both using 2D dusty
plasmas.
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FIG. 1. (Color online) Sketch of the viscous and elastic parts
of the frequency-dependent viscosity, Eq. (1), as in Ref. [3]. At low
frequencies, motion is dominated by dissipation, corresponding to the
real part η′, while at high frequencies, it is dominated by elasticity,
corresponding to the imaginary part η′′.

II. FREQUENCY-DEPENDENT VISCOSITY

In this section, we review the principles and methods
for the viscoelastic approximation, and methods of obtaining
the frequency-dependent viscosity η(ω). We will use these
principles and methods in Sec. IV.

A. Viscoelastic approximation

The frequency-dependent viscosity η(ω) characterizes how
both viscous and elastic effects vary with time scales or
frequencies. The two parts, η′(ω) and η′′(ω), correspond to
viscous dissipation and elasticity, respectively. As ω → 0, it
is expected that the real part extrapolates to the usual static
viscosity η0, i.e., zero frequency viscosity.

Figure 1 shows a sketch of a typical complex viscosity η(ω)
for a liquid. Both the real and imaginary parts of η(ω) have
been normalized by the static viscosity η0. As the frequency
ω increases from 0, the real part η′(ω) decays from unity
monotonically toward 0. The imaginary part η′′(ω) increases
from 0 to its maximum and then decays gradually.

In the viscoelastic approximation [1], η(ω) can be expressed
as

η(ω) = G∞
−iω + 1/τM

, (2)

where G∞ is an instantaneous modulus of rigidity and τM

is the Maxwell relaxation time, τM = η0/G∞. The Maxwell
relaxation time τM characterizes the transition between viscous
behavior at low frequencies (ωτM � 1) and elastic behavior at
high frequencies (ωτM � 1) [1]. The real and imaginary parts
of Eq. (2) are

η′(ω)/η0 = 1

1 + τ 2
Mω2

(3)

for the viscous part and

η′′(ω)/η0 = τMω

1 + τ 2
Mω2

(4)

for the elastic part. Equations (3) and (4) have previously been
used to fit η(ω) from a simulation of a 3D Yukawa liquid [41].

In Sec. IV, we will fit Eqs. (3) and (4) to our experimental
measurements of η(ω), with one free parameter τM . We will

determine τM for our experiment of Ref. [40], and compare it
to values we determined from data for another experiment [18]
and our MD simulations.

B. Rheometry to measure η(ω)

A rheometer is an instrument that imposes a macroscopic
shear to measure viscosity. A boundary contacting the fluid is
rotated, causing a flow with a velocity gradient. The resulting
shearing stress can be measured to determine the viscosity η,
using its hydrodynamical definition [42]. This can be done
either with a steady or oscillating rotation, to find η0 or
η(ω), respectively. The imaginary part of η(ω) is determined
by measuring a phase shift (i.e., delay) between the applied
modulation and the resulting shearing stress.

Dusty plasmas are not suited for use with rheometers,
however, because the dust particles do not contact any solid
surface. Therefore, experimenters must determine viscosity
some other way, such as applying a shearing stress using laser
beams [18,37], or by using the Green-Kubo relation [40], as
we will do in this paper.

C. Generalized Green-Kubo relation to measure η(ω)

The generalized Green-Kubo relation can be used to obtain
the frequency-dependent viscosity. Previously it was used
in simulations [7]. It can be used for conditions without
macroscopic shear. Its inputs are the positions, velocities, and
potential energies of individual particles as they move in their
thermal motion. The frequency-dependent viscosity η(ω) is
calculated in three steps.

First, the shearing stress Pxy(t) is calculated as

Pxy(t) =
N∑

i=1

⎡
⎣mvixviy − 1

2

N∑
j �=i

xij yij

rij

∂�(rij )

∂rij

⎤
⎦ . (5)

Here i and j indicate different particles, N is the total number
of particles of mass m, ri = (xi,yi) is the position of particle i,
rij = |ri − rj |, xij = xi − xj , yij = yi − yj , and �(rij ) is the
interparticle potential energy.

Second, the shearing stress autocorrelation function
(SACF) is calculated as

Cη(t) = 〈Pxy(t)Pxy(0)〉. (6)

For the experiment reported here, despite the efforts that were
made, there was still a small nonzero average velocity in the
analyzed region, which results in a nonzero time-averaged Pxy .
To solve this problem, as in Ref. [40], we subtract the time-
average value from Pxy(t), so that we use only the fluctuating
portion to calculate the SACF.

