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Anomalous coalescence in sheared two-dimensional foam
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We report an experimental study on shearing a monolayer of monodisperse bubbles floating on liquid in a
narrow-gap Couette device. The bubbles in such a “bubble raft” coalesce only if the shear rate exceeds a threshold
value. This is in contrast to the conventional wisdom that bubbles and drops coalesce for gentler collisions, at
shear rates below a critical value. Furthermore, the threshold shear rate increases with the bubble size and the
viscosity of the suspending liquid, contravening reasoning based on capillary number. Through visualization and
scaling arguments, we investigate several plausible mechanisms for the anomalous coalescence. None explains
all aspects of the observations. The most promising model is one based on inertial forces that compress the
bubbles radially inward and accelerate film drainage.
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I. INTRODUCTION

Foams are fragile soft matter, with a microstructure that
tends to evolve under interfacial, hydrodynamic, and body
forces. Even a static foam may undergo several types of
structural changes. Coarsening occurs when gas diffuses from
a smaller bubble to a larger neighbor [1]. Bubbles burst at the
interface with free air as the liquid film is depleted by drainage
or evaporation [2,3]. In the interior of a static dry foam, liquid
drainage may lead to neighbor-swapping T1 events [4], which
in turn may cause bubble coalescence [5,6].

Shearing opens up dynamic routes for structural evolution.
T1 events are prominent under shear [7,8]. Golemanov et al.
[9] observed breakup of bubbles sheared between parallel
disks. In a similar geometry, Herzhaft [10] reported size-based
segregation of bubbles in a polydisperse foam. Smaller bubbles
tend to aggregate near the top and bottom plates, while larger
ones tend to aggregate in the middle. Conspicuously missing,
however, is any report of shear-induced coalescence, a com-
mon occurrence in sheared emulsions [11]. This has motivated
the current experiment on bubble-bubble coalescence in a
sheared foam.

A severe limitation to understanding the structure-flow
coupling in a three-dimensional (3D) foam comes from its
intrinsic opacity; the myriad gas-liquid interfaces diffract light.
Therefore, researchers have experimented with 2D foams,
i.e., monolayers of 3D bubbles. Experiments on shearing 2D
foams have been carried out in parallel-plate (e.g., [12,13])
and Couette devices (e.g., [8,13,14]), focusing mainly on low
shear rates. The only structural changes observed so far are T1
events [8]. We aim to explore structural changes in 2D foams
under more vigorous shearing. The main finding is a type
of bubble coalescence unexpected at the start. We consider
several models for the anomalous coalescence, none of which
quantitatively explains all aspects of the observations.

II. MATERIALS AND METHODS

The experiments are carried out in a modified Couette
device modeled after that of Ref. [15]. It consists of a stationary
outer cylinder of inner radius R2 = 10 cm and a rotating

sharp-edged inner disk of radius R1 = 9.3 cm [Fig. 1(a)]. The
static liquid level is flush with the top surface of the inner
and outer cylinders such that the interface is pinned at the
sharp corners. Upon rotation, this limits the undulation of the
free surface to the order of 0.1 mm. Furthermore, triangular
teeth (height 0.5 mm and width 1 mm) are machined onto
the solid surfaces to prevent slippage. Figure 1(b) shows that
the innermost and outermost layer of bubbles are essentially
entrapped in these dents. Bubbles are produced by blowing
nitrogen through an immersed needle in a soapy water solution
using a pneumatic PicoPump (WPI, model PV-820). This
method allows for an extremely uniform bubble size that can
be fine-tuned by the nitrogen pressure. The results reported
below are for three bubble sizes, with radius R = 250, 350 and
500 μm. Once the bubbles appear to cover the entire liquid
surface, relatively few additional bubbles can be squeezed
into the foam. Further addition causes bubbles to pile on top
of others and destroy the two dimensionality. This limits us
to relatively wet 2D foams with modest bubble deformation
[Fig. 1(b)].

The suspending solution is made of distilled water, various
concentrations of glycerine (Fisher Scientific), and a dishwash-
ing liquid (Unilever, Sunlight); the compositions of the three
sample liquids used are given in Table I. All are Newtonian,
and their viscosity μ is controlled by the amount of glycerine
and measured by a rheometer (Malvern, Kinexus). The surface
tension σ , measured by a tensiometer (Cole-Parmer, Surface
Tensiomat 21), is shown in Fig. 2 for a range of the bulk
detergent concentration c. Similar results are obtained for
different glycerine concentrations. Such data suggest a critical
micelle concentration, CMC ≈ 0.05%, above which σ no
longer changes with c. In our experiment, c is dictated by
the need to produce stable bubbles that do not burst within the
time of experiments (up to 60 min). The lowest permissible
concentration is c ≈ 0.5%, well above the CMC. The results
presented below are for c = 5%.

