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We characterize the role of the impulse transmitted (time integral over a half-period) by resonant secondary
excitations at controlling (suppressing and enhancing) escape from a potential well, which is induced by
periodic primary excitations. By using the universal model of a dissipative Helmholtz oscillator, we demonstrate
numerically that optimum control of escape occurs when the impulse transmitted by the chaos-controlling
excitations is maximum while keeping their amplitude and period fixed. These findings are in complete agreement
with analytical predictions from two independent methods: Melnikov analysis and energy-based analysis.
Additional numerical results corresponding to other alternative escape-controlling excitations demonstrate the
generality of the essential role of the excitation’s impulse.
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I. INTRODUCTION

Noise-free escape from a potential well is a ubiquitous prob-
lem in physics with wide-ranging technological implications
where the necessary energy to overcome the energy barrier
can be supplied by a periodic excitation. Depending on the
excitation’s parameters, the escape can, thus, be accomplished
by the passage of the system over the barrier which separates
the local potential minimum from a neighboring attracting
domain. Diverse instances are known in chemistry [1], elec-
trical transport [2], astrophysics [3], and hydrodynamics [4]
among many others where escape phenomena can often be
well described by a low-dimensional system of differential
equations. Indeed, the case that has been most extensively
studied in both dissipative and Hamiltonian systems is that in
which escape is induced by an escape-inducing (EI) periodic
excitation added to the low-dimensional model system so that,
before escape, chaotic transients of unpredictable duration
(owing to the fractal character of the basin boundary) are
usually observed for orbits starting from chaotic generic phase-
space regions (such as those surrounding separatrices). In this
scenario, the effectiveness of secondary escape-controlling
(EC) periodic excitations in suppressing escape has also been
demonstrated for the case of the main resonance (between
the two excitations involved) in the context of dissipative
systems capable of being studied by Melnikov analysis (MA)
techniques [5]. This approach was further shown to be
useful in the case of incommensurate EC excitations [6].
While early studies in this context have been about the
case where both periodic excitations involved are harmonic,
the observation that real-world excitations present a great
diversity of wave forms suggested studying the effectiveness
of EC excitations with different wave forms at suppressing or
enhancing escape while keeping their amplitudes and periods
constant. Indeed, recent papers provide strong evidence for a
different dependence of the EC scenario on harmonic [5] and
nonharmonic excitations [7]. In particular, in Ref. [7], it is
demonstrated that the EC scenario is highly sensitive to the

wave form of periodic secondary excitations. Since there are
infinitely many different wave forms, a relevant problem is
how to quantitatively characterize the effect of the excitation’s
wave form on the EC scenario.

In this present paper, we show that a relevant quantity prop-
erly characterizing the effectiveness of generic EC periodic
excitations F (t) having equidistant zeros in the EC scenario
is the impulse transmitted by the excitation over a half-period
(hereafter referred to simply as the excitation’s impulse [8]
I ≡ ∫ T/2

0 F (t)dt, T being the period)—a quantity integrating
the conjoint effects of the excitation’s amplitude, period, and
wave form. It is worth mentioning that the relevance of the
excitation’s impulse has been observed previously in quite
different contexts. First, it has been shown that optimum
enhancement of ratchet transport [9] (i.e., directed transport
by symmetry breaking of zero-mean forces) is achieved
when maximal effective (i.e., critical) symmetry breaking
occurs, which is, in turn, a consequence of two reshaping-
induced competing effects: the increase in the degree of
symmetry breaking and the decrease in the (normalized)
maximal excitation’s impulse, thus, implying the existence
of a universal force wave form that optimally enhances
ratchet transport [9]. Second, in the context of adiabatically
ac driven periodic (Hamiltonian) systems, the width of the
separatrix chaotic layer and the adiabatic condition have been
shown to depend on the maximal impulse transmitted by the
force over a period between two of its consecutive zeros
irrespective of its wave form [10]. Third, it has recently been
shown, through the examples of driven two-level systems
and periodically curved waveguide arrays, that the impulse
transmitted by the (effective) force is an essential quantity for
the optimum control of the phenomena of coherent destruction
of tunneling and dynamic localization [11]. And fourth, the
chaotic threshold of a pump-modulation Nd:YVO4 laser has
been shown to be controlled by the modulation impulse [12].

