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Cutoff wave number for shear waves and Maxwell relaxation time in Yukawa liquids
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Because liquids cannot resist shear except over very short distances comparable to the atomic spacing, shear
sound waves (i.e., transverse phonons) propagate only for very short wavelengths. A measure of this limit is the
cutoff wave number kc, which is sometimes called the critical wave number. Previously kc was determined in
molecular dynamics (MD) simulations by obtaining the dispersion relation. Another approach is developed in
this paper by identifying the wave number at the onset of a negative peak in the transverse current correlation
function. This method is demonstrated using a three-dimensional MD simulation of a Yukawa fluid, which mimics
dusty plasmas. In general, kc is an indicator of conditions where elastic and dissipative effects are approximately
balanced. Additionally, the crossover frequency for the real and imaginary terms of the complex viscosity of a
dusty plasma is obtained; this crossover frequency corresponds to the Maxwell relaxation time.
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I. INTRODUCTION

Solids, unlike gases, can sustain two kinds of sound waves
(phonons): compressional and transverse. The compressional
wave is longitudinal, like a sound wave in air, with a
periodic compression and rarefaction and wave propagation
in a direction parallel to the collective particle velocities. The
transverse wave has shear motion, with wave propagation
perpendicular to collective particle velocities. The ability of
a medium to sustain a shear wave requires an elastic response
to a disturbance, where a particle tends to be restored to its
equilibrium position after being disturbed.

A liquid, unlike a solid, exhibits elastic responses only for a
limited time and over a limited distance. This is so because the
potential landscape surrounding a particle in a liquid does not
remain unchanged indefinitely as in a solid. When neighboring
particles rearrange their positions irreversibly, there will also
be an irreversible change in the confining potential landscape,
and energy will be dissipated. Until a rearrangement occurs,
a disturbance in the position of one particle can be restored
elastically.

One approach used in the theory of liquids for characteriz-
ing the conditions for elastic vs dissipative motion is based on
the propagation of the shear wave. Shear waves with a wave
number less than a minimum wave number kc cannot propagate
[1]. Theoretical authors have referred to this minimum wave
number as a “critical wave number” or a “cutoff wave number,”
and we will adopt the latter term. Typically kc has a value
of kca ≈ 1, within a factor of 3, depending on temperature
and other parameters of the liquid. Here, a is a measure of
interparticle distances in a liquid, defined as the Wigner-Seitz
radius a = (3/4πn)1/3 for a number density n.

The cutoff wave number has practical importance not only
in simple liquids, but also in strongly coupled plasmas like
those that we study here, and in supercooled liquids [2].
The cutoff wave number has been observed identified in
molecular dynamics (MD) simulations including [3–5] for
three-dimensional (3D) liquids and [6] for 2D liquids. A direct
observation of the cutoff wave number has been made, to

our knowledge, in one experiment [7], which used a dusty
plasma. A dusty plasma is an ionized gas containing charged
particles of solid matter [8–10]. Dusty plasma experiments
have also been reported to characterize static viscosity [11]
and viscoelastic effects [12,13].

Previous methods of determining kc include examining a
dispersion relation ω vs k of the shear waves. By tracking
particle positions and velocities in an MD simulation, one can
compute a phonon spectrum, i.e., a graph of wave energy as a
function of ω and k. In such a graph, energy is concentrated
in a band in ω-k space. Drawing a curve along the peaks
of this band yields the dispersion relation. For a liquid, this
dispersion relation curve does not extend down to ω = 0 and
k = 0 as it does for a solid, but instead ends at an intercept on
the ω = 0 axis. The previous method of determining k = kc

is by extrapolating the observed dispersion relation curve to
this intercept, as has been done for liquids in three [5] and two
dimensions [14]. We present in Fig. 1 an example of such a
dispersion relation, as determined from the 3D MD simulation
reported in this paper. The simulation method and parameters
are described in Sec. II.

