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Onset of convective instabilities in under-ice melt ponds
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The onset of double-diffusive natural convection in under-ice melt ponds is investigated through a linear
stability analysis. The three-layer configuration is composed by a fluid layer (melt pond) overlying a saturated
porous medium (ice matrix), which in turn overlies another fluid layer (under-ice melt pond). Water density
inversion is taken into account by adopting a density profile with a quadratic temperature dependence and a linear
concentration dependence. We show that the key parameter affecting stability is the depth of the ice matrix, while
the depths of the upper and lower fluid layers play a marginal role. A Hopf bifurcation is observed in the whole
range of parameters studied, and the size of the convection cells depends on ice permeability. The influence of the
external temperature gradient is investigated by means of the definition of an extra thermal parameter accounting
for the relative position of the density maximum. It is shown that convection is favored by larger temperature
gradients, which occur during Arctic summer.
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I. INTRODUCTION

The Arctic sea cover is an important component of the
global climate system. While a great amount of information is
available on large-scale processes [1], little attention has been
paid to smaller scale processes occurring on the evolution of
the Arctic ice pack. In this context, we focus our attention
on a process associated with ice ablation during the Arctic
summer. When the air temperature is above 0 ◦C, the surface
of sea ice begins to melt, forming a pond of fresh water or melt
pond. Meltwater can percolate into the ice matrix, leading to a
strong reduction in the surface salinity [2], and gets discharged
under the ice. In this situation, a layer of fresh meltwater at
a temperature of approximately 0 ◦C is retained between a
layer of ice and a much colder (≈−1.6 ◦C) and denser layer
of salty sea water, forming a so-called under-ice melt pond.
A schematic diagram of the system is presented in Fig. 1.
Due to the fact that the density of pure water below 4 ◦C is a
decreasing function of temperature, this system is convectively
unstable with respect to the temperature gradient, and therefore
double-diffusive convection can occur. The evolution of under-
ice melt ponds was first described by Martin and Kauffman [3].
They showed, through laboratory experiments, that in the
initial convective process the supercooled water rises to the
overlying ice layer leading to the formation of thin vertical ice
crystals. In a second stage, they observed a lateral growth of
the vertical crystals at the fresh-salty water interface, forming
an ice-sheet which is usually called a false bottom. Thereafter,
the horizontal ice-sheet slowly migrates upward due to bottom
ablation, while it increases in thickness. Notz et al. [4]
and Alexandrov and Nizovtseva [5] presented mathematical
models to describe the evolution of false bottoms, which were
treated as mushy layer regions. The formation of false bottoms
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is believed to be the only process by which ice can be formed
during summer [6]. It is also important to emphasize that,
as shown by the field experiment Surface Heat Budget of
the Arctic Ocean (SHEBA) [7], the water in under-ice melt
ponds has the highest percental amount of snow meltwater
among all meltwater reservoirs. Taking into consideration that
under-ice melt ponds might be a widespread phenomenon in
the Arctic [8], this may probably cause a significant transfer
of pollutants from the atmosphere into the ice pack, which
could lead to an accumulation of pollutants at the biologically
important ice underside [9].

Few studies in the literature had been dedicated to the
analysis of the physical mechanisms influencing the onset
of convection in under-ice melt ponds. The understanding of
the base mechanism in a simplified system is a fundamental
step in the comprehension of the problem. Therefore, the
aim of this paper is to model the first stage in the evolution
of under-ice melt ponds, i.e., the onset of double-diffusive
instabilities in the three-layer system composed by the melt
pond, the ice matrix, and the under-ice melt pond. In order
to account for the water density inversion at 4 ◦C, we choose
a density profile with quadratic temperature dependence and
linear concentration dependence. Through a linear stability
analysis, we obtain the conditions for the onset of convective
movement in the ponds, which is the first step for the
formation of false bottoms. The ice matrix is modeled as
a saturated porous medium and we do not consider phase
change. The influence of the salty sea water layer is taken into
account by imposing appropriate boundary conditions at the
lower interface. Bogorodskii and Nagurnyi [10] presented a
model for the same three-layer system; however, they have
assumed the water to be isoconcentrational, and hence the
salinity gradients were neglected. The results of the pure
thermal problem without density inversion were obtained
using symmetry arguments, and indicate that the decrease in
ice thickness favors the development of instabilities. Carr [11]
studied the double-diffusive problem in a single fluid layer
including water density inversion, and results show that the
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FIG. 1. Schematic diagram of an under-ice melt pond.

onset of convection can be either stationary or oscillatory.
Differently from the previously mentioned papers, we consider
the problem of double-diffusive natural convection in the
three-layer system, which is modeled using a one-domain
formulation [12–15]. The paper is organized as follows.
After presenting the governing equations of the one-domain
approach in Sec. II, a linear stability analysis is carried out in
Sec. III. In Sec. IV, our numerical results are validated with
the case of a single fluid layer [11]. Then, the influence of the
depth ratio, external temperature difference, and permeability
of the porous medium on the stability characteristics of the
system is investigated. The implications on the modeling of
under-ice melt ponds are discussed and, in Sec. V, we present
some concluding remarks.

