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Band structure and wave localization are investigated for sea surface water waves over large-scale sand wave
topography. Sand wave height, sand wave width, water depth, and water width between adjacent sand waves have
significant impact on band gaps. Random fluctuations of sand wave height, sand wave width, and water depth
induce water wave localization. However, random water width produces a perfect transmission tunnel of water
waves at a certain frequency so that localization does not occur no matter how large a disorder level is applied. To-
gether with theoretical results, the field experimental observations in the Taiwan Bank suggest band gap and wave
localization as the physical mechanism of sea surface water wave propagating over natural large-scale sand waves.
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I. INTRODUCTION

With the rapid development of photonic crystals and
phononic crystals, the application of the Bloch theorem to
water waves over periodically structured bottoms has recently
received considerable attention [1–5]. It has been established
both theoretically and experimentally that the interactions
of water waves with structured bottoms can produce many
interesting phenomena such as Bragg resonance and Anderson
localization. For water waves propagating in periodic media,
Bragg resonance induces complex band structures and the
propagation of a water wave is forbidden within the band gap.
In random media, however, multiple scattering may lead to
wave localization, a concept originally proposed by Anderson
[6], that explains electronic localization induced by disorders
in electronic systems. By extending the ideas of band structures
and localization to photonic crystals, phononic crystals, and
water waves over periodic bottoms, a bridge has been formed
joining the disciplines of solid-state physics, optics, acoustics,
and fluid mechanics [6–11].

Although band structure and localization of surface water
waves have recently been found in artificial and small-scale
laboratory settings [1–5], the corresponding application in
ocean waves over natural large-scale (hundreds of meters)
sand waves has not yet been investigated. Tens to hundreds of
sand waves naturally form a prominent periodic and rhythmic
pattern in the offshore sandy seabed of shallow seas. In
comparison with artificial structures, sand waves have special
topographic features [12–18]. Water width between adjacent
sand waves with significant random fluctuation is much larger
than sand wave width, and sand wave height is comparable with
water depth. In ocean engineering, sand waves may interfere
with anthropogenic activities, such as shipping lanes, pipelines
on the seabed, and wind farms, thus significantly increasing
the interest in water dynamics over sand waves. Satellite-borne
synthetic aperture radar (SAR) imaging has been applied to
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reveal random topographic features of sand waves, such as
height, length, and position [12]. Shao et al. [18] have applied
the sun glitter imaging of sand waves on the Taiwan Bank.
The hydrodynamic interaction models have been previously
applied to investigate the interaction of surface water wave
with current over sand waves [12,17–19]; however, none of
these models has revealed the properties of band gaps and
localization of surface water waves. Important impacts of sand
wave random fluctuations on the band gaps of sea surface water
waves has not yet been revealed.

In this paper, we investigate the band structure and wave
localization of shallow sea surface water waves above natural
large-scale uneven sand waves. The effects of sand wave
random fluctuations on wave propagations are examined.
Increasing the disorder level of random water width would
not induce water wave localization at a certain frequency. The
theoretical analyses, together with experimental observations
in the Taiwan Bank, suggest band gap and wave localization
of water wave over natural large-scale sand wave topography.

II. THEORY

We consider a one-dimensional theoretical system to test the
physical mechanism of band structure and wave localization of
surface water waves over uneven sand wave bottoms. Detailed
geophysical application requires determining the sand wave
parameters based on the geophysically topographic features,
which is out of scope of this study and has been reported
elsewhere [12–19]. The system shown in Fig. 1(a) describes
N identical steps with width a and height Ha representing
the periodically situated sand waves on the sea bottom. The
water depth and width between adjacent sand waves are H0

and b, and the water depth over the sand waves is H0−Ha .
The water width b between adjacent sand waves is sufficiently
larger than the sand wave width a. Based on previous studies
[12,18], the typical parameter values of the large-scale sand
wave system are ā = 60 m, b̄ = 600 m, H̄a = 20 m, and H̄0 =
30 m. Randomness of these parameters and the corresponding
disorder levels are classified as
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FIG. 1. (Color online) (a) One-dimensional sand wave system; (b)
dispersion relation; (c) transmission coefficient T versus frequency f .

(1) Sand wave width randomness. a is uniformly distributed
with [ā(1 − �a), ā(1 + �a)] and a � 0 leads to the disorder
level −1 � �a � 1.

(2) Sand wave height randomness. Ha is distributed with
[H̄a(1 − �Ha), H̄a(1 + �Ha)] and Ha � H0 leads to 1 −
H̄0

H̄a
� �Ha � H̄0

H̄a
− 1.