In a separate experiment, we measured the rising speed
of small bubbles with diameter below 1 mm in our soap
solutions. The results indicate a velocity consistent with the
Stokes formula for a rigid sphere, rather than the Hadamard
formula for a spherical bubble [16]. For example, a bubble
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FIG. 1. (a) Schematic of the shear cell (not to scale). (b) A 2D
foam at rest with bubble radius R = 500 μm.

of radius R = 450 μm rises at a speed of V = 0.018 m/s,
giving a Reynolds number of Re = 0.38. Theoretically, the
Stokes formula predicts V = 0.021 m/s, while the Hadamard
formula would have given V = 0.032 m/s. Therefore, the
bubble surface is completely immobilized, and the interfacial
dynamics is not affected by the surfactant concentration.

The bubble raft is sheared by rotating the inner cylinder.
The foam structure is captured with a high-speed camera
(Megaspeed, MS 70 K) at 4600 fps. The bubble velocity
profile across the gap is measured by a type of particle
image velocimetry (PIV) that tracks the bubble position in
consecutive exposures and calculates the bubble velocity
via image analysis. Typical profiles are shown in Fig. 3.
If scaled by the inner wall velocity, the profiles collapse
for all � and R tested. The bubble velocity falls below
the theoretical profile for a Newtonian fluid. Therefore, the
foam behaves as a shear-thinning liquid. With increasing μ,
the profiles tend to approach that of the Newtonian fluid.
Using the measured shear rate γ̇ at the inner cylinder, we
can define a capillary number Ca = μγ̇R/σ . The range of
rotational speed of the inner cylinder, 0.05 � � � 85 rpm,
thus corresponds to 10−6 � Ca � 3 × 10−3. Even our
largest Ca falls well below the minimum needed for bubble
breakup [9]. Indeed, breakup into smaller bubbles or burst
never happened under our experimental conditions.

TABLE I. Composition and properties of the solutions.

Solution Glycerin c μ (mPa s) σ (mN/m)

I 10 wt. % 5 wt. % 1.0 ± 0.1 27.0 ± 1.0
II 30 wt. % 5 wt. % 1.8 ± 0.2 27.0 ± 1.0
III 50 wt. % 5 wt. % 4.2 ± 0.4 27.0 ± 1.0
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FIG. 2. Surface tension as a function of the concentration of
dishwashing liquid, with 30 wt. % glycerine.

III. EXPERIMENTAL RESULTS

A. Critical rotational velocity for bubble-bubble coalescence

The key finding of this study is that above a critical
rotational velocity �c, large bubbles appear quickly after
the start of shearing (Fig. 4). At shear rates below �c,
no large bubble appears and the foam morphology remains
unchanged over long periods of time (∼30 min). The threshold
is observed for all bubble sizes, liquid compositions, and
surfactant concentrations that we tested.

Our optical setup offers a 2 × 2 cm viewing window that
is fixed in space. Thus, we capture only a small portion of the
circular trajectory of the bubbles. The coalescence takes place
very quickly after shearing above �c. Therefore, we cannot
capture the actual process of the coalescence as Ritacco et al.
[3] did for bursting of bubbles in static bubble raft. Coalescence
is thus inferred from the appearance of large bubbles.

This surprising result contravenes the conventional wisdom
that coalescence happens for gentler collisions, with an upper
bound on the shear rate and a corresponding maximum
capillary number (e.g., [17–21]). The coalescence between
two freely suspended bubbles or drops is governed by the
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FIG. 3. Bubble velocity profiles at three rotation speeds with
liquid I. Bubble size R = 250 μm. The line represents the analytical
solution for a Newtonian fluid.
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FIG. 4. (a) A foam with bubble radius R = 500 μm in liquid I
shows no sign of coalescence when sheared at 60 rpm. (b) Large
bubbles appear after about 20 sec of shearing at 75 rpm.

competition between two time scales, i.e., the interaction time
ti and the drainage time td . The former is the time available
for the two bubbles to interact, and scales with γ̇ −1, while the
latter is the time required for the liquid film between them to
drain to a critical thickness such that van der Waals forces can
effect a rupture [19]. Therefore, td increases with the viscosity
of the suspending liquid and the extent of bubble deformation.
The requirement of ti � td for coalescence leads to an upper
critical capillary number. Such a criterion has been verified
by extensive studies that examined various parameters in the
process, including drop size, viscosity of the fluids, lateral
offset of the colliding drops, and surfactant concentration
(e.g., [22,23]). But apparently it does not apply in our
case.