Here, we will discuss the relevance of the impulse trans-
mitted by generic EC excitations by focusing on the case of
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the main resonance between the two excitations involved. The
rest of this paper is organized as follows. Section II provides
the MA-based analytical predictions for the simple model of
a dissipative Helmholtz oscillator subjected to a harmonic EI
excitation, whereas the EC excitation is given by a periodic
function having a variable impulse that is controlled by a
single parameter. An energy-based analysis is also included,
whose analytical predictions are in complete agreement with
those of the MA. Section III provides numerical evidence for
the essential role of the excitation’s impulse, thus confirming
the theoretical approach of Sec. II. The generality of this role
of the excitation’s impulse is confirmed by the results corre-
sponding to other alternative EC excitations. Our conclusions
are presented in Sec. IV.

II. THEORETICAL APPROACH

For the sake of clarity, we concentrate on a simple model for
a universal escape situation: a perturbed Helmholtz oscillator
[13] described by the equation,

..
x − x + [1 + ηF (t)]x2 = −δ

.
x + γ sin(ωt), (1)

where all the variables and parameters are dimensionless, and

F (t) ≡ N (m)sn

[
4Kt

T
+ �

]
dn

[
4Kt

T
+ �

]
, (2)

in which sn(·) ≡ sn(·; m) and dn(·) ≡ dn(·; m) are Jacobian
elliptic functions of parameter m [K ≡ K(m) is the com-
plete elliptic integral of the first kind] [14], � = �(m,ζ ) ≡
2K(m)ζ/π, ζ ∈ [0,2π ], T ≡ 2π/ω, and N (m) is a normal-
ization function (see Fig. 1, top) which is introduced for the
elliptic excitation to have the same amplitude 1 and period T

for any wave form (i.e., ∀ m ∈ [0,1]). Here, γ sin(ωt) and
ηx2F (t) are to be regarded as the EI and EC excitations,
respectively. When m = 0, then F (t)m=0 = sin(2πt/T + ζ ),
i.e., one recovers the previously studied case of a harmonic
EC excitation [5], whereas, for the limiting value m = 1, the
excitation vanishes. The effect of renormalization of the ellip-
tic arguments is clear: with T constant, solely the excitation’s
impulse is varied by increasing the shape parameter m from 0
to 1. Note that, as a function of m, the excitation’s impulse,

I = I (m,T ) ≡ T N (m)

2K
(3)

presents a single maximum at m=m
impulse
max � 0.717 (see Fig. 1,

bottom). Thus, choice (2) allows one to study the genuine
effect on the EC scenario of the impulse transmitted by the EC
excitation.

A. Melnikov analysis

We assume that the complete system (1) satisfies the MA
requirements, i.e., the dissipation and excitation terms are
small-amplitude perturbations of the underlying conservative
Helmholtz oscillator

..
x − x + x2 = 0 (see Refs. [15,16] for the

general background). It is worth mentioning that the criterion
for a homoclinic tangency—accurately predicted by MA in
diverse systems [4,17]—is coincident with the change from
a smooth to an irregular fractal-looking basin boundary [18].
It is worth noting that these results connect MA predictions
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FIG. 1. (Color online) Top: Force F (t) [cf. Eq. (2)] vs t/T ,
where T is the temporal period and N (m) ≡ 1/{a + b/[1 +
exp({m − c}/d)]} with a ≡ 0.439 32, b ≡ 0.697 96, c ≡ 0.3727,

d ≡ 0.268 83 for ζ = 0 and four values of the shape parameter: m = 0
(sinusoidal pulse), m = 0.72 � m

impulse
max � 0.717 (nearly square-wave

pulse), m = 0.99 (double-humped pulse), and m = 0.999 999 (sharp
double-humped pulse). Bottom: The normalized excitation’s impulse
I (m,T )/I (0,T ) [cf. Eq. (3)] vs m. The quantities plotted are
dimensionless.