(3) Water width randomness. b is within the range of [b̄(1 −
�b), b̄(1 + �b)] and b � 0 leads to the disorder level of
−1 � �b � 1.

(4) Water depth randomness. H0 varies randomly between
[H̄0(1 − �H0), H̄0(1 + �H0)] and H0 � H̄a causes H̄a

H̄0
−

1 � �H0 � 1 − H̄a

H̄0
.

The equation governing the water wave over the topograph-
ical bottom is described as [2,11]

∇ ·
(

1

k2
∇η

)
+ η = 0, (1)

where the wave number k satisfies ω2 = gk tanh(kH ), η is
the surface displacement, and g is the gravity acceleration
constant. Using the linear Eulerian equation of motion, the
surface velocity vector �v can be determined as ∂ �v

∂t
+ g∇η = 0

[2]. For a given frequency ω, k0 in the water and ka over the
sand wave steps can be determined by using H0 and H0−Ha .
At the boundaries of the sand wave steps in Fig. 1(a), we have
the following boundary conditions: Both η and tanh(kH )

k
�n · ∇η

are continuous, where �n denotes the outward normal vector
at the boundaries. For one-dimensional surface water wave
propagation, the water waves on the left and right ends can be
solved from Eq. (1) as

ηL = ALeikx + BLe−ikx,
(2)

ηR = AReikx + BReikx,

where ηL and ηR are the surface displacements on the left
and right ends of the sand wave system, and AL and BL

are the amplitudes of the incident and reflected waves. For
the unit plane wave incidence, AL = 1. AR is the amplitude
of the outgoing wave. The radiation boundary condition
at the right end yields BR = 0. Using the transfer matrix
method [2,11], we can derive the transfer matrix Ti for the
ith sand wave and the coefficients AR and BL, and thus obtain
the transmission coefficient as T = ∏N

i=1Ti = |AR|2. From
the Bloch theorem, the eigenmodes of a wave field in an
infinite periodic medium can be written as η(x) = uK (x)eiKx ,
where uK (x) is the periodic function satisfying uK (x) =
uK (x + a + b) and K is the usual Bloch wave number. Thus,
the dispersion relation is derived as

cos[K(a + b)]

= cos(k0b) cos(kaa) − k2
0 + k2

a

2k0ka

sin(k0b) sin(kaa). (3)

Based on Eqs. (1)–(3), the frequency band structure of water
waves over the periodic sand wave system can be obtained.
Figures 1(b) and 1(c) show the dispersion relation and the
transmission coefficient T of the periodic sand wave structure,
respectively. The band gaps correspond to the significant
transmission dips. For the frequency ranges outside of the
gray region in Fig. 1(b), the complex solution of K determines
the forbidden energy bands or band gaps. Wave propagations
are evanescent due to Bragg resonance and hence there are
no transmission waves for the periodic sand wave structure.
However, for the frequencies within the gray region, K has
the real solution and water waves propagate through the sand
wave system, corresponding to allowed energy bands or pass
bands. Pass bands are separated by band gaps. Therefore,
multiple scattering in the periodic sand wave system leads
to complicated frequency band structures of water waves.

Topographic features of sand waves affect the band
structure of water waves. To show this, Figs. 2(a)–2(d)
present the dependencies of the band structure on sand wave
height Ha/H̄a , sand wave width a/ā, water depth H0/H̄0,
and water width b/b̄. Here, the band structure shows a
complicated relationship with frequency, differing from the
single relationship in [11]. It may be associated with the much
larger ratio a/b in Ref. [11] than the value used in our sand
wave system. As shown in Fig. 2(a), for sufficiently small
Ha , band gaps disappear. With further increase in Ha , the
band gaps show a complicated pattern: The lowest band gap
becomes larger first but smaller later. Furthermore, when sand
waves are as high as the water depth, band gaps become so
wide that water wave propagations are forbidden. Figure 2(b)
shows that the band gap approaches a lower frequency in an
oscillatory manner, with an increase of the sand wave width
a. The water depth H0 in Fig. 2(c) appears to have an inverse
effect on band gaps as compared with Ha . H0 → Ha gives the
band gap, and then the propagation of the wave is forbidden.
In Fig. 2(d), with the increase of the water depth b, the band
gaps approach lower frequencies more significantly than those
in Fig. 2(b).