In this paper, we develop another quantitative method to
determine the cutoff wave number kc. This method is based
on identifying a negative peak in a correlation function and
extrapolating to the condition where this peak vanishes. We
present this method and demonstrate its usefulness over a wide
range of temperature using MD simulation data for a liquid
strongly coupled plasma in Sec. III D.

A strongly coupled plasma is a collection of free charges
that have an interparticle potential energy that is greater than
the thermal kinetic energy. Such a strongly coupled plasma
can have the structure of a solid or a liquid, depending on
whether the temperature is below or above a melting point [15].
It is common to describe a strongly coupled plasma by the
dimensionless Coulomb coupling parameter

� = Q2

4πε0akBT
, (1)
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FIG. 1. (Color online) Example of dispersion relations of shear
waves in a 3D Yukawa liquid. The curves for the dispersion relations
were determined as the peaks of the phonon spectrum computed
using our MD simulation, which is a method used by previous authors,
e.g., [4]. Note the absence of a dispersion relation for very small wave
numbers: this indicates the cutoff kc. Also shown for comparison is
the dispersion relation for propagation along a primitive vector of a
bcc lattice for the same κ . The quantities shown are dimensionless;
the wave number is normalized k̄ = ka where a is the Wigner-Seitz
radius, and the frequency is normalized ω̄ = ω/ωp where ωp is the
plasma frequency.

where Q is the charge of the particles and T is the temperature.
When Debye screening occurs, the electric potential of a
point charge can be described as the Yukawa (Debye-Hückel)
potential energy φ = (Q2/4πε0r) exp(−r/λ), where λ is a
screening length. In this case, another dimensionless parameter
is the screening parameter

κ = a/λ. (2)

Time scales in a strongly coupled plasma are characterized by
the plasma frequency

ωp = (nQ2/ε0m)1/2, (3)

where m is the mass of a particle.
We will use the Yukawa potential, which is used often

to describe dusty plasmas [16] as well as charged colloidal
suspensions. A Yukawa system can behave as a liquid, as has
been studied in both simulations and experiments, of which we
will mention a few. The melting point of a 3D Yukawa system
has been determined in MD simulations [17] to be �melt =
217.4, 440.1, and 1185 for κ = 1, 2, and 3, respectively.
The complex viscosity η(ω) has been characterized in 3D
simulations [18] and a 2D dusty plasma experiment [19].

In addition to determining kc, we will also use our
simulation to determine the frequency-dependent viscosity of
a Yukawa fluid. The frequency-dependent viscosity

η(ω) = η′(ω) − iη′′(ω) (4)

is a formalism to describe two characteristics of viscoelastic
effects: the real part η′ indicates dissipation while the imag-
inary part η′′ indicates elasticity, i.e., energy storage. As we
will discuss in Sec. III, there is a frequency ωcross for which
the curves for η′(ω) and η′′(ω) cross over, and the inverse of
this crossover frequency is the Maxwell relaxation time τM .
We will present results for the frequency-dependent viscosity
and Maxwell relaxation time for a Yukawa fluid in Sec. III C.

II. SIMULATION

A. Method

We use the equilibrium molecular dynamic simulation
method as described in [18]. To imitate an infinite liquid, the
simulation has periodic boundary conditions, which is suited
for studying the intrinsic properties of a substance. This differs
from the approach of simulations in a bounded system [20]. In
a system containing N particles, we integrate the equation of
motion of a particle i,

m
dvi

dt
= −Q

N∑
j �=i

∇φij , (5)

where φij is the potential for a binary Yukawa interaction at the
position of particle i due to particle j . We use the resulting time
series data for positions and velocities of particles to calculate
the transverse microscopic current

τxy(k,t) =
N∑

j=1

vxj e
ikyj (6)

and the off-diagonal elements of the shear stress tensor

Pxy(t) =
N∑

i=1

⎡
⎣mvixviy − 1

2

N∑
j �=i

xij yij

rij

∂φ(rij )

∂rij

⎤
⎦ , (7)

where rij = |rij | = |ri − rj | = |(xij ,yij )|.
When we present our results in Sec. III, it will be useful

to know that in Eq. (7) the first term on the right-hand side
arises from kinetic effects that are dominant for liquids at
high temperatures, while the second term arises from potential
effects that are dominant at low temperatures [21]. These
potential effects include caging [22,23] and decaging [24] of
particles.