B. Effect of bubble size and liquid viscosity

To probe our anomalous coalescence, we have examined
the effects of the bubble size R and liquid viscosity μ.
Figure 5 shows that the critical angular velocity �c increases
with both R and μ. This may again be surprising: it implies
that the anomalous coalescence cannot be analyzed in the
conventional framework of a capillary number, i.e., in terms of
viscous forces competing with surface tension. There must be
a mechanism at play that was absent in the convention scenario
of collision and coalescence.

If we draw straight lines through the data points in this
log-log plot, their slopes give the scaling �c ∼ R0.27±0.02. The
dependence of �c on the liquid viscosity μ is rather weak:
�c ∼ μ0.1.

C. Interfacial shape and bubble distribution

Aside from bubble-bubble coalescence, we have also
recorded the shape of the foam-air interface and spatial
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FIG. 5. Critical rotation speed �c as a function of bubble radius
R for liquids I, II, and III (see Table I).

redistribution of the bubbles under shear. These may offer
potential clues to the cause of the anomalous coalescence.

Intuitively, one may expect the centripetal force to deform
the interface on the rotating liquid. This is not the case; the
interface exhibits no observable variation in its elevation across
the gap even at the highest � tested. This is largely due to
pinning of the interface at the solid walls. In the experiment,
we fill the gap between the cylinders such that the static liquid
surface is flush with the tops of the cylinders. Once shearing
starts, the free surface is subject to the centripetal force as well
as anchoring (i.e., Gibbs pinning) on the sharp edges of the
inner and outer walls. Using the velocity profiles of Fig. 3, we
have computed the shape of the interface, shown in Fig. 6 for a
rotational speed of 60 rpm. Thus, the anchoring of the surface
limits its undulation to negligible amounts (<0.2 mm; one
order of magnitude smaller than without anchoring). The radial
pressure gradient due to centripetal force is maintained by
the capillary force in the meniscus rather than the hydrostatic
head of the liquid. Furthermore, the bubbles are held mostly
underwater by surface tension [24,25].

At relatively low rotation speed, the bubbles slide past each
other in rows. At higher �, however, there appears to be radial
motion of the bubbles that disrupts the layers. As a result,
bubbles tend to be more tightly packed in the inner half of the
gap than in the outer half. In fact, voids of clear liquids start
to appear in the outer region (Fig. 7), which quickly disappear
after the shearing stops. The most plausible cause of this spatial
inhomogeneity is the centripetal force exerted by the rotating
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FIG. 6. Shape of the free surface for liquid sheared at � =
60 rpm. The radial distance is measured from the axis of rotation, and
the inner and outer boundaries are at 93 and 100 mm, respectively.
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FIG. 7. Bubble distribution in a foam 10 min after shearing at
� = 60 rpm. R = 500 μm.

liquid on the bubbles. As mentioned above, the bubbles are
mostly submerged and thus feel an inward force due to the
radial pressure gradient in the liquid. This may be a crucial
factor in the anomalous coalescence, as explained below.

IV. POTENTIAL MECHANISMS FOR
ANOMALOUS COALESCENCE

To rationalize our experimental observation, one first
recognizes the differences between our flow situation and
that of conventional drop- or bubble-coalescence experiments,
from which the conventional wisdom of an upper critical Ca
for coalescence has arisen. In shear-induced drop collision,
the shear brings into contact two freely suspended drops that
would otherwise not interact with each other at all. In our
bubble raft, on the other hand, bubbles are in close contact
with each other even without shear. Why should the static
bubbles be immune to coalescence while the sheared ones
are not? Moreover, our bubbles are covered by surfactants,
and there is also ample supply of it in the surrounding liquid.
Possibly surfactant transport and Marangoni stress have played
a part [26]. Finally, our coalescence occurs at relatively high
flow rates, much higher than typical for drop-coalescence
experiments [26]. In the following, we will explore these
differences for clues to the anomalous coalescence.