Third, the frequency-dependent viscosity η(ω) can be
calculated from the Laplace-Fourier transformation of Cη(t),
i.e., the generalized Green-Kubo relation:

η(ω) = 1

AkBT

∫ ∞

0
Cη(t)eiωtdt, (7)

where A is the area of the 2D system and T is its temperature.
Equation (7) can be derived by combining Eqs. (20) and (21)
of Ref. [43] for a zero wave number, and it has been used
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previously for a 3D Yukawa simulation [7]. The units of η

are kg s−1 for a 2D liquid (unlike the viscosity of a 3D liquid,
which has units of kg m−1 s−1). By specifying ω = 0, Eq. (7)
is the same as the usual Green-Kubo relation for the static
viscosity η0 [40]. Unlike the shearing stress in Eq. (5), η(ω) in
Eq. (7) is independent of the system size.

The required inputs to calculate Pxy(t) are time series of
positions, velocities, and potential energies of each particle.
For experiments that rely on video microscopy, however,
only positions and velocities are usually recorded, not �.
For the experiment reported here, the potential energy can-
not be measured directly, so we calculate it from other
measurements by assuming a model potential. We use the
Yukawa potential, which has been shown experimentally [28]
and theoretically [29] to describe the conditions in a plane
perpendicular to the ion flow at a distance of about λD ,
as is the case for the single layer of dust particles in our
experiment [40].

To obtain the frequency-dependent viscosity η(ω) using
Eq. (7) with an input of experimental data, it is necessary to
replace the infinity upper limit with a finite time. In Sec. IV,
we will replace the upper limit of the integral in Eq. (7) with
the time that Cη(t) crosses zero for at least two consecutive
data points in the time series, as in Ref. [40]. This choice for
the upper limit determines the smallest value of ω at which we
can measure η(ω). As in Eqs. (3) and (4), we normalize η(ω)
by the static viscosity η0, which we calculate using Eq. (7)
with ω = 0, as in Ref. [40].

D. Review of η(ω) in dusty plasmas

The viscoelasticity of dusty plasmas has been the subject
of several theoretical studies [44–49]. It has also been studied
using 3D Yukawa MD simulations [7]. Early experimental
studies [50,51] were followed by measurements of the wave-
number–dependent viscosity η(k) [11] and the frequency-
dependent viscosity η(ω) [18]. In the latter experiment [18],
a macroscopic oscillatory shear was applied to a 2D dusty
plasma using a time-modulated laser manipulation.

The generalized Green-Kubo relation Eq. (7) that we use in
this paper is based on the fluctuating shearing stress associated
with the thermal motion of the dust particles, without any
macroscopic shear. Equation (7) has been tested using 3D
simulations [7], where it was shown that it yields η(ω)
consistent with results from a simulation using a different
method, with an oscillatory shear. Our use of Eq. (7) is different
because we use experimental data, and we do this for a system
that is 2D instead of 3D.

In this paper, we use the generalized Green-Kubo relation
with an input of experimental data to obtain the complex vis-
cosity η(ω). The experiment, which was reported in Ref. [40],
is reviewed briefly in Sec. III. Our calculation differs from
that of Ref. [40] because the Green-Kubo relation that we
use, Eq. (7), is the generalized form, so that we obtain the
frequency-dependent viscosity instead of the static viscosity
η0. In Sec. IV we present our results for η(ω) and τM , and
we compare to the previous experimental results of Hartmann
et al. [18], who used an applied oscillatory shear. In Sec. V we
compare our experimental results to 2D MD simulations, with
and without the effects of gas friction.

III. EXPERIMENT

In this section, we briefly review the experiment of
Ref. [40], which provides the data we will use in Sec. IV. Dust
particles, which were 8.1 μm diameter polymer microspheres,
were electrically levitated as a 2D horizontal layer in an argon
rf plasma. Using a top-view camera operated at 250 frames/s,
we tracked ≈2100 dust particles, yielding time series of
their positions and velocities [52,53]. Four runs, each lasting
20.2 s, were performed with laser heating so that the dust
particles behaved collectively as a liquid. In this liquid, the dust
particle kinetic temperature was nearly uniform, with a value
of T = 2.5 × 104 K. The “kinetic temperature” describes the
motion of a dust particle, not the temperature of the polymer
material within the dust particle. We calculate the kinetic
temperature from the mean-square velocity fluctuation as
in Ref. [33].

The layer of dust particles had the following parameters.
The interparticle distance, characterized by the Wigner-Seitz
radius [54] a = 0.35 mm, corresponded to an areal mass
density of ρ = 1.1 × 10−6 kg/m2. A moving dust particle
experienced a drag force due to the neutral gas charac-
terized by a friction coefficient νf = 2.4 s−1. The charge
on a dust particle was Q/e = −6000, the 2D dust plasma
frequency [54] was ωpd = 30 s−1, the coupling parame-
ter was 
 = (Q2/4πε0a)/(kBT ) = 68, and the screening
parameter was κ = a/λD = 0.5. The values of Q and κ

have uncertainties estimated to be ±10% and ±20%, re-
spectively. Further details of this experiment can be found
in Ref. [40].

