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Analytical approximations for the collapse of an empty spherical bubble
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The Rayleigh equation 3
2 Ṙ + RR̈ + pρ−1 = 0 with initial conditions R(0) = R0, Ṙ(0) = 0 models the collapse

of an empty spherical bubble of radius R(T ) in an ideal, infinite liquid with far-field pressure p and density
ρ. The solution for r ≡ R/R0 as a function of time t ≡ T/Tc, where R(Tc) ≡ 0, is independent of R0, p, and
ρ. While no closed-form expression for r(t) is known, we find that r0(t) = (1 − t2)2/5 approximates r(t) with
an error below 1%. A systematic development in orders of t2 further yields the 0.001% approximation r∗(t) =
r0(t)[1 − a1 Li2.21(t2)], where a1 ≈ −0.018 320 99 is a constant and Li is the polylogarithm. The usefulness of
these approximations is demonstrated by comparison to high-precision cavitation data obtained in microgravity.
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I. INTRODUCTION

George Gabriel Stokes might not have anticipated the
importance of his endeavor when challenging his students in
1847 to calculate the collapse motion of an empty bubble in
water [1]. The reach of this academic exercise was recognized
in 1917 by Lord Rayleigh [2], who conveyed a link between
collapsing bubbles and the erosion damage found on ship
propellers. The basic equation of motion of a collapsing
bubble [3], now known as the Rayleigh equation (RE), reads

3

2

(
dR

dT

)2

+ d2R

dT 2
R + k = 0, (1)

where the bubble radius R is a function of the time T , and k is
a constant. Given the initial conditions

R(0) = R0,
dR

dT

∣∣∣∣
T =0

= 0 (2)

and the definition k ≡ pρ−1, the RE describes the collapse
of an empty spherical bubble of initial radius R0 in an
incompressible, inviscid, infinite liquid with uniform far-field
pressure p and density ρ. If, alternatively, k is defined as
(p − pv)ρ−1, the RE extends to the case of a gas-filled
bubble with constant inner pressure pv. The RE neglects
noncondensable bubble gas, as well as surface tension and
viscosity [4], liquid compressibility [5], and thermal effects
[6]. However, regardless of those limitations and various
enhanced models available today [5–10], the RE remains
widely used in practice, owing to its simplicity and often
sufficient accuracy. This is despite the fact that the RE yields no
closed-form solution for k > 0. While numerical solutions can
be obtained, systematic analytical approximations offer better
insight into the mathematical nature of the collapse, as we will
show in this paper. Analytical approximations also become
handy when the RE is integrated into multiscale models, and
they offer an intuitive understanding for the collapse motion.

In this paper we develop highly accurate, yet remarkably
efficient analytical approximations for the solution of the RE.

We first recall the standard normalization of the RE, based
on which the analytical approximations are then obtained in
a systematic way. These approximations are then compared
against high-precision measurements of the most spherical
bubbles available today. A short discussion concludes the
paper.

II. NORMALIZED RAYLEIGH MODEL

Multypling Eq. (1) by 3R2(dR/dT ), then integrating with
respect to T , and expressing the integration constant using the
initial conditions in Eq. (2), we find

3

2

(
dR

dT

)2

R3 + kR3 = kR3
0 . (3)

Up to a factor 4πρ/3, Eq. (3) expresses the conservation of
energy. Note that Eq. (3) only implies Eq. (1) if R2(dR/dT ) �=
0, and according to the initial conditions in Eq. (2) this relation
breaks down at T = 0. Nevertheless, we can still refer to
Eq. (3) to analyze R(T ) for T > 0. In particular, the collapse
time Tc, defined by R(Tc) ≡ 0, is found by integrating dT from
0 to Tc and dR from R0 to 0. We obtain

Tc = ξ R0 k−1/2, (4)

where ξ ≡ √
3/2

∫ 1
0 (r−3 − 1)−1/2dr ≈ 0.914 681 is a univer-

sal constant called the Rayleigh factor. Normalizing the radius
to r ≡ R/R0 and the time to t ≡ T/Tc, Eqs. (1) and (2) become

3
2 ṙ2 + r̈r + ξ 2 = 0, (5)

r(0) = 1, ṙ(0) = 0, (6)

where dots denote derivatives with respect to t . Using the same
normalization, Eq. (3) translates to

ṙ2 = 2
3ξ 2(r−3 − 1). (7)

Substituting Eq. (7) back into Eq. (5) then implies

r̈ = −ξ 2r−4, (8)
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which is an interesting, but little known alternative form of the
normalized RE given in Eq. (5).