Furthermore, random structures of sand wave would com-
plicate the transmission characteristics of the water wave. For
random Ha , a, H0, and b, Figs. 3(a) and 3(b) show the
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FIG. 2. (Color online) Dependences of the band structure on (a) Ha/H̄a , (b) a/ā, (c) H0/H̄0, and (d) b/b̄, where the band gaps are marked
as red regions.

average transmission coefficient 〈T 〉 at the right end of the sand
wave system versus frequency f , where the disorder levels
�Ha = �a = �H0 = �b = 0.3, and the average results over
10 000 random parameter generations for the whole sand
wave array system were taken for each of these parameters.
Random sand wave width a and height Ha could reduce wave
transmissions, while random water width b and depth H0 tend
to smear out band structure. This is due to the fact that the
change of Ha only affects ka; however, the change of H0

affects both k0 and ka , and thus produces a more significant
effect on the band gaps. In addition, when the disorder levels
of Ha , a, and H0 are increased above some critical values,
Anderson localizations appear.

However, for random water width b, Fig. 3(b) reveals an
interesting delocalization phenomenon: Wave localization is
interrupted by a pass band around f = 0.08 Hz. At this resonant
frequency, the sand wave width ā equals the half wavelength
of the water wave. |Ti | = 1 at each sand wave unit causes
the transmission coefficient |T | = |∏N

i=1Ti | = 1, and thus the
water wave that can pass any single sand wave will then extend
the entire sand wave system as well without transmission
loss, no matter how the water width b changes (that is, how

each sand wave is situated). The sand wave system behaves
like a single sand wave. We thus call this wave a “perfect
wave” and the sand wave system a “perfect transmission
tunnel” (PTT) of water waves. When f slightly deviates from
this value, the transmission coefficient significantly decreases
due to multiple scattering, particularly for large sand wave
number N . PTT waves with |T | = 1 can also be found when
the sand wave width ā is an integer multiple of the half
wavelength of the water wave, e.g., ā = mλ/2, (m = 1,2 . . .).
The numerical calculation based on the transfer matrix method
[2,11] shows the consistency with this theoretical relationship
in determining the resonant wavelength, as shown in Fig. 3(b).
In order to further examine the effect of the disorder level
�b on wave localization, Fig. 3(c) shows the transmission
〈T 〉 versus �b, where insets are the energy distributions
for �b = 0.3 at three frequencies, 0.04, 0.08, and 0.12 Hz.
For f = 0.04 and 0.12 Hz, localization appears and 〈T 〉
significantly decreases when �b is increased above some
critical value. Anderson localization greatly suppresses the
water wave propagation. However, for f = 0.08 Hz, no matter
how large �b is, 〈T 〉 remains almost unchanged and Anderson
localization does not appear. PTT is produced in the sand wave
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FIG. 3. (Color online) (a) Average transmission coefficients 〈T 〉
versus frequency f for the random fluctuations �Ha , �a, and �H0;
(b) 〈T 〉 versus f for �b = 0.3 at N = 5, 100, and 1000 and �b = 0.3
at N = 1000; (c) 〈T 〉 versus �b at 0.04, 0.08, and 0.12 Hz. Inset:
energy distributions at these three frequencies for �b = 0.3 indicated
by the dashed line.

system, and thus the PTT wave is extended to the whole system.
Having an analogy with the resonant transmission of acoustic
waves in random-dimer medium [20], this transmission tunnel
feature has not previously been reported in water wave
systems. The finding presented in this study supports that
increasing the disorder level of a single random parameter
may not always induce Anderson localization [21,22], even
for a one-dimensional water wave system.

III. EXPERIMENT

Our theoretical investigations represent valuable explo-
ration and provide important information to understand the
field experiment observations in the Taiwan Bank. Detailed
descriptions about the field experiment refer to the study
by Shao et al. [18]. High-resolution optical imaging was
used to map submarine topography. Figure 4(a) shows the

FIG. 4. (Color online) (a) Sand wave stripes in a Landsat-5
Thematic Mapper satellite image, where the image was taken at
10:50 BJT on August 11, 1998; (b) an enlarged area of sand waves
at 10:50 BJT on August 11, 1998; 10:21 BJT on June 27, 2005; and
10:27 BJT on July 3, 2007; (c) depth-averaged horizontal velocity
measured by ADCP; (d) photograph of the sea surface state above the
sand waves, where “R” and “S” represent rough and smooth surface
states, respectively.