We then calculate the transverse current autocorrelation
function

CT(k,t) = 〈τxy(k,t)τ ∗
xy(k,t)〉 (8)

and the shear stress autocorrelation function

Cη(t) = 〈Pxy(t)Pxy(0)〉. (9)

We can use Eq. (9) in the generalized Green-Kubo relation

η(ω) = 1

V kT

∫ ∞

0
Cη(t)eiωtdt (10)

to calculate the complex viscosity, Eq. (4). Here, V = L3

is the simulation volume. As in [18], we replace the upper
limit in Eq. (10) with the time when the correlation function
first crosses zero. Equation (10), which can be derived from
expressions in [25], includes a complex exponential so that
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it is a generalization of the usual Green-Kubo relation. The
latter is known to predict viscosity values that agree with
those obtained by hydrodynamic schemes for steady-state
conditions.

B. Parameters

The simulated cell contains N = 8000 identical particles in
a cube with sides of length L ≈ 32.24a. This length defines
a minimum resolvable wave number 2π/L ≈ 0.195a−1. The
time step is chosen as �t � (π/15)ω−1

p . The simulation is run
for an initial thermalization period of 105 time steps, and then
data are recorded for 106 time steps. We repeat the simulation
over a wide range of the Coulomb coupling parameter � <

�melt and three values of the screening parameter κ = 1, 2,
and 3.

C. Dimensionless variables

We report results that are in dimensionless units, as
indicated by bars over the symbols. These are the length
r̄ = r/a, wave number k̄ = ka, correlation functions C̄(t) =
C(t)/C(0), viscosity η̄ = η/mnωpa2, and frequency ω̄ =
ω/ωp. For some results we will also report frequencies
normalized as ω/ωE , where ωE is the Einstein frequency,
whose values are reported in Table I of [17]. We make time
t dimensionless by multiplying by the plasma frequency ωpt .
Other dimensionless variables are � and κ as defined in Eqs. (1)
and (2), respectively.

III. RESULTS AND DISCUSSION

A. Dispersion relation

A method used by previous authors to identify a cutoff wave
number is the measurement of the dispersion relation. One
way of doing this is to perform an MD simulation to record
the positions and velocities of particles undergoing thermal
motion and use these data to compute the power spectrum in
the ω-k space. The peaks of this power spectrum correspond
to the wave dispersion relation.

An example of a dispersion relation is presented in
Fig. 1, based on our MD simulation. The previous method
of determining kc is to extrapolate these dispersion relation
curves to their intercept on the ω = 0 axis.

B. Cutoff wave number: Transverse current correlation method

An example of the transverse current correlation function
CT , defined in Eq. (8), is shown in Fig. 2(a) for our simulation
with � = 125 and κ = 1. For small wave numbers, i.e., in
the hydrodynamic limit, CT decays monotonically. For large
wave numbers, CT exhibits oscillations, which are considered
as indications of the presence of shear waves [26,27]. The
feature of interest to us is the first negative peak in these
oscillations.