with those concerning the erosion of the basin boundary.
Straightforward application of MA to Eq. (1) yields the
Melnikov function (MF),

M(t0) = −D − A cos(ωt0)

+ η

∞∑
n=0

BnCn cos

[
(2n + 1)

(
2πt0

T
+ ζ

)]
,

D ≡ 6δ

5
, A ≡ 6πγω2csch(πω),

Bn ≡ 3

320

π3N (m)
(
n + 1

2

)
√

mK2(m)
sech

[(
n + 1

2

)
πK(1 − m)

K(m)

]
,

Cn ≡
[

(4n + 2)
2π

T

]2{
4 +

[
(4n + 2)

2π

T

]2}

×
{

16 +
[

(4n + 2)
2π

T

]2}
csch

[
(2n + 1)

2π2

T

]
.

(4)

Let us assume that, in the absence of any EC excitation (η = 0),
the system (1) undergoes an escape for which the respective
MF,

M0(t0) = −D − A cos(ωt0) (5)

has simple zeros, i.e., D � A, where the equal sign corre-
sponds to the case of tangency between the stable and the
unstable manifolds [16]. If we now let the EC excitation act
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on the system such that B∗ � A − D, with

B∗ ≡ max
t0

{
η

∞∑
n=0

BnCn cos

[
(2n + 1)

(
2πt0

T
+ ζ

)]}
, (6)

then this relationship represents a sufficient condition for M(t0)
to change sign at some t0. Thus, a necessary condition for M(t0)
to always have the same sign is

B∗ > A − D ≡ Bmin. (7)

Since Bn > 0, Cn > 0, n = 0,1,2, . . . , one has B∗ � η
∑∞

n=0
BnCn (see the Appendix in Ref. [7]), and hence,

η > ηmin ≡
(

1 − D

A

)
R, R = R(γ,T ,m) ≡ A∑∞

n=0 BnCn

.

(8)

Equation (10) provides a lower threshold for the amplitude of
the EC excitation. Similarly, an upper threshold is obtained by
imposing the condition that the EC excitation may not enhance
the initial escape, i.e.,

B∗ � η

∞∑
n=0

BnCn < A + D ≡ Bmax, (9)

and hence,

η < ηmax ≡
(

1 + D

A

)
R, (10)

which is a necessary condition for M(t0) to always have the
same sign. Thus, the suitable (suppressory) amplitudes of the
EC excitation must satisfy

ηmin < η < ηmax. (11)

Figure 2 shows how both the threshold amplitudes ηmin , max and
the width of the range of suitable amplitudes 	η ≡ ηmax −
ηmin = 2(D/A)R present a single minimum at m = mmin as
the shape parameter m is increased from 0 to 1 due to
the dependence of the function R on the shape parameter.
While this minimum mmin is very near m

impulse
max � 0.717

over a wide range of periods, one cannot expect an exact
agreement between mmin and m

impulse
max for all periods owing

to the dependence of the chaotic threshold on the common
excitation period. This means that ever lower amplitudes
ηmin can suppress escape as the impulse transmitted by the
EC excitation approaches its maximum value, whereas the
corresponding suppressory ranges 	η also decrease in
the same way as ηmin owing to the impulse-induced enhance-
ment of the escape-inducing effectiveness of the EC excitation.