The key advantage of Eq. (5) over Eq. (1) is its invariance
with respect to R0 and k. Stated differently, we only need to
solve Eq. (5) once in order to solve Eq. (1) for any choice of
R0 > 0 and k > 0. The solution of Eq. (5) in the range t =
[0,1] is displayed in Fig. 1(b). This solution was obtained using
a Cash-Karp fourth-fifth order Runge-Kutta method [11]. The
relative error made on the collapse time lies below 10−15, and
thus our numerical solution for r(t) can be considered exact as
far as this article is concerned.

III. ANALYTICAL APPROXIMATIONS

To find analytical approximations for r(t) we first notice that
the Rayleigh model given in Eqs. (5) and (6) is symmetric in
time. It follows that r(t) = r(−t) can necessarily be expressed
as a function of t2. Second, we observe that r(t) is nonanalytic
at t = ±1, as can be seen from the divergence of ṙ as r → 0 in
Eq. (7). Since r(t) converges as t → ±1, the singularities are
neither essential singularities nor poles, and therefore must
be branch points induced by the double-valued square root
appearing when Eq. (7) is solved for ṙ . The simplest function
exhibiting such a pair of branch points at t = ±1 is the power
law r0(t) ≡ (1 − t2)α with α ∈ ]0,1[. In order to use r0(t) as
an approximation of r(t), the parameter α can be determined
in two ways. First, we can request that r̈0(0) = r̈(0), which
together with Eqs. (6) and (8) implies α = ξ 2/2 ≈ 0.418 321.
Alternatively, we can impose that ṙ0(t) and ṙ(t) exhibit similar
asymptotic behavior at t = 1. In fact, Eq. (9) implies ṙ0 ∝
r

1−1/α

0 and Eq. (7) implies ṙ ∝ r−3/2 as t → 1. Matching the
powers of the two asymptotic functions we find α = 2/5 =
0.4. The coincidental close similarity of α determined at t =
0 and t = 1 suggests that r0(t) is a good approximation of
r(t) for both values of α. Here we choose α = 2/5 and the
corresponding approximation

r0(t) ≡ (1 − t2)
2
5
, (9)

hence accepting that r̈0(0) �= r̈(0) for the moment. This approx-
imation is displayed in Fig. 1(b). Its similarity to the Rayleigh
function r(t) is demonstrated by the small residual r0(t) − r(t),
shown in Fig. 1(c). Indeed, r0(t) never differs by more than
0.01 from r(t), and by construction we have r0(t) = r(t) at t ∈
{−1,0,1}. The normalized velocity residual [ṙ0(t) − ṙ(t)]/ṙ(t),
shown in Fig. 1(d), takes absolute values up to 0.044. The fact
that limt→0[ṙ0(t) − ṙ(t)]/ṙ(t) = r̈0(0)/r̈(0) − 1 differs from
zero explicitly reveals that r̈0(0) �= r̈(0).

We now improve the accuracy of our approximation r0(t)
at t = 0 through the modified ansatz r∞(t) ≡ r0(t)f (t), where
f (t) is a smooth function defined by the condition that
dqr∞(0)/dtq = dqr(0)/dtq for all derivatives of order q � 1.
As we will see, this infinite set of boundary conditions can be
met by restricting f (t) to functions that can be expressed as
Taylor series on the closed interval t ∈ [−1,1]. To respect the
time symmetry, f (t) must be even, i.e., all odd powers in the
Taylor series vanish. Thus,

r∞(t) ≡ (1 − t2)
2
5

∞∑
q=0

aqt
2q, (10)
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FIG. 1. (Color online) (a) Four subsequent high-speed images
of the collapsing spherical bubble in microgravity. (b) Collapse
functions: exact solution r(t) of Eqs. (5) and (6) (solid line),
measurement robs(t) (dots), and zeroth-order analytical approximation
r0(t) (dashed line). (c) Errors of robs(t) and the analytical models rn(t)
[Eq. (11)] and r∗(t) [Eq. (13)] relative to the exact solution r(t). Bars
represent 67% statistical measurement uncertainties. (d) Errors of the
velocities ṙobs(t), ṙ∗(t), and ṙn(t) relative to ṙ(t).
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TABLE I. Coefficients aq in the summations of Eqs. (10) and
(11), and accuracies of the approximations rq (t).

q aq log10 σ (rq ) log10 ε(rq ) log10 σ̇ (rq ) log10 ε̇(rq )

0 1 −2.5 −2.0 −1.7 −1.4
1 −0.018 320 99 −3.1 −2.6 −2.6 −2.0
2 −0.003 990 03 −3.5 −3.0 −2.9 −2.3
3 −0.001 610 41 −3.8 −3.2 −3.2 −2.5
4 −0.000 844 83 −4.0 −3.4 −3.4 −2.6
5 −0.000 512 45 −4.2 −3.5 −3.5 −2.7
6 −0.000 340 81 −4.3 −3.6 −3.6 −2.8
7 −0.000 241 53 −4.4 −3.7 −3.7 −2.9
8 −0.000 179 30 −4.5 −3.8 −3.8 −2.9
9 −0.000 137 91 −4.6 −3.9 −3.9 −3.0
10 −0.000 109 08 −4.7 −4.0 −4.0 −3.1