Here, we present a method of determining kc quantitatively
using this negative peak. The steps are as follows. We compute
CT for a specified value of k, and we determine the amplitude A

of its largest negative peak. We repeat this for a series of four or
five k values, and we plot the trend for A vs k. Fitting a straight
line through these data points, as in Fig. 2(b), we extrapolate

FIG. 2. (Color online) (a) Example of transverse current autocor-
relation function CT for a liquid at a temperature nearly twice as high
as the melting point, for various wave numbers k. The hydrodynamic
limit is at small wave numbers while at larger wave numbers there
are oscillations. (b) Method of determining the cutoff wave number
kc. We measure the amplitude A of negative peaks of CT in (a) for
various values of k, and plotting these we extrapolate to find the value
of k where the amplitude just touches a zero value, i.e., where the
curve for CT would barely have a negative oscillation in the absence
of noise; we report this value of k as our measure of kc. The vertical
axis of (a) is normalized by the value of the correlation function at
zero time, C̄(t) = C(t)/C(0).

to identify the value of k where the amplitude approaches
zero. This extrapolated value at the onset of oscillations in
CT corresponds to the onset of shear wave propagation. We
therefore report this extrapolated wave number as our measure
of the cutoff wave number kc.

Applying this method to our simulation data for a 3D
Yukawa liquid, we find the cutoff wave number kc for a
liquid over a wide range of �. The cutoff wave number is
generally in a range 0.3 � k̄c � 3, where the smaller values of
k̄c correspond to temperatures near the melting point.

We also find that, when normalized, the values for the cutoff
wave number fall on a universal curve (see Fig. 3). This curve
is approximately k̄c = 1

3 (�/�melt)−4/3. To make the data fall
on this curve, we normalized kc by a and � by the melting
point �melt.
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J. GOREE, Z. DONKÓ, AND P. HARTMANN PHYSICAL REVIEW E 85, 066401 (2012)

FIG. 3. (Color online) Results for cutoff wave number kc, deter-
mined from our MD simulation, measured as in Fig. 2 by identifying
the smallest value of k that would allow a negative oscillation of
the transverse current correlation. Data are shown as a function of
the Coulomb coupling parameter �, which serves as a measure of
inverse temperature, and they are normalized by the melting point
�melt data from [17]. Generally kc decreases with �, i.e., increases
with temperature.

As a validation, we compared our results for the cutoff wave
numbers to those reported by Murillo [28] and by Hamaguchi
and Ohta [5]. They both determined kc from a dispersion
relation, which they obtained by different means. Murillo used
a hydrodynamic method, while Hamaguchi and Ohta used an
MD simulation. We find general agreement when comparing
our values and theirs. This agreement is improved by dividing
their values of kc by a factor of

√
2, which is reasonable

considering Murillo’s argument that the dispersion relation
methods generate a value of kc that is larger than the true onset
of waves by a factor of

√
2 [28]. Our method detects the onset

of waves.

C. Crossover frequency: Complex viscosity method

For comparison, we present here another indicator of
the balance of elastic and dissipative effects, characterized
by a frequency instead of a wave number, and based on
viscosity instead of waves. This is done by exploiting the
frequency-dependent viscosity Eq. (4), which has a real part
η′(ω) that corresponds to viscous dissipation, and an imaginary
part η′′(ω) that corresponds to elasticity, i.e., energy storage.

Here, we do not investigate the full dependence of η on both
ω and k because our Green-Kubo method yields valid results
only with k = 0 [25]. We also note that a dependence on only
frequency is what is typically measured in experiments, for
example using rheometers that agitate a liquid by rotating at
a specified frequency ω. Besides our Green-Kubo method,
there exist other theoretical methods that have been used

to generate the full frequency and wave-number-dependent
viscosity, which we do not attempt to use [29].

In the theory of liquids, the viscoelastic approximation [30]
predicts the real and imaginary parts of viscosity as

η′(ω) = η

1 + ω2τ 2
M

, (11)

η′′(ω) = η ω τM

1 + ω2τ 2
M

, (12)

where η is the usual static viscosity for ω → 0, and τM is
the Maxwell relaxation time [30]. The real part η′ is larger at
low frequencies, while the imaginary part η′′ is larger at high
frequencies. Inspecting Eqs. (11) and (12), we see that the real
and imaginary parts are equal, i.e., their curves cross over, at
ω = 1/τM .