II. MATHEMATICAL MODELING

The system under consideration consists of an infinite
horizontal porous layer of thickness d∗

m sandwiched between
two fluid layers (cf. Fig. 2). The thickness of the lower
and upper fluid layers are denoted d∗

b and d∗
u , respectively,

while d∗ = d∗
b + d∗

m + d∗
u represents the total thickness of

the system. The saturated porous medium is assumed to
be homogeneous and isotropic, and phase change is not
taken into account. The upper and lower external walls are
impermeable and kept at different temperatures (T ∗

u > T ∗
b )

and salt concentrations (S∗
u < S∗

b ). In this configuration, the
system is gravitationally unstable since density increases with
temperature and the top water is warmer. On the other hand,
the bottom water has a higher salt concentration. Therefore, we
are in the presence of two competing effects: a destabilizing
temperature field and a stabilizing salinity field.

porous layer

Tb* Sb*,

Tu* Su*,

x

z=d*

z=d  +d m* *
b

z=d *

z=0

g

b

FIG. 2. Geometric configuration of the problem.

In order to take the water density inversion into account,
the density profile is assumed to be of the form

ρ(T ∗,S∗) = ρ0[1 − γT (T ∗ − T ∗
0 )2 − βS(S∗ − S∗

0 )], (1)

where γT and βS are the thermal and the solute expansion
coefficients, respectively. We are aware that the local solute
concentration influences the temperature T ∗

0 and the value of
the density maximum ρ0 [16]. However, for simplicity reasons,
we shall take the approximative value for pure water: T ∗

0 =
4 ◦C. S∗

0 is some constant reference value.
In the one-domain approach, the porous medium is con-

sidered as a pseudofluid and a unique set of conservation
equations is written for the entire domain. Hence the explicit
formulation of the boundary conditions at the fluid-porous
interfaces is avoided, considerably simplifying the numerical
resolution of the system. Details concerning the application
of the one-domain formulation to fluid-porous systems can
be found in previous works [12–15] and, for the sake of
conciseness, shall not be repeated here. The dimensionless
conservation equations are obtained using the following scales:
d∗ for length, d∗2/ν for time, ν/d∗ for velocity, and (ρ0ν

2)/d∗2

for pressure, where ν is the kinematic viscosity of the fluid.
The temperature and the concentration fields are scaled by
�T = T ∗

u − T ∗
b and �S = S∗

u − S∗
b , respectively.

The set of one-domain dimensionless conservation equa-
tions, valid both in the fluid and in the porous regions, can be
written as

∇ · u = 0, (2)

∂

∂t

(
u
φ

)
+ 1

φ

(
u · ∇ u

φ

)
= ∇ ·

(
1

φ
∇u − P I

)
− 1

Da
u

+ (Gr∗TT 2 + GrSS)ez, (3)

∂T

∂t
+ u · ∇T = 1

Prf
∇ ·

(
αT

αTf

∇T

)
, (4)

φ
∂S

∂t
+ u · ∇S = 1

Scf
∇ · (φ∇S), (5)

where I represents the identity matrix. Gr∗T = (gγT �T 2d∗3)/
ν2 and GrS = (gβS�Sd∗3)/ν2 are respectively the thermal and
solutal Grashof numbers based on the total depth of the channel
d∗. It is important to remark that the momentum conservation
equation (3) obtained using a density profile with quadratic
temperature dependence leads to the introduction of a modified
thermal Grashof number Gr∗T. Note that the form of the density
law (1) implies γT > 0 and βS < 0. Therefore, we have Gr∗T >

0 and GrS > 0 (as �S < 0).
In the present problem, one has to define an extra parameter

which accounts for the difference between the lower wall tem-
perature and the reference temperature: ξ = (T ∗

b − T ∗
0 )/�T .

This point will be further discussed in Sec. IV B4. Prf = ν/αTf

and Scf = ν/Df are the fluid Prandtl and Schmidt numbers,
respectively. In the solute transport Eq. (5), due to absence of
mass diffusion in the solid phase, the effective solute diffusion
coefficient in the absence of dispersion effects has been taken
such that Deff = φDf , where φ represents the porosity. In the
momentum conservation Eq. (3), the Darcy number represents
the dimensionless permeability (Da = K/d∗2) and the reduced
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FIG. 3. Linear stability curves for a single fluid layer. As in
Ref. [11], R = gγT �T 2d∗3/(ναTf ) represents the fluid thermal
Rayleigh number, and Rc = gβS�Sd∗3/(νDf ) is the fluid solutal
Rayleigh number.

dynamic viscosity in the Brinkman term has been taken such
that μeff/μf = 1/φ [17]. Note that Da → ∞ in the fluid layer.
Finally, αT in Eq. (4) is the thermal diffusivity (αT = αT m in
the porous medium and αT = αTf in the fluid).