Regarding suitable values of the initial phase difference ζ ,
note that ζ determines the relative phase between M0(t0) and
η

∑∞
n=0 BnCn cos[(2n + 1)(2πt0/T + ζ )] irrespective of the

shape parameter value. We, therefore, conclude from previous
theory [19] that a sufficient condition for ηmin < η < ηmax to
also be a sufficient condition for suppressing escape is that
M0(t0) and ηmin , max

∑∞
n=0 BnCn cos[(2n + 1)(2πt0/T + ζ )]

are in opposition. This yields the optimum suppressory value,

ζ
sup
opt = 0 (12)

for all m ∈ [0,1] in the sense that they allow the widest ampli-
tude ranges for the EC excitation. Similarly, we see that impos-
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FIG. 2. (Color online) Top: Contour plot of the function 	η ≡
ηmax − ηmin = 2(D/A)R [cf. Eqs. (5) and (8)] vs shape parameter
m and period T . Bottom: Eq. (8), solid line: threshold amplitudes
ηmin; Eq. (10), dotted line: ηmax; and dashed line: the function 	η vs
shape parameter m for T = 2π/0.85. System parameters: γ = 0.08,

δ = 0.05. The quantities plotted are dimensionless.

ing M0(t0) to be in phase with ηmin , max
∑∞

n=0 BnCn cos[(2n +
1)(2πt0/T + ζ )] is a sufficient condition for M(t0) to change
sign at some t0. This condition provides the optimum enhancer
value of the initial phase difference,

ζ enh
opt = π, (13)

in the sense that M(t0) presents its highest maximum at ζ enh
opt

(i.e., one obtains the maximum gap from the homoclinic
tangency condition).

B. Energy-based analysis

By analyzing the variation in the system’s energy, one
straightforwardly obtains an alternative physical explanation
of the foregoing MA-based predictions. Indeed, Eq. (1) has
the associated energy equation,

dE

dt
= −δ

.
x

2 + γ
.
x sin(ωt) − η

.
xx2F (t), (14)
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where E(t) ≡ (1/2)
.
x

2
(t) + U [x(t)] [U (x) ≡ −x2/2 + x3/3]

is the energy function. Integration of Eq. (14) over any interval
[nT ,nT + T/2], n = 0,1,2, . . . , yields

E(nT + T/2) = E(nT ) − δ

∫ nT +T/2

nT

.
x

2
(t)dt

− η

∫ nT +T/2

nT

.
x(t)x2(t)F (t)dt

+ γ

∫ nT +T/2

nT

.
x(t) sin(ωt)dt. (15)

Now, if we consider fixing the parameters (δ,γ,T ) for the sys-
tem to undergo an escape at η = 0, there always exists an n =
n∗ such that the energy increment 	E ≡ E(n∗T + T/2) −
E(n∗T ) is positive just before escape. Thus, after applying
the first mean value theorem [20] together with well-known
properties of the Jacobian elliptic functions [14] to the last two
integrals on the right-hand side of Eq. (15),

E(n∗T + T/2) = E(n∗T ) − δ

∫ n∗T +T/2

n∗T

.
x

2
(t)dt + γ T

π

.
x(t∗)

− ηT
.
x(t∗∗)x2(t∗∗)

4
F (ζ,m), (16)

where t∗,t∗∗ ∈ [n∗T ,n∗T + T/2] and

F (ζ,m) ≡ N (m)

K(m)
cn

[
2K(m)ζ

π

]
, (17)

with cn(·) ≡ cn(·; m) being the Jacobian elliptic function of
parameter m, one has

γ T
.
x(t∗)/π > δ

∫ n∗T +T/2

n∗T

.
x

2
(t)dt,

at η = 0 just before escape. It is straightforward to see that
F (ζ,m) presents an absolute maximum (minimum) at m =
m

impulse
max � 0.717, ζ = 0 (m = m

impulse
max � 0.717, ζ = π ). It is

a 2π -periodic function in ζ and presents the noteworthy
properties (see Figs. 3 and 4),

F (0,m) = −F (π,m) = N (m)

K(m)
,

F (π/2,m) = F (3π/2,m) = 0,

lim
m→1

F (0,m) = lim
m→1

F (π,m) = 0,

lim
m→0

F (0,m) = − lim
m→0

F (π,m) = 2

π
. (18)

In this situation, one lets the EC excitation act on the system
while holding the remaining parameters constant. For suffi-
ciently small values of η > 0, one expects that both dissipation
work [the integral in Eq. (16)] and