This prediction for the viscoelastic approximation, a
crossover of the real and imaginary terms at a physically
significant frequency of 1/τM , leads us to inspect graphs of the
complex viscosity from our MD simulation, produced using
Eq. (10).

An example of the complex viscosity and the crossover of
its real and imaginary terms is shown in Fig. 4. The data points
are our simulation results. Note that the real part η′ diminishes
monotonically with frequency, so that its curve crosses that
of the imaginary part η′′. In this example, for � = 125 and
κ = 1, the crossover occurs at ωcross = 0.240ωp. We interpret
1/ωcross = 4.17ω−1

p as an empirical measure of τM , for the
parameters of Fig. 4.

FIG. 4. (Color online) Terms of the complex viscosity, where the
real term η′ indicates dissipation and the imaginary term η′′ indicates
storage of energy. Data points are from the MD simulation. The
real and imaginary terms cross over in this case at ω̄cross = 0.240.
We interpret this crossover of the real and imaginary terms as an
indication of a balance of dissipation and elasticity. Also shown are
curves for a fit to Eqs. (11) and (12) for the viscoelastic approximation,
with fit parameters η̄ = 0.157 and τM = 4.152ω−1

p . Viscosity is
normalized here as η̄ = η/mnωpa2.
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Also shown in Fig. 4 is a fit of our MD simulation data
to the viscoelastic approximation Eqs. (11) and (12). This fit,
which has only two free parameters, η and τM , shows good
agreement. The fit yields τM = 4.15ω−1

p , for the parameters
� = 125 and κ = 1 of Fig. 4. The fit is good, as indicated by
an agreement within 0.5% when compared to 1/ω̄cross for the
simulation data points.

We repeat this calculation of the crossover frequency ωcross

for a wide range of � and κ , and the result is shown in
Fig. 5(a). By normalizing the axes differently in Fig. 5(b), as
ω/ωE vs �/�melt, we find that the curves for various screening
parameters κ are similar.

The curves for ωcross in Fig. 5 have a peak. We verified
that this peak nearly coincides with a minimum of viscosity.
This minimum of viscosity is a well-known phenomenon
for liquid strongly coupled plasmas. It occurs between low
temperatures where the potential terms in Eq. (7) dominate and
high temperatures where the kinetic terms dominate [21]. For
the purpose of understanding viscoelasticity, only the high-�
regime is of interest, which in Fig. 5(b) is for �/�melt � 0.1.
In this case the viscosity is dominated by potential effects, and
particles can be caged for a finite time between their nearest
neighbors, as is required for elasticity. This is the same range
of � where we found oscillations in the transverse current
correlation function that indicate the presence of shear waves,
as indicated in Fig. 3.

Within the regime �/�melt � 0.1 that is meaningful for
viscoelasticity, we find a trend that the crossover frequency
diminishes with increasing �. We can suggest an intuitive
explanation for this trend. For this relatively low-temperature
range, viscous effects are dominated by the second term of
Eq. (7), which arises from potential energy terms that can result
in caging. Consider that ωcross indicates a balance of dissipative
and elastic effects, and that dissipation involves the slipping of
particles out of a cage. This decaging requires a displacement
that is a significant fraction of the particle spacing. Since the
particle has a finite velocity, characterized by the thermal
velocity, this displacement requires a finite time. At a high
frequency ω, there is too little time, 1/ω, for this to occur,
and elastic effects will dominate. Only at a sufficiently low
frequency ω < ωcross will there be sufficient time for a particle
to slip enough to decage. As the temperature is decreased
(i.e., � is increased), the thermal velocity is reduced and the
time required for slipping becomes longer. Thus, we generally
expect ωcross to diminish as � is increased. This is the trend
that is observed in our data in Fig. 5, for 0.1 < �/�melt < 1.