The dimensionless boundary conditions at the external
walls are

u(1) = 0, θ (1) = T ∗
u − T ∗

0

�T
, S(1) = S∗

u − S∗
0

�S
,

(6)

u(0) = 0, θ (0) = T ∗
b − T ∗

0

�T
, S(0) = S∗

b − S∗
0

�S
.

In the one-domain formulation, the effective properties (φ, Da,
and αT ) are Heaviside functions and therefore their differen-
tiation must be considered in the meaning of distributions, as
detailed in Ref. [12].

III. LINEAR STABILITY ANALYSIS

The perturbation equations are obtained in the usual way.
We assume that the percolation velocity of the melt water
through the ice matrix, during the formation of the under-ice
melt pond, is such that the diffusive profile of temperature
and salt concentration can be established throughout the
system. Thus the base state is quiescent. For conciseness,

(a)

(b)

(c)

FIG. 4. (a) ξ > −1: the temperature domain encompasses the
temperature of the density maximum (penetrative convection). The
present study concerns cases (b) ξ = −1 and (c) ξ < −1:
the temperature of the density maximum lies outside the temperature
domain. In these situations, the reference temperature difference �T

is the “effective range” for the onset of convection.

the temperature and concentration base solutions are provided
in the Appendixes. According to the normal mode expansion,
the vertical velocity component, the temperature, and the
concentration are decomposed under the form

(w′,T ′,S ′) = [W (z),θ (z),S(z)]eiκx+σ t , (7)

where W (z), θ (z), and S(z) are the amplitudes of the perturbed
variables, κ is the dimensionless wave number, and σ = σr +
iσi is a complex: σr represents the temporal growth rate and
σi is the oscillation frequency.

Neglecting the nonlinear terms, the linearized system takes
the form

(
d(1/φ)

dz

dW

dz
+ 1

φ

d2W

dz2
− 1

φ
κ2W

)
σ + 1

φ

(
d4W

dz4
+ κ4W

)

−
(

− 2
d(1/φ)

dz

d3W

dz3
− d(1/Da)

dz

dW

dz
+ 1

Da

d2W

dz2
− d2(1/φ)

dz2

d2W

dz2

)

− κ2

(
2

φ

d2W

dz2
− 1

Da
W + 2

d(1/φ)

dz

dW

dz

)
+ κ2[Gr∗Tθ (2 T ) + GrSS] = 0, (8)

Prf

(
σθ + dT

dz
W

)
= αT

αTf

(
− κ2θ + d2θ

dz2

)
+ 1

αTf

dαT

dz

dθ

dz
, (9)

Scfφ

(
σS + dS

dz
W

)
= φ

(
− κ2S + d2S

dz2

)
+ dφ

dz

dS
dz

, (10)

066306-3



HIRATA, GOYEAU, AND GOBIN PHYSICAL REVIEW E 85, 066306 (2012)

-0.06 -0.04 -0.02  0  0.02  0.04  0.06

x

 0

 0.2

 0.4

 0.6

 0.8

 1

z

-0.06 -0.04 -0.02  0  0.02  0.04  0.06

x

 0

 0.2

 0.4

 0.6

 0.8

 1

z

-0.06 -0.04 -0.02  0  0.02  0.04  0.06

x

 0

 0.2

 0.4

 0.6

 0.8

 1

z

 0

 0.2

 0.4

 0.6

 0.8

 1

-2 -1  0  1  2

z

w

 0

 0.2

 0.4

 0.6

 0.8

 1

-1  0  1  2  3  4

z

w

 0

 0.2

 0.4

 0.6

 0.8

 1

-1  0  1  2  3  4

z

w

(a)dm = 0.6 (b)dm = 0.4 (c)dm = 0.2

FIG. 5. Streamline patterns (�max = ±0.07, �� = 0.01) and vertical velocity profiles at the onset of convection for RaS = 900, ξ = −1,
Da = 10−8, db = 0.3, and different values of dm. The thick horizontal lines represent the fluid-porous interfaces.

with boundary conditions

θ (1) = 0, S(1) = 0, W (1) = 0,
dW (1)

dz
= 0,

(11)

θ (0) = 0, S(0) = 0, W (0) = 0,
dW (0)

dz
= 0.

The system of equations (8)–(11) is solved using the general-
ized integral transform technique (GITT) [18]. After applying
the integral transformation, the resulting eigenvalue problem
is written under the form A − σB = 0, and solved for the
eigenvalues σ (N), N = 1,2, . . .. Matrices A and B are given
in the Appendixes. The reader is referred to Refs. [13,14]
for details concerning the application of the GITT to such
fluid-porous configurations. To produce the marginal stability
curves, we fixed κ and GrS, and found Gr∗T such that σr = 0. We
then tracked through κ and GrS to produce the curves. The con-
verged results were obtained using a precision of ±0.05 in Gr∗T.