Function r∗(t) −5.6 −5.1 −4.7 −4.2

where aq are real constants. The condition r∞(0) = r(0) = 1
immediately implies a0 = 1. All other coefficients aq are
obtained by matching the even-order derivatives of r∞(t) and
r(t) at t = 0. Those derivatives are evaluated analytically by
differentiating Eqs. (10) and (8), respectively, and applying the
initial conditions given in Eq. (6). We can proceed iteratively:
first use d2qr∞(0)/dt2q = d2qr(0)/dt2q with q = 1 to get
a1 = 2/5 − ξ 2/2 ≈ −0.018 320 99, then with q = 2 to get
a2 = 3/25 + 2a1/5 − ξ 4/6 ≈ −0.003 990 03, and so forth.
Note that all odd-order derivatives, such as ṙ(0) and ṙ∞(0),
vanish due to time symmetry. The analytical expressions for
even-order derivatives of r(t) and r∞(t) get cumbersome as
q increases; however, the coefficients aq are easily obtained
by using analytical software tools. The numerical values of aq

up to q = 10 are given in Table I and those up to q = 22 are
plotted in Fig. 2. Using these values of the coefficients aq we
can now construct approximations

rn(t) ≡ (1 − t2)
2
5

n∑
q=0

aqt
2q . (11)

of any order n. Since aq < 0 and |aq | < |aq−1| for all q > 0, the
approximations rn(t) converge monotonically towards r∞(t)
as n → ∞. Figures 1(c) and 1(d) show that rn(t) and ṙn(t)
numerically converge towards the Rayleigh solution r(t) and

1 2 543 6 7 8 910 20
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–10–2

q

a q

FIG. 2. Dots: analytically calculated coefficients aq in the expan-
sion of Eq. (10). Solid line: power-law fit of Eq. (12), which has been
forced to pass through a1.

ṙ(t). Already the second-order approximation r2(t) is roughly
10 times better than the zeroth-order approximation r0(t)
discussed before. Yet, from a mathematical point of view, the
crucial question is whether or not r∞(t) is identical to r(t) for
all t ∈ [−1,1], i.e., if r∞(t) is the solution of the normalized
RE. The answer is no, since r̈(t) in Eq. (8) and r̈∞(t) derived
from Eq. (10) do not obey the same asymptotic behavior as
t → 1. In other words, r∞(t) remains an approximation of r(t),
no matter the choice of the real coefficients aq .

Figure 2 uncovers that q and aq exhibit a remarkably tight
power-law relation. Although this relation is not analytically
exact, we can approximate the values of aq for q > 0 as

aq ≈ a1 q−2.21, (12)

with the exact a1 = 2/5 − ξ 2/2 ≈ −0.018 320 99 given in
Table I. The relation given in Eq. (12) is plotted as a solid
line in Fig. 2. Upon approximating the coefficients aq in r∞(t)
for q > 0 by Eq. (12), we obtain

r∗(t) ≡ (1 − t2)
2
5 [1 + a1 Li2.21(t2)], (13)

where Lis(x) ≡ ∑∞
q=1 q−sxq is the polylogarithm, also known

as Jonquière’s function. Many programming languages contain
Lis(x) in their standard libraries. We emphasize that r∗(t)
slightly differs from r∞(t) since the latter uses the exact
coefficients aq rather than those approximated by Eq. (12).
Nonetheless, r∗(t) is a very precise approximation of the
Rayleigh solution r(t), as can be seen from the residuals
(multiplied by a factor 100) shown in Figs. 1(c) and 1(d).

To quantify the accuracy of our approximations in a more
refined way we consider the measures

ε(rx) ≡ max
t∈[0,1]

|rx(t) − r(t)| , (14)

σ (rx) ≡
√∫ 1

0
(rx(t) − r(t))2dt, (15)

ε̇(rx) ≡ max
t∈[0,1]

∣∣∣∣ ṙx(t) − ṙ(t)

ṙ(t)

∣∣∣∣ , (16)

σ̇ (rx) ≡
√∫ 1

0

(
ṙx(t) − ṙ(t)

ṙ(t)

)2

dt. (17)