The result for the SACF for one experimental run is shown
in Fig. 2. We calculate the SACF using Eq. (6), after obtaining
Pxy(t) using Eq. (5). The SACF generally has a trend of decay,
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FIG. 2. (Color online) The shearing stress autocorrelation func-
tion (SACF), i.e., Cη, calculated using an input of experimental data
from one experimental run. The vertical axis, the SACF, is normalized
by (AkBTρa2ω2

pd ), while the horizontal axis, time, is normalized by
ω−1

pd .
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FIG. 3. (Color online) The frequency-dependent viscosity η(ω)
obtained using an input of experimental data in Eq. (7). These results
are shown as data points for four experimental runs. The smooth
curves are the result of a simultaneous fit using the viscoelastic
approximation, Eqs. (3) and (4). This fit yields the Maxwell relaxation
time, τM = 0.10s = 3.0 ω−1

pd . The vertical axis is normalized by the
static viscosity η0 for each run.

starting with its maximum value at t = 0. The frequency
content within this decay is important in the determination
of η(ω).

In Sec. IV we will analyze data from four runs to obtain the
frequency-dependent viscosity η(ω) using Eq. (7). This result
for η(ω) will have an uncertainty of about 13% due to the
uncertainties in Q and κ .

IV. RESULTS

A. Frequency-dependent viscosity η(ω)

In Fig. 3 we present our chief result: the frequency depen-
dence of the complex viscosity, η(ω). These data points are
obtained using the generalized Green-Kubo relation, Eq. (7),
after the SACF is calculated, for each run. We also obtain the
zero-frequency static viscosity η0 for that run by using Eq. (7)
with ω = 0. Repeating for all four runs, we obtain the data for
η(ω) shown in Fig. 3.

The trends seen in our results for η′(ω) and η′′(ω) in Fig. 3
for our 2D liquid are generally the same as for 3D liquids. The
real part η′(ω) (which corresponds to dissipation) decays with
increasing frequency. The imaginary part η′′(ω) starts at zero
for ω = 0, then has a peak followed by a decay at large ω.

To allow a comparison to other experiments and sim-
ulations, our results for the frequency-dependent viscosity
η(ω) in Fig. 3 are presented in normalized units. Viscosity
is normalized by the static viscosity η0, which was determined
separately for each run. Frequency is normalized as ω/ωpd ,
where ωpd is the 2D dust plasma frequency. The scatter in our
results for η(ω) in Fig. 3 arises from noise in the SACF, which

is believed to be statistical noise due to the finite amount of
data used in a calculation for a single experimental run.

B. Test of the viscoelastic approximation

1. Without macroscopic shear

We now test the viscoelastic approximation, using the
results of the frequency-dependent viscosity obtained from
the experiment of Ref. [40], which had no macroscopic shear.
We fit the expressions for the viscoelastic approximation,
Eqs. (3) and (4), to our experimental results for the frequency-
dependent viscosity data, yielding the smooth curves in Fig. 3.
In performing this fit, we combined the data for all four runs
in Fig. 3. This fit has a single free parameter, which is the
Maxwell relaxation time τM .

We find τM = 0.10 s, which in dimensionless units is
3.0 ω−1

pd . The physical significance of the Maxwell relaxation
time is that elastic behavior dominates at shorter times t � τM

while viscous dissipation dominates at longer times t � τM .

2. With macroscopic shear

For comparision, we also test the viscoelastic approxima-
tion, this time using data from the experiment of Hartmann
et al. [18], which had a macroscopic oscillating shear. That ex-
periment was similar to ours in several ways. Both experiments
used a single-layer suspension of melamine-formaldehyde
microspheres immersed in a radio-frequency argon plasma,
and the dust particles were tracked using video microscopy.

The two experiments used different laser manipulation
schemes and different approaches to determine η(ω). We
used a uniform laser heating and the Green-Kubo approach,
which requires that the dusty plasma have steady uniform
conditions, while Hartmann et al. applied an oscillatory shear
at an adjustable frequency and obtained the viscosity as the
ratio of the shearing stress Pxy and the applied shear rate. The
Green-Kubo approach tends to generate data most easily at
high frequencies, because we replace the infinite time limit in
Eq. (7) with a finite time, as mentioned in Sec. II. On the other
hand, the data reported by Hartmann et al. were mainly for
lower frequencies. Thus, the two methods are complementary
to each other.