IV. RESULTS AND DISCUSSION

A. Validation: Single fluid layer

Results of the GITT applied to the one-domain formulation
were already validated within the framework of a linear
Boussinesq approximation for the pure thermal case [13] and
the double-diffusive case [15]. These works concerned the
stability of a fluid-porous system without density inversion. In
order to validate the analysis and the numerical code for a den-
sity profile with a quadratic temperature dependence, we first
compare our results to those obtained by Carr [11] for a single
fluid layer (Da → ∞, φ = 1). As in Ref. [11], we fix Prf =
13.4, Scf = 100Prf, κ2 = 9.705 432, T ∗

0 = 4 ◦C, and T ∗
u =

0 ◦C. In order to compare our results with those of Ref. [11],
Fig. 3 displays the stability curves in the plane (R,Rc), with T ∗

b

varying as shown on graph (i.e., ξ ∈ [−3.5,−3.1]). We note

that in our notation, R = Gr∗TPrf and Rc = GrSScf. The results
are in very good agreement with the ones presented on Fig. 1 of
Ref. [11]. The kink in the curves represents the point at which
convection switches from steady convection (σr = σi = 0) to
oscillatory convection (σr = 0, σi 	= 0).

B. Three-layer system

1. Physical properties and problem configuration

Let us now turn our attention to the three-layer system.
According to Bogorodskii and Nagurnyi [10], typical values
of ice permeability lie in the range 10−10–10−6 m2. On the
basis of a series of measurements of ice permeability made in
the North American Arctic between 1998 and 2001, Eicken
et al. [19] derived a relation between the brine volume fraction
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FIG. 6. (Color online) Marginal stability curves for different
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TABLE I. Critical Rayleigh number Ra∗
Tcr for various dm and db. Results obtained for fixed RaS = 900.

dm dm = 0.2 dm = 0.4 dm = 0.6

db 0.7 0.6 0.5 0.4 0.3 0.2 0.15 0.1 0.3 0.2 0.15 0.3 0.2
Ra∗

Tcr 3.85 3.85 3.85 3.85 3.86 3.84 3.81 3.81 3.1 3.1 3.09 2.43 2.43

φ and the ice permeability K:

K = 3.738 × 10−11 exp[7.265φ] m2 for φ > 0.096. (12)

We retain an average value of K = 10−8 m2 (i.e., Da = 10−8,
as the vertical extent of the ice pond is O(1 m) [3]) to obtain

from the above relation the approximate value φ = 0.77. Fur-
thermore, the fluid Prandtl number is fixed at Prf = 13.4, which
is consistent with water at low temperatures. Finally, we take
Le = Scf/Prf = 100 and εT = αTf /αT m = 0.3 [20,21]. The
values of Da, φ, Prf , Le, and εT are kept fixed throughout all
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calculations, unless otherwise specified. Results are typically
presented in the (Ra∗

T,RaS) plane, where the thermal and the
solutal Rayleigh numbers are defined by Ra∗

T = Gr∗TPrfDa and
RaS = GrSScfDa, respectively.

Differently from convection problems concerned with
fluids having a linear relation between density and temperature,
convection in cold water behaves in a complicated manner.
Due to the density maximum several configurations of the
base conductive state are possible as follows.

(i) T ∗
0 < T ∗

u [Fig. 4(a)]. In this case, two regions can be
identified in terms of stability. For T ∗ < T ∗

0 , density increases
with temperature and therefore the temperature gradient is
destabilizing; On the contrary, for T ∗ > T ∗

0 , density decreases
with increasing temperature, and the temperature gradient
becomes stabilizing as one moves toward the upper part of
the system.

(ii) T ∗
0 � T ∗

u [Figs. 4(b) and 4(c)]. Here, the density
maximum is located outside of the layer. This means that
inside the system we always have T ∗ < T ∗

0 , corresponding
to a destabilizing temperature gradient. In this situation, the
“effective”temperature range for the onset of convection is the
reference temperature difference �T .

Figure 4(a) illustrates a particular situation where the
base conductive state is characterized by two superposed
regions. The convective movement in the unstable lower
region can penetrate into the upper region and destabilize
the whole system. The term “penetrative convection”refers
to this situation, i.e., systems where one part of the layer
has a tendency to become unstable while the rest of the
layer tends to remain stable. The convective motion triggered
by the instability can affect the stable part of the layer by
viscous entrainment and induce a secondary motion. Such
penetrative convection systems are usually sensitive to finite
amplitude disturbances, revealing the possibility of convective
motion below the threshold established by a linear stability
analysis. This type of behavior corresponds to subcritical
bifurcations and has been observed by Moore and Weiss [22]
for a single fluid layer and by Mamou et al. [23] for an isotropic
porous medium. In the Arctic, the air temperature undergoes
seasonal variations, and can achieve 4 ◦C during summer.
Therefore, in the present study we consider T ∗

u � 4 ◦C (or
ξ � −1). In this configuration, the whole system is unstable
at the base conductive state and thus penetrative convection
does not occur. Hence results presented in this section
exclusively concern the situations illustrated in Figs. 4(b)
and 4(c).