Here, ε(rx) is the maximal error and σ (rx) the standard
deviation of the approximation rx(t) with respect to the
exact solution r(t), and likewise ε̇(rx) and σ̇ (rx) give the
accuracy of the derivative ṙx(t). The residuals ṙx(t) − ṙ(t) in
Eqs. (16) and (17) are normalized relative to ṙ(t) to obtain
meaningful, converging measures as |ṙ| → ∞. It turns out
that for all our approximations except r0(t) the absolute value
of [ṙx(t) − ṙ(t)]/ṙ(t) is maximal as t → 1. In this limit, the
numerical evaluation of ε̇ is delicate because of the divergence
of ṙx(t) and ṙ(t). However, we can use the analytical ex-
pression limt→1 = [ṙx(t) − ṙ(t)]/ṙ(t) = (

√
6α/ξ )α f (1) − 1,

where f (t) ≡ rx(t)/(1 − t2)2/5 is the sum on the right-hand
sides of Eqs. (10), (11), and (13), respectively.

The logarithms of ε, σ , ε̇, and σ̇ for various approximations
are given in Table I. These values support and extend the
previous discussion of the residuals in Figs. 1(c) and 1(d).
In particular, we find that r∗(t) approximates r(t) with an
error below 10−5 on the whole interval t ∈ [0,1], while ṙ∗(t)
approximates ṙ(t) at a relative error below than 10−4.
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IV. COMPARISON TO OBSERVED DATA

We now present a state-of-the-art experiment (see details
in Ref. [10]) of millimeter-sized bubbles with almost perfect
sphericity. The high validity of the Rayleigh model for these
bubbles [12] stresses the need for accurate approximations
such as r∗(t) when analyzing such bubbles.

In the experiment, single bubbles grow inside a liquid from
a point plasma generated by a mirror-focused nanosecond
laser pulse. The bubbles are sufficiently spherical that the
hydrostatic pressure gradient caused by gravity becomes the
dominant source of asymmetry in the collapse and rebound of
the bubbles (see Fig. 1(a) in Ref. [10]). To avoid this source
of asymmetry the experiment is performed in microgravity
conditions (ESA, 53rd parabolic flight campaign). Therefore,
the experiment can be considered as producing the most
spherical cavitation bubbles available at present.

The spherical bubble considered here has a maximal
radius R0 = (2.786 ± 0.007) mm and collapses within Tc =
(508.28 ± 0.10) μs under the driving pressure p − pv =
(25.34 ± 0.15) kPa. This bubble is centered inside a volume
(178 × 178 × 150) mm3 of demineralized water at (26 ±
0.5) ◦C. The bubble radius Robs(T ) is measured at submicron
precision from a movie obtained with a high-speed camera,
operating at interframe spacings of 10 μs with exposure times
of 370 ns. The high-speed movie and complementary data are
available online [13].

Four selected time frames of the collapsing bubble are
shown in Fig. 1(a). The evolution of the observed normalized
radius robs ≡ Robs/R0 is plotted in Fig. 1(b). We find that
robs(t) closely follows the Rayleigh solution r(t), as em-
phasized by the residual robs(t) − r(t), shown in Fig. 1(c).
At no time does robs(t) differ by more than 10−3 from
r(t). Therefore, considering the different approximations r∗(t)
and rn(t) with n � 5, we see that only the accuracy of
r∗(t) is sufficient to compare the experimental data against

the Rayleigh model. Such a comparison makes it possible,
for instance, to efficiently analyze the remaining oscillatory
residual robs(t) − r∗(t), which may be explained in terms of
surface tension and viscosity [4], liquid compressibility [5],
and thermal effects [6]. Basic estimates of these effects unveil
that the excellent match between robs(t) and r(t) is partially
due to a compensation of surface tension, which acceler-
ates the collapse, by compressibility and noncondensable
gases.

V. CONCLUSIONS

In summary, we have developed analytical approximations
to the solution r(t) of the RE, which preserve the time
symmetry, the boundary conditions at t = 0 (to arbitrary
order), the branch point singularities at t = ±1, and the
asymptotic behavior of ṙ(t) at t = ±1. Despite their ele-
mentary forms, the zeroth-order approximation r0(t) yields
a maximal error ε(r0) of only about 0.01, whereas the best
approximation r∗(t), expressed in terms of the polylogarithm,
reduces this error to below 10−5. Moreover, approxima-
tions rn(t) with any smaller accuracy can be systematically
constructed. For example, if 0.1% accuracy is desired then
r2(t) ≈ (1 − t2)2/5(1 − 0.018 32t2 − 0.003 99t4) suffices. A
comparison of these approximations against state-of-the-art
measurements of highly spherical cavitation bubbles revealed
that the residuals r∗(t) − r(t) are more than 100 times smaller
than the observed residuals robs(t) − r(t), shown in Fig. 1(c).
Thus the approximation r∗(t) is by far sufficient for all practical
purposes.
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