A. Shear precludes surfactant-stabilized films

The first idea is to explore the contrast between the
remarkable stability of static foam and the coalescence in a
sheared one. Static foams are stabilized by surfactants because
the latter form regular structures in liquid films that are
sufficiently thin [27]. If the bulk surfactant concentration is
below CMC, then bilayers of surfactants form the so-called
“black films” [28]. At higher concentrations, micelles arrange
themselves into a more or less regular colloidal structure in
the liquid film, producing thick stable films [27]. In either
case, the surfactant structure contributes a disjoining pressure
that prevents liquid drainage and stabilizes the static foam.
Conceivably, vigorous shearing may disrupt such surfactant
structures or prevent them from forming in the first place. This
could be a mechanism for the observed coalescence.

In a recent study, Denkov et al. [29] demonstrated how the
black film may cause jamming in flowing foams. In essence,
they assume that for low enough shear rates, there is enough
time for the film between neighboring bubbles to thin down
to a critical thickness where attractive forces act to produce

black films. Then the bubbles are locked into a rigid structure
that resists the shearing, and the foam is jammed. In our
experiment, the surfactant concentration is above CMC and
the stable structure should be the thick stable film instead of
the black film [27]. At low �, we observe nonhomogeneous
shearing with large domains of jammed bubbles. Around
� = 3 rpm, all such domains unjam and the bubble raft starts
to shear more or less uniformly. We thus take this to be the
threshold for the destruction of the thick stable films. However,
larger bubbles only start to appear at a much higher rotational
speed of � ∼ 60 rpm. Therefore, the unjamming cannot be
the cause of the anomalous coalescence, which requires much
more vigorous shearing.

B. Surface remobilization due to surfactant transport

Aside from forming stable structures in thin films, surfac-
tants also tend to stabilize static foam through the Marangoni
effect. Drainage in liquid films carries surfactants along the
interface, and creates a spatial gradient in surfactant concen-
tration along the interface of bubbles. This in turn produces
a tangential Marangoni stress that resists the interfacial flow.
Thus, the bubble surface can be immobilized, as our rising-
bubble test has demonstrated. However, the magnitude of
the Marangoni stress is limited by the maximum surface
concentration gradient that can be produced. Conceivably,
sufficiently strong shearing may produce a viscous stress τv

that overpowers the Marangoni stress τM , thereby remobilizing
the bubble surfaces. Then film drainage will be facilitated
and so will coalescence. This suggests using the Marangoni
number Ma = τM/τv ∼ 1 as a criterion for the observed
anomalous coalescence. In studying pairwise collision of
surfactant-covered drops, Yoon et al. [26] used this argument
to rationalize the appearance of a “transition capillary number”
for lower bulk surfactant concentrations such that coalescence
occurs above it but not below. This seems to be consistent with
our anomalous coalescence.

Therefore, we will study the antagonism between
Marangoni stress and viscous stress as a potential explanation
for the anomalous coalescence observed in our experiment. For
soluble surfactants, the surface concentration is determined by
two steps: bulk diffusion of surfactants toward the interface
and adsorption onto the interface [30]. For our commercial
detergent, it is not possible to estimate the relative rates of
these two steps. We will examine the cases of either one being
the limiting step by adapting the classical analysis of Levich
on falling drops [30]. In our problem, the liquid flow outside
the bubbles is due to shear instead of sedimentation. Thus, we
need to replace the characteristic liquid velocity in Levich’s
calculations by γ̇ R, with γ̇ being the local shear rate.

If adsorption is the limiting step that dictates the surfactant
distribution � on the bubble surface, then one can estimate the
surface concentration gradient as [30]

|∇�| ≈ �0 γ̇

α R
, (1)

where �0 is the equilibrium concentration and α is the coeffi-
cient of adsorption. This implies that the Marangoni stress,

τM = |∇σ | =
(

∂σ

∂�

)
�0

|∇�|, (2)
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is proportional to the shear rate. Since the shear stress τv on
the surface is also proportional to γ̇ , the ratio τM/τv will be
independent of the shear rate. This cannot explain the fact that
coalescence happens above a threshold rotational speed.