Finally, it is worth recalling that binary fluids subjected to
vertical temperature and concentration gradients experience
both thermal and solutal stratification. Due to the fact that the
fluid density depends on the solute concentration, it leads to
a competition between thermal and compositional gradients.
This competition between heat and solute diffusion may lead
to flow oscillations in the fluid. For the range of parameters
studied in this section, a shift from stationary to oscillatory
convection is observed for RaS 	= 0.

In the next two sections, we shall focus our attention on the
geometrical parameters of the three-layer system: the thickness
of the bottom fluid layer (db = d∗

b /d∗) and the thickness of the
porous layer (dm = d∗

m/d∗). In order to study the influence of
dm and db, in Secs. IV B2 and IV B3 the following parameters

are kept fixed: RaS = 900, Da = 10−8, ξ = −1, φ = 0.77, and
εT = 0.3.

2. Influence of the thickness of the porous layer

It is important to remark that there is no symmetry in this
problem first because the diffusivity ratios εT and εS are not
equal and moreover due to the quadratic variation of density
with respect to temperature. Hence, differently from Ref. [10],
even if the porous layer is placed at the midplane of the
system, the upper and lower fluid layers do not lose stability
simultaneously, i.e., at the same Rayleigh number. For the
range of parameters studied in the present work, it has been
observed that the onset of convective motion always takes
place in the bottom fluid layer, as illustrated in Figs. 5(a)–5(c).
This is to be expected since, at the pure conduction state,
density gradients are stronger in the lower part of the system
[see Figs. 4(b) and 4(c)]. From the vertical velocity profiles
it can be noted that there is almost no penetration of the
incipient convective flow in the porous matrix. Moreover, it
has been observed that the isotherms and the isoconcentration
lines at the onset of convection (Ra∗

T = Ra∗
Tcr) are not distorted,

a behavior which could characterize a subcritical bifurcation.
The marginal stability curves for three different values

of dm and various db are presented in Fig. 6. It can be
observed that, for a fixed db, the increase of dm destabilizes
the system. The interpretation for this may be given in terms
of the characteristics of the bottom fluid layer (thickness
db and effective temperature and salinity differences in this
layer). A simple calculation of the diffusive profiles gives the
temperature and salinity at the interface between the porous
layer and the bottom fluid layer (Tmb and Smb):

Tmb − Tb = (Tu − Tb)db

[1 + dm(εT − 1)]
, (13)

Sb − Smb = (Sb − Su)db

[1 + dm(εS − 1)]
. (14)

For a fixed value of db, increasing dm modifies the temperature
and salinity at the interface between the porous medium and
the bottom fluid layer depending on the relative values of the
diffusivities in the layers (εT and εS). With εT = αTf /αT m =

 0
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FIG. 8. (Color online) Influence of the thickness of the porous
layer (which is placed at the center of the cavity in the three cases
presented).
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FIG. 9. (Color online) Marginal stability curves obtained for
dm = 0.2, db = 0.4, and different values of the Darcy number.

0.3, increasing dm increases the interface temperature, and
the subsequent larger effective temperature difference makes
the layer more unstable. Similarly, as εS = 1/φ is larger than
1, the salinity difference decreases with increasing dm and
thus the stabilizing solutal effect is smaller. Both mechanisms
(increase in the temperature difference and decrease in the
salinity difference) are destabilizing and, as a consequence,
the marginal stability curves shift down.

3. Influence of the thickness of the bottom fluid layer

Table I presents the numerical values of Ra∗
Tcr correspond-

ing to the three different values of dm (minima of the curves
in Fig. 6). Note that the critical Rayleigh number for the onset
of convection remains practically unchanged for varying db

and fixed dm. This suggests that the geometrical parameter

governing the stability threshold is the depth of the porous
layer and that the depths of the fluid layers play a marginal
role. As in the previous section, we focus our attention on the
characteristics of the bottom fluid layer (where the onset of
convection takes place). For a fixed value of dm, increasing
db leads to larger temperature and salinity differences in the
bottom layer. Thus both the stabilizing solutal effect and the
destabilizing thermal effect increase and these two opposing
mechanisms tend to compensate each other: our results show
that Ra∗

Tcr remains constant. A possible interpretation for this
remarkable feature is that at the bottom fluid layer the density
variation with temperature is larger and linear. The ratio of the
driving forces βS (Sb−Smb)

βT (Tmb−Tb) is then independent of db.
The streamline patterns and vertical velocity profiles for

dm = 0.2 and different values of db are presented in Fig. 7.
All the cases present almost the same Ra∗

Tcr. However, the
flow structure at the onset of convection may be somewhat
different: due to the very flat minimum of the marginal stability
curves, the same critical Rayleigh number may correspond
to different wave numbers. Furthermore, a slight decrease in
Ra∗

Tcr is observed at very small values of db [see Figs. 7(e),
7(f), and Table I], due the confinement of the convection cell.