D. Cutoff wave number vs crossover frequency

We have developed a quantitative method of measuring the
cutoff wave number determined by extrapolating a negative
peak in a correlation function to the point at which it vanishes,
as an indication of a balance of dissipative and elastic effects
as a function of �. As another method of indicating a balance
of dissipative and elastic effects, we also presented results for
a better-known method, the complex viscosity, which has two
terms that cross at a frequency that we find. We can combine
these results from Figs. 3 and 5 into a single graph of ωcross vs
kc, in Fig. 6.

FIG. 5. (Color online) Crossover frequency ωcross, determined as
in Fig. 4. Results are shown in (a) in our usual dimensionless variables.
In (b) the frequency is normalized by the Einstein frequency ωE and
the inverse temperature � is normalized by the melting point, showing
a similarity. Data points to the right of the peak are meaningful for
viscoelastic effects.

In Fig. 6, the data points in the lower left-hand corner are
for low temperatures near the melting point, i.e., high �, while
those in the upper right are for high temperature. Beyond the
last data points in the upper right, the effects of elasticity
vanish.

The significance of any given data point in Fig. 6(a) is that
for its value of � and κ , the data point marks a frequency
ω and a wave number k where elastic and dissipative effects
balance. Elastic effects dominate for the parameter space k

to the right and ω above the data point, while dissipative
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FIG. 6. (Color online) Results from Figs. 3 and 5 combined. Data
for liquids are shown in (a) with our usual dimensionless units and in
(b) with frequency normalized by the Einstein frequency. A crystalline
solid would appear at the origin in this graph.

effects dominate to the left and below the data point. For lower
temperatures, i.e., for data points nearer the origin in Fig. 6,
a greater portion of the ω-k parameter space is dominated
by elastic effects, as compared to higher temperatures. This
temperature dependence is the reason that the data points are
distributed along a curve with a distinctive trend in Fig. 6.

All the data points in Fig. 6 are for a liquid. A crystalline
lattice at zero temperature would appear at the origin in this
graph. This is so because dissipation is lacking and elastic
effects dominate, for all values of k and ω in a perfect crystal.

To avoid confusion, we should mention that despite its
appearance as a graph of a frequency vs a wave number, Fig. 6
is not a dispersion relation. The vertical axis ωcross has no direct
relation to waves.

IV. CONCLUSIONS

We have developed a method of determining the cutoff
wave number for shear waves, by detecting the presence of an
oscillation in the transverse current correlation function CT (t).
This is a sensitive method of detecting the onset of shear waves,
and it allows a determination of the cutoff wave number. This
method is useful over a wide range of temperatures, even
as hot as ten times the melting point for the 3D Yukawa
liquid that we studied. We obtained the data for this test
using an equilibrium MD simulation. We empirically found the
temperature dependence, i.e., the dependence on the coupling
parameter �, to be k̄c = 1

3 (�/�melt)−4/3.
For comparison, we have also presented results from

another method of identifying a balance of the effects of
viscous dissipation and elasticity: a determination of the
crossover frequency for the real and imaginary parts of the
frequency-dependent complex viscosity. This method, which
in principle could be useful for experiments as well as
simulations, relies on the meaning of the real part of the
viscosity as an indicator of dissipation and the imaginary
part as an indicator of elasticity. The inverse of this crossover
frequency is an empirical measure of the Maxwell relaxation
time, which is a well-known parameter in viscoelastic theory
that we determined for a dusty plasma.

This crossover frequency method yields results over a
wide range of temperature, although for the purposes of
understanding the elastic part of viscoelasticity it is likely
meaningful only for the same temperature range as our cutoff
wave number method. That range is the one where the potential
terms dominate the viscosity, which for our 3D Yukawa liquid
is roughly 0.1 < �/�melt < 1.

Note added in proof. An agreement of the Green-Kubo
method and a hydrodynamic method of computing the shear
viscosity was demonstrated recently for Yukawa liquids by
Mithen et al. [31]. For the hydrodynamic limit, they also
confirmed the monotonic decay of the transverse current
autocorrelation function CT for a Yukawa liquid.
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