Some of the experimental conditions were different. In
Ref. [40] the dust-particle diameter was nearly twice as large
as in Ref. [18], and the gas pressure was slightly higher in
Ref. [40]. The screening length λD was approximately twice as
large in Ref. [40], even though the particle spacing was nearly
the same, so that the screening parameters κ were different:
0.5 for Ref. [40] but 1.2 for Ref. [18].

We find that the viscoelastic approximation is capable of
describing both experiments. This is seen in Fig. 4, where we
see that the fit of the viscoelastic approximation Eqs. (3) and
(4) passes through the data points of Hartmann et al. [18]. The
values of the fit parameters τM and η0 for the two experiments
are not expected to match, since the experimental conditions
were different. Nevertheless, we find that both experiments
had the same normalized static viscosity [40] η0/ρa2ωpd =
0.16. We also find that both experiments had nearly the same
normalized relaxation time: τM = 3.0 ω−1

pd and τM = 3.1 ω−1
pd ,

for the experiments of [40] and [18], respectively.
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FIG. 4. (Color online) The frequency-dependent viscosity η(ω)
from the experiment of Hartmann et al. [18], which was performed
using an oscillatory shear. Here, the viscosity has been normalized
by ρa2ωpd , differently from Figs. 3 and 5. The smooth curves are our
fit using the viscoelastic approximation, yielding τM = 3.1ω−1

pd and
η0 = 0.16. Another time scale of interest corresponds to gas friction,
which in this experiment is quantified by νf = 0.04ωpd .

V. SIMULATIONS

To demonstrate that the viscoelasticity that we observed
for our dusty plasma experiment is the result of interactions
of the dust particles, we performed MD simulations. These
simulations used only simple physics, with an integration of
the equations of motion of dust particles interacting through
a binary Yukawa potential. Using the particle positions,
velocities and potentials recorded in the simulations, we
calculated η′(ω) and η′′(ω). We then fit Eqs. (3) and (4) to
these results to obtain τM .

Two simulation methods were used: the frictionless MD and
the Langevin MD methods, as described in Ref. [8]. Both used
a binary interparticle interaction with a Yukawa pair potential
for particles that were constrained to move in a 2D plane. For
both simulations, we used N = 4096 particles in a rectangular
box with periodic boundary conditions. Trajectories ri(t)
were found by integrating equations of motion for all
particles in MD simulations [8], with the integration time
step of 0.019ω−1

pd . The simulation data trajectories were

recorded for a duration 68 000ω−1
pd after a steady state was

reached. This duration was more than 100× longer than one
experimental run, so that the simulation has better statistics.
The dimensionless parameters 
 and κ were chosen to match
the experimental values of 
 = 68 and κ = 0.5 [11]. In
our Langevin MD simulation, we chose the gas friction to
be the same as in the experiment, νf = 0.08ωpd . Ewald
summation [55] was not required because our 2D simulation
box is large enough compared to the screening length [56].
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FIG. 5. (Color online) Simulation results for a 2D Yukawa
liquid. The frequency-dependent viscosity is accurately described
by the viscoelastic approximation, shown by the smooth curves. The
simulation used the same values of 
 and κ as for our experiment of
Ref. [40], and it was performed two ways, using the (a) frictionless
and (b) Langevin methods.

Simulation results for η′(ω) and η′′(ω) are shown in Fig. 5.
They exhibit the same trends as in the experimental results.
The Maxwell relaxation time, τM , is found to be 3.4ω−1

pd for the

frictionless MD simulation, and 3.8ω−1
pd for the Langevin MD

simulation. These two values are both close to the experimental
value τM = 3.0ω−1

pd , for the same 
 and κ . This agreement
between the experiment and these simulations demonstrates
that the viscoelasticity observed in the experiment is mainly
due to binary interactions among dust particles.
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VI. SUMMARY

We experimentally determined the frequency-dependent
viscosity η(ω) for a 2D dusty plasma, using the generalized
Green-Kubo relation. This measurement relies on the thermal
motion of individual dust particles for experimental conditions
without any macroscopic shear. We found that the real and
imaginary parts of η(ω) show agreement with the viscoelastic
approximation, so that we were also able to determine the
value of the Maxwell relaxation time, τM = 0.10s = 3.0ω−1

pd ,
for our experimental conditions.

We performed 2D MD simulations, using the same param-
eters as in the experiment, and we found that the simulations
predict η(ω) and τM that agree with the experiment. This

comparison to simulation indicates that the viscoelastic effects
in the 2D dusty plasma, as quantified by η(ω), are mainly due
to the binary interparticle interactions among the dust particles.

The generalized Green-Kubo relation that we used for
conditions without externally applied shear yielded data for
η(ω) mainly for higher frequencies. In contrast, Hartmann
et al. [18], who used an applied oscillatory shear, reported
results for lower frequencies. We find that the viscoelastic
approximation is capable of describing both experiments.
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