4. Influence of the physical parameters

In this section, the influence of the main physical parameters
(RaS, Da, ξ , εT , εS) governing the stability of the three-layer
system is discussed.

The influence of the imposed salinity gradient is empha-
sized in Fig. 8, where the stability thresholds are presented
in the (RaS, Ra∗

Tcr) plane, for ξ = −1 and varying dm and db.
The porous layer is placed at the middle plan of the cavity
in the three cases presented. For the range of parameters
studied, the dependence of Ra∗

Tcr on RaS is somewhat linear. As
expected, when the stabilizing salinity gradient becomes more
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FIG. 10. (Color online) Streamline patterns, density distributions, and vertical velocity profile at the onset of convection for fixed for
dm = 0.2, db = 0.4, and different values of the Darcy number: (a) Da = 10−5 (�max = ±0.05, �� = 0.01), (b) Da = 10−4 (�max = ±0.016,
�� = 0.002), and (c) Da = 10−3 (�max = ±0.06, �� = 0.01).
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important, a higher Ra∗
Tcr is necessary to destabilize the system.

However, note that a significant variation of RaS implies a
very small change in Ra∗

Tcr, behavior that characterizes the
Hopf bifurcation [24] (see also the fluid layer case presented
in Fig. 3). Finally, it can be observed that as the porous
layer thickness increases, the stability curves shift down, i.e.,
the system becomes more unstable. This result confirms the
previous findings that instabilities are favored with the increase
of dm, i.e., in larger ice layers.

In order to illustrate the influence of the Darcy number
alone, we investigate the hypothetical situation where φ =
0.77 is kept fixed and Da varies. The marginal stability
curves of Fig. 9 illustrate the stabilizing character of the
Darcy number. For very low values of Da the porous medium
behaves as a solid, and for Da < 10−10 the stability curves are
almost superposed. With the increase of the Darcy number,
the penetration of the flow into the porous matrix becomes
easier, as shown by the streamlines of Figs. 10: (a) for Da =
10−5, the cells are mainly confined in the lower fluid layer;
(b) on the contrary, for Da = 10−4, the convective movement
is characterized by large cells which penetrate into the porous
medium and attain the upper fluid layer; (c) finally, for
Da = 10−3, superposed contrarotating cells which occupy the
whole system are observed.

According to Martin and Kauffman [3], the sea water at the
bottom of the pond is usually near its freezing point. Assuming
that −1.9 ◦C � T ∗

b � −1.6 ◦C and 0 ◦C � T ∗
u � 4 ◦C, we

restrict our attention to ξ ∈ [−3,−1]. As mentioned before,
in our range of parameters (T ∗

0 � T ∗
u > T ∗

b , i.e., ξ � −1)
penetrative convection does not occur. Therefore, the thermal
Rayleigh number Ra∗

T has been defined in terms of the pertinent
temperature difference for this problem: �T = T ∗

u − T ∗
b . It

is nevertheless clear that problems involving a quadratic
density profile require the definition of an extra thermal
parameter, which accounts for the relative position of the
density maximum: ξ = (T ∗

b − T ∗
0 )/�T . We note that Ra∗

T and
ξ are not independent parameters. For fixed Ra∗

S, Ra∗
T ∝ 1/ξ 2.

In order to establish how ξ affects the stability of the system,
we define a modified Rayleigh number Ra∗∗

Tcr = Ra∗
Tcr ξ 2 based

on (T ∗
b − T ∗

0 )2 instead of (T ∗
u − T ∗

b )2. In this way, instead
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FIG. 11. (Color online) Linear stability thresholds in terms of the
modified Rayleigh number Ra∗∗

Tcr = Ra∗
Tcr ξ 2 for dm = 0.2, db = 0.4,

and different values of the thermal parameter ξ .

TABLE II. Influence of the thermal and solute diffusivity ratios
on the critical Rayleigh number Ra∗

Tcr. Results obtained for fixed
RaS = 900.

dm dm = 0.2 dm = 0.6

db 0.7 0.7 0.3 0.3 0.3 0.3
εT 0.3 1 0.3 1 1 1
εS (0.77)−1 (0.77)−1 (0.77)−1 (0.77)−1 1 1
Ra∗

Tcr 3.85 4.44 3.86 4.44 4.68 4.68

of Ra∗
Tcr = F(T ∗

u ,T ∗
b ) and ξ = G(T ∗

u ,T ∗
b ), we have Ra∗∗

Tcr =
H(T ∗

b ) and ξ = G(T ∗
u ,T ∗

b ). These last two parameters can be
varied independently. The stability thresholds for different
values of ξ and fixed db = 0.4, dm = 0.2 are presented in
Fig. 11. The inspection of this figure shows that as ξ increases
(i.e., for a fixed T ∗

b , T ∗
u increases), the system becomes more

unstable. This is to be expected since the temperature gradient
is destabilizing.