sea bottom topography of the Taiwan Bank and the sand
wave stripes in a Landsat-5 Thematic Mapper satellite image,
where the image was taken at 10:50 Beijing Time (BJT) in
August 1998 under the spatial resolution of 30 m. Figure 4(b)
displays the enlarged area in Fig. 4(a) at 10:50 BJT on
August 11, 1998; 10:21 BJT on June 27, 2005; and 10:27
BJT on July 3, 2007, respectively. Visible sand waves on
the Taiwan Bank are stably situated and form a prominent
periodic pattern of approximately parallel ridges. Between
sand waves, the topography of the seabed is relatively flat.
These topographic features of sand waves support the one-
dimensional assumption of the above theoretical system. In
Fig. 4(b), the depth-averaged horizontal velocity was measured
by a 300-kHz vessel-mounted acoustic doppler current profiler
(ADCP) at the time interval of 1.41 s, as shown in Fig. 4(c).
Measurements were repeated 28 times along six sand waves.
The limitation of the frequency resolution of ADCP causes
the reliably measured highest signal frequency to be much
less than 0.35 Hz in order to avoid frequency aliasing. In
addition, a finite sand wave number [such as the six sand
waves in Fig. 4(b)] prevents the low-frequency transmission
property from being experimentally measured. Considering
these two factors, we applied the eighth-order Butterworth
band-pass filter to the theoretical model outputs in order to
match the measured experimental results within the frequency
range 0.04 Hz < f < 0.25 Hz.

The photograph in Fig. 4(d) displays the sea surface state
when the vessel was heading across a sand wave crest where
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FIG. 5. Transmission coefficient 〈T 〉 versus frequency f for the
experimental data and theoretical model outputs with N = 6 and 100.

“R” and “S” represent rough and smooth surface states,
respectively. The smooth and rough zones appear upstream and
downstream of the sand wave crest, indicating their different
spatiotemporal complexity [23,24]. As shown in Fig. 4(c),
narrow-band frequency currents were found above the sand
wave crests, while broadband currents were observed in the
troughs. The perfect waves with the m-order wavelength
2ā/m, (m = 1,2 . . .) are predominantly observed within the
smooth zones, while broadband waves are found within the
rough zones. Figure 5 compares the transmission coefficients
derived from the experimental ADCP data and the theoretical
model output, where the sand wave system parameters are
ā = 40 m, b̄ = 600 m, H̄a = 20 m, H̄0 = 25 m, and the disorder
level �b = 0.3, based on the field study by Shao et al. [18];
the sand wave numbers N = 6 and 100 are used in the model.
Clearly, the theoretical simulations show the qualitative con-
sistency with the experimental measurements. Both theoretical
and experimental results derived from six sand waves reveal
that the nonperfect waves within the frequency range 0.1 <

f < 0.15 Hz can be suppressed when propagating through the
smooth zones, suggesting wave localization. In particular, in
the sand wave system with N = 100, the theoretical simulation
reveals that the localization effect is more significant than that
in N = 6, suggesting that including more sand waves can fur-
ther suppress or filter out the nonperfect wave transmissions,
although this study did not provide the experimental evidence
to show this. Furthermore, the PTT waves with the wavelengths
of ā and 2ā in Fig. 5 can readily propagate through the sand
wave systems with low energy decays. In experiments, the

measured amplitude of a higher-order PTT wave was lower
than that of the lower-order waves. This is associated with
the losses in the medium, which was treated as lossless in
the theoretical models. These patterns of water waves from
photography and ADCP correspond to the sand wave stripes in
the Landsat-5 Thematic Mapper satellite image. Observations
at these different spatial scales show the existence of band gaps
and PTT for water waves in the Taiwan Bank.

IV. CONCLUSION

In conclusion, we have investigated band structure and
localization as the physical mechanism of sea surface water
waves propagating through natural large-scale sand waves.
The effects of sand wave height, sand wave width, water
depth, and water width on the band gaps are analyzed.
Furthermore, we investigate the wave localizations under the
random fluctuations of these parameters. With the increase
of disorder levels above some critical values, sand wave
height, sand wave width, and water depth can induce Anderson
localization of water waves. However, random water width
produces the delocalized PTT of water waves at a certain
frequency, and then continuously increasing its disorder level
could not induce localization. PTT can significantly suppress
other frequency components, and can be a good candidate
for frequency-control devices, such as filters. This might have
potential application in ocean engineering, such as reducing
the impact on sand waves dominating seabed from water
waves. Finally, the field experiments in the Taiwan Bank
were performed. The results from Landsat-5 Thematic Mapper
satellite imaging, photography, and ADCP measurement show
band gap and wave localization outside laboratory conditions.
Similar patterns can also be found in the North Sea, the
Bisan-Seto Sea, and Georges Bank, suggesting that band gap
and localization may represent common physical properties
of ocean surface water waves above natural large-scale sand
wave topography across the world.
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