When the bulk diffusion determines the surfactant distri-
bution on the bubble surface, Levich [30] estimated |∇�|
and hence |∇σ | based on a boundary layer thickness of
δ ∼ (DR/γ̇ )1/3, with D being the bulk diffusivity:

τM = |∇σ | ≈ �0γ̇ δ

DR

(
∂σ

∂c

)
. (3)

Here, c is the bulk concentration of the surfactant, and ∂σ/∂c =
�0RgT/c by virtue of the Gibbs equation, with Rg and T being
the gas constant and absolute temperature, respectively. Now
the stress ratio can be written as

τM

τv

≈ �2
0RgT

c

δ

μDR
. (4)

From the Stokes-Einstein relationship, the surfactant diffu-
sivity D is inversely proportional to the liquid viscosity μ:
D = kBT /(6πμrs), where rs is the characteristic size of the
surfactants and kB is the Boltzmann constant. By plugging this
and the estimation of δ into the above equation, we obtain

τM

τv

≈ C (μγ̇R2)−1/3, (5)

where C contains factors including T and c, and is a constant
in our experiment. The prediction that τM/τv decreases with γ̇

allows the possibility that the Marangoni stress is overpowered
by the viscous shear stress at sufficiently high γ̇ , which would
be consistent with the proposed mechanism of bubble-surface
remobilization. However, the prediction of a critical shear rate
that scales with μ−1 and R−2 contradicts the observations in
Fig. 5.

In view of the above analysis, we are driven to the
conclusion that the remobilization of bubble surface by shear
stress overcoming Marangoni stress cannot be the cause of the
anomalous coalescence.

C. Bubble compression due to inertia

The photo in Fig. 7 indicates a tendency for the bubbles
to be pushed radially inward. The only plausible agent for
such an effect is the centripetal force of the rotating liquid.
As the spinning liquid generates an inward pressure gradient,
the bubbles, having a much lower density than the liquid, are
pushed inward towards the inner cylinder. Thanks to pinning
on the walls, the liquid surface rises little (Fig. 6). The radial
pressure gradient is thus maintained not by hydrostatic head
but by surface tension in the liquid meniscus. Conceivably,
the squeezing between bubbles accelerates the drainage in the
liquid film. If the film drains down to a critical thickness within
the interaction time between two bubbles, then coalescence
occurs [19]. Thus, one may be able to adapt ideas from a
conventional drop-drop collision to explain the anomalous
coalescence. In the following, we test this mechanism through
a scaling model.

For a pair of bubbles pushed into each other by a constant
force F , we may estimate the drainage time from an initial
film thickness of h0 to the final critical one of hc using the

rigid parallel disk model [19,31]:

td = 3πμa4

4F

(
1

h2
c

− 1

h2
0

)
, (6)

where a is the radius of the liquid film. In our geometry,
the radial pressure gradient due to the spinning liquid is
dp/dr = ρu2/r , where ρ is the liquid density and u is the
tangential velocity of the liquid at distance r . This exerts a force
(dp/dr)(2R)(πR2) on each bubble. Since the bubbles are in
close contact with each other, they transmit the centripetal
force onto their inner neighbors in a sort of force chain,
resulting in the largest cumulative force on the innermost layer
of bubbles,

F = 2πρR3
N−1∑
i=1

u2

r
, (7)

with the summation over the outer layers of bubbles. In
comparison with F , the squeezing force πa2(σ/R) due to
capillary pressure is at least an order of magnitude smaller,
and has thus been neglected.

Chesters and Bazhlekov [32] have proposed an empirical
relation for the critical film thickness hc for rupture due to van
der Waals force,

hc = 2

3

(
A

4πσ

)0.3

(aR)0.2, (8)

with A being the Hamaker constant taken here to be A =
3 × 10−19 J [33]. We need now to estimate a. For pairwise
collisions in a shear flow, the classical theory gives a/R ∼
Ca1/2 [19]. We have measured a directly by using IMAGEJ

[34], and found it relatively insensitive to shear. In the static
foam, a ≈ 0.17R, which is in close agreement with previous
computations [35]. With shearing, a tends to increase with
� but quickly saturates to an average value of a ≈ 0.2R

at about 25 rpm. Apparently, the close packing constrains
the bubble movement and diminishes the role of shearing.
Measuring a among hundreds of pairs of bubbles reveals
moderate variations in any given foam, and Fig. 8 shows a
typical distribution of a in a sheared foam. Since smaller a

gives faster film drainage, and we are concerned with the onset

FIG. 8. (Color online) Distribution of the film radius a in a
sheared bubble raft with R = 500 μm, � = 75 rpm. The curve shows
a fitted normal distribution.
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FIG. 9. The critical condition for coalescence corresponds to τ =
8 for solution I, with τ being computed for the innermost layer of
bubbles using the measured bubble velocity profile. For solutions II
and III, the critical τ values are 12.5 and 28.5, respectively.