Two other important parameters are the ratios of the thermal
and mass diffusivities of the fluid and the porous medium. The
previous calculations have been made considering that the
conductivity of the porous medium is larger than the one of
the fluid (εT = 0.3) and that the porosity of the porous medium
is φ = 0.77, thus εS = (0.77)−1.

Results presented in Table II confirm the conclusions that
can be drawn from the analysis of expressions (13) and (14).
Increasing εT from 0.3 to 1 results in a smaller temperature
difference in the bottom fluid layer, thus the destabilizing
thermal effect is weaker and the instability threshold is larger.
εS plays an opposite role. It can also be seen in Table II that,
for the physically unrealistic situation (φ = 1) where εT =
εS = 1, the critical temperature and salinity differences, and
thus the critical Rayleigh number, do not depend on dm.

V. CONCLUSIONS AND PERSPECTIVES

A linear stability analysis has been carried out in order to
investigate the conditions for the onset of thermosolutal natural
convection in under ice melt-ponds. Water density inversion
in the neighborhood of 4 ◦C was taken into account by using
a density profile with quadratic temperature dependence and
linear concentration dependence. The study of the three-layer
system (melt pond–ice matrix–under ice melt-pond) has been
performed by considering an isotropic and saturated porous
layer sandwiched between two layers of fluid. The system
was modeled using a one-domain approach, and the GITT
method was used to solve the resulting eigenvalue problem.
It has been shown that, under realistic conditions, the onset
of convective motion always takes place at the bottom fluid
layer and is characterized by oscillatory convective cells. The
main geometrical parameter influencing stability is the depth
of the ice matrix, while the depths of the upper and lower
fluid layers play a marginal role. Systems with larger ice
layers are more unstable. Convection is also favored by larger
temperature gradients, which is more likely to happen during
Arctic summer.

The results presented in this work were obtained for
rigid external boundaries. As these boundaries represent the
interfaces air–melt water and melt water–sea water, we intend
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to extend the analysis by using more realistic boundary
conditions. An extension to the nonlinear regime is also
foreseeing. Moreover, the investigation of the evolution of false
bottoms through direct numerical simulations is underway.

APPENDIX A: BASE STATE

The basic state for the temperature field in the upper fluid
layer (T f u), the porous layer (T m), and the bottom fluid layer
(T f b) are, respectively,

T u(z) = c1z + c2, (A1)

T m(z) = c3εT z + c4, (A2)

T b = c5z + c6, (A3)

where

c1 = c3 = c5 = 1

1 + dm(εT − 1)
, (A4)

c2 = ξ + dm(εT − 1)

1 + dm(εT − 1)
, (A5)

c4 = ξ + db(1 − εT )

1 + dm(εT − 1)
, (A6)

c6 = ξ. (A7)

Similarly, the basic state for the concentration field takes the
form

Sf u(z) = c7z + c8, (A8)

Sm(z) = c9

φ
z + c10, (A9)

Sf b(z) = c11z + c12, (A10)

where

c7 = c9 = c11 = φ

φ + dm(1 − φ)
, (A11)

c8 = dm(1 − φ)

φ + dm(1 − φ)
− (S∗

0 − S∗
b )

�S
, (A12)

c10 = − db(1 − φ)

φ + dm(1 − φ)
− (S∗

0 − S∗
b )

�S
, (A13)

c12 = S∗
b − S∗

0

�S
. (A14)

We remark that constants c8, c10, and c12 do not interfere in
the analysis.

APPENDIX B: GITT

Following the GITT procedure, we choose the same auxil-
iary problems (for the velocity, temperature, and concentration
fields) as those of Ref. [13]. After applying the integral
transformation procedure, the momentum equation takes the
form

−σ

NW∑
j=1

MjiWj +
NW∑
j=1

SjiWj − κ2
NW∑
j=1

FjiWj

−
NW∑
j=1

JjiWj − κ2GrT�T

Nθ∑
h=1

Ghiθh

−κ2GrS

NS∑
l=1

HliS l = 0, i = 1, . . . ,NW , (B1)

where

Mji = −
∫ 1

0

(
1

φ

d2ψ̃W,j (z)

dz2

)
ψ̃W,i(z)dz + κ2

∫ 1

0

1

φ
ψ̃W,j (z)ψ̃W,i(z)dz +

(
1

φ
− 1

)(
− dψ̃W,j (z)

dz

dψ̃W,i(z)

dz

)∣∣∣∣
z=db

+
(

1

φ
− 1

)(
dψ̃W,j (z)

dz

dψ̃W,i(z)

dz

)∣∣∣∣
z=db+dm

, (B2)

Sji =
∫ 1

0

1

φ

(
μ4

i + κ4
)
ψ̃W,j (z)ψ̃W,i(z)dz, (B3)

Fji =
∫ 1

0

(
2

1

φ

d2ψ̃W,j (z)

dz2
− 1

Da
ψ̃W,j (z)

)
ψ̃W,i(z)dz + 2

(
1 − 1

φ

)(
− dψ̃W,j (z)

dz
ψ̃W,i(z)

)∣∣∣∣
z=db

+ 2

(
1 − 1

φ

)(
dψ̃W,j (z)

dz
ψ̃W,i(z)

)∣∣∣∣
z=db+dm

, (B4)

Jji =
∫ 1

0

(
1

Da

d2ψ̃W,j (z)

dz2

)
ψ̃W,i(z)dz +

(
1 − 1

φ

)(
− d2ψ̃W,j (z)

dz2

dψ̃W,i(z)

dz

)∣∣∣∣
z=db

+
(

1 − 1

φ

)(
d2ψ̃W,j (z)

dz2

dψ̃W,i(z)

dz

)∣∣∣∣
z=db+dm

−
(

1 − 1

φ

)(
− d3ψ̃W,j (z)

dz3
ψ̃W,i(z)

)∣∣∣∣
z=db

−
(

1 − 1

φ

)(
d3ψ̃W,j (z)

dz3
ψ̃W,i(z)

)∣∣∣∣
z=db+dm

− 1

Da

(
− dψ̃W,j (z)

dz
ψ̃W,i(z)

)∣∣∣∣
z=db

− 1

Da

(
dψ̃W,j (z)

dz
ψ̃W,i(z)

)∣∣∣∣
z=db+dm

, (B5)

Ghi =
∫ 1

0
2T ψ̃θ,h(z)ψ̃W,i(z)dz, (B6)
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Hli =
∫ 1

0
ψ̃S,l(z)ψ̃W,i(z)dz. (B7)

In the expression of Sji , note that μi represents the eigenvalue of the auxiliary problem chosen for the velocity field.
The transformed energy equation takes the form

−Prfσ

Nθ∑
h=1

Nhnθn − Prf

NW∑
j=1

CjnWj − (
β2

n + κ2
)
θn +

Nθ∑
h=1

Lhnθn = 0, n = 1, . . . ,Nθ , (B8)

where

Nhn =
∫ 1

0

αTf

αT

ψ̃θ,h(z)ψ̃θ,n(z)dz, (B9)

Cjn =
∫ 1

0

αTf

αT

dT

dz
ψ̃W,j (z)ψ̃θ,n(z)dz, (B10)

Lhn = αTf − αT m

αT m

(
− dψ̃θ,h(z)

dz
ψ̃θ,n(z)

)∣∣∣∣
z=db

+ αTf − αT m

αT m

(
dψ̃θ,h(z)

dz
ψ̃θ,n(z)

)∣∣∣∣
z=db+dm

, (B11)

and βn is the eigenvalue of the auxiliary problem for the temperature field.
Similarly, the transformed concentration equation takes the form

−Scf σ

NS∑
l=1

OlkS l − Scf

NW∑
j=1

EjkWj − (
λ2

l + κ2
)
S l +

NS∑
l=1

DlkS l = 0, k = 1, . . . ,NS, (B12)

where

Olk =
∫ 1

0
φ ψ̃S,l(z)ψ̃S,k(z)dz, (B13)

Ejk =
∫ 1

0

1

φ

dS
dz

ψ̃W,j (z)ψ̃S,k(z)dz, (B14)

Dlk = 1 − φ

φ

(
− dψ̃S,l(z)

dz
ψ̃S,k(z)

)∣∣∣∣
z=db

+ 1 − φ

φ

(
dψ̃S,l(z)

dz
ψ̃S,k(z)

)∣∣∣∣
z=db+dm

, (B15)

and λl is the eigenvalue of the auxiliary problem for the concentration field.
It is important to observe that in the terms evaluated at the interfaces z = db and z = db + dm, the effective properties φ, Da,

and αT assume the constant values of the porous medium, while inside the integrals φ = φ(z), Da = Da(z), and αT = αT (z).
The system of equations (B1), (B8), and (B12) is a generalized eigenvalue problem for σ , which can be written in the following

matrix form: A − σ B = 0, where

A =

⎛
⎜⎝
Sji − κ2Fji − Jji −κ2GrT �T Ghi −κ2GrS Hli

−Prf Cjn −(
β2

n + κ2
)
δhn + Lhn 0

−Scf Ejk 0 −(
λ2

l + κ2
)
δkl + Dlk

⎞
⎟⎠

and

B =

⎛
⎜⎝
Mji 0 0

0 PrfNhn 0

0 0 Scf Olk

⎞
⎟⎠ .

A and B are square matrices of N = NW + Nθ + NS lines and columns.
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