of coalescence, we use the smallest a = 0.14R. Inserting this
value along with Eqs. (7) and (8) into Eq. (6), the ratio between
drainage and interaction times is

τ = td

ti
= 1.64 × 10−3

(πσ

A

)0.6 μR0.2γ̇

ρ
∑N−1

i=1
u2

r

, (9)

where we have neglected h−2
0 relative to h−2

c , and taken
the interaction time between neighboring rows of bubbles
to be ti ≈ γ̇ −1 as in a previous analysis [19]. We argue that
τ � O(1) should give the critical condition for the anomalous
coalescence observed here.

The validity of the scaling theory can now be tested against
the key experimental observations. First, note that γ̇ and u are
both proportional to �. Thus, τ ∼ �−1 and τ < 1 does yield a
minimum critical rotational speed as observed. Quantitatively,
however, the critical condition corresponds to τ = 8, 12.5,
and 28.5 for solutions I, II, and III, respectively (Fig. 9). These
numbers are one order of magnitude too large. Second, the
τ criterion predicts a scaling for the critical rotational speed
�c ∼ R0.2, which is in reasonable agreement with the power-
law scaling observed in Fig. 5. Third, it also predicts �c to
increase linearly with the liquid viscosity μ. While the trend
is correct, the experimentally observed dependence on μ is
much weaker: �c ∼ μ0.1 (cf. Fig. 5). Finally, the large bubbles
appear more often in the inner part of the gap than in the outer.
Given that the smallest a can be anywhere in a particular
experiment, this provides indirect support for the accumulation
of the inward force in Eq. (7).

Thus, the inertia-based mechanism explains the quali-
tative trends observed. But quantitatively it overestimates
the drainage time as well as the effect of liquid viscosity.
The latter recalls the study of Yoon et al. [36] on freely
suspended droplets, where the viscosity effect is also weaker
than expected. In our case, the numerical discrepancies have

many potential causes. For example, the Hamaker constant
[33] is not known for the fluids used here, and possibly the
bubble surface may develop dimples during thinning [21]
that would compromise the calculation above. Since our bulk
surfactant concentration is 100 times CMC, the abundance of
surfactants may introduce additional effects. Rapid adsorption
onto the bubble surface may partially mitigate the Marangoni
stress and locally remobilize the surfaces [27]. Though this
has been dismissed as a critical condition for the anomalous
coalescence, it might explain the fact that the drainage rate
is underestimated in our model, producing too large a critical
τ value. Moreover, the later stage of drainage is probably
influenced by the presence of micelles, which may form
layers that hinder film thinning below h ∼ 100 nm [27]. This
nonviscous effect may reduce the overall dependence on μ.
Unfortunately, not knowing the chemical properties of the
surfactant mixture in the detergent, it is difficult to formulate
these ideas quantitatively.

V. CONCLUSION

We have reported an anomalous type of bubble coalescence
in a monolayer sheared in a Couette device, which occurs
above a critical rotational speed �c. This contrasts with the
conventional wisdom about bubble and drop coalescence that
it occurs below a critical capillary number. Our coalescence
cannot be characterized by a critical capillary number; the
critical �c increases with bubble size and the viscosity
of the suspending liquid. To rationalize the experimental
observations, we have considered three potential mecha-
nisms for the coalescence: shear preventing the formation
of surfactant-stabilized films between bubbles, shear stress
overcoming Marangoni stress to remobilize the bubble surface,
and centripetal force pressing the bubbles radially inward into
each other. None of these accounts quantitatively for all of the
experimental results.

The third is the most promising. According to this model,
the anomalousness of the scenario arises from two factors:
the film drainage is driven by a centripetal force instead of
a viscous one, and the bubble deformation is determined
by geometric constraints rather than shearing. The apparent
reversal in the coalescence criterion, from the conventional
maximum capillary number to a minimum shear rate, is similar
in spirit to that demonstrated recently by Ramachandran and
Leal [37] for collision between vesicles. Though clearly not
a complete theory for the anomalous coalescence, the inertia-
based model captures the qualitative trends of the experiment,
and may serve as a starting point for further investigations.
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