.
x(t∗) approximately

maintain their initial values (at η = 0) while the function
F (ζ,m) increases (decreases) from 0 (at ζ = π/2,3π/2) so
that, in some cases depending upon the remaining parameters
(see Figs. 3 and 4), the energy increment just before escape
	E could be sufficiently large and negative (positive) to
suppress (enhance) the initial escape. Clearly, the probability
of suppressing (enhancing) the initial escape is maximal at
m = m

impulse
max � 0.717, ζ = 0 (ζ = π ) (i.e., when the impulse
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FIG. 3. (Color online) Plots of the function F (ζ,m) [see Eq. (17)].
Top panel: thick line: F vs m for ζ = 0; medium line: ζ = π/5; and
thin line: ζ = π/3. Bottom panel: thick line: F vs ζ for m = 0;
medium line: m = 0.717 � m

impulse
max ; and thin line: m = 0.99. The

quantities plotted are dimensionless.

transmitted by the EC excitation is maximum), which is in
complete agreement with the foregoing MA-based predictions.

III. NUMERICAL RESULTS

For the universal escape model (1), the initial conditions
determine, for a fixed set of its parameters, whether the
system escapes to an attractor at infinity (with x → −∞ as
t → ∞) or settles into a bounded oscillation. In a series of
papers, Thompson and co-workers [4,21,22] have shown for
the system,

..
x + x − x2 = −δ

.
x + γ sin(ωt), (19)
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FIG. 4. (Color online) Contour plot of the function F (ζ,m)
[see Eq. (17)] vs ζ and m showing an absolute maximum at ζ = 0,

m = m
impulse
max � 0.717. The quantities plotted are dimensionless.
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FIG. 5. (Color online) Basin erosion of the system (1) with
η = 0 in the window 0 � x � 1.8, − 0.8 � .

x � 0.8. The color cyan
(pale gray) represents the nonescaping basin, and blue (black) rep-
resents the escaping basin. System parameters: γ = 0.08, δ = 0.1,

T = 2π/0.85. The quantities plotted are dimensionless.

that there can exist a dramatic and rapid erosion of the safe
basin (union of the basins of the bounded attractors) due to
encroachment by the basin of the attractor at infinity (escaping
basin). Since the same escape scenario occurs for the closely
related system (1) in the absence of an EC excitation (η = 0),
in the following, we show how the degree of erosion of the
safe basin can be controlled when η > 0 according to the
MA- and energy-based analysis predictions. The basins of
attraction were computed using a fourth-order Runge-Kutta
algorithm with time steps in the range of 	t = 0.005 − 0.01.
To numerically generate the basins of attraction, we selected
a grid of 400 × 400 uniformly distributed starting points
in the region of phase space {x(t = 0) ∈ [0,1.8],

.
x(t = 0) ∈

[−0.8,1]}. From this grid of initial conditions, each integration
is continued until either |x| exceeds 20, at which point, the
system is deemed to have escaped (i.e., to the attractor at
infinity) or the maximum allowable number of cycles, here
20, is reached. The color cyan (pale gray) represents the
nonescaping basin, and blue (black) represents the escaping
basin. In the absence of an EC excitation (η = 0), the system
can be assumed to present a dramatic erosion and stratification
of the basin (as in the example shown in Fig. 5).

Figure 6 shows the lowest value of the EC amplitude η′
min for

which the erosion of the safe basin has completely disappeared
as a function of the shape parameter m (dots). One finds
a perfect correlation between the inverse of this amplitude
1/η′

min and the impulse transmitted by the EC excitation
[cf. Eq. (3); see Fig. 1, bottom], meaning that the excitation’s
impulse is the quantity properly controlling the escape from
a metastable state. Notably, the experimental points η′

min fit
the analytical estimate ηmin [solid line, Eq. (8)]. The increase
in η′

min is especially fast for values of m very close to 1,
which is a consequence of the dependence of K(m) on m [23]
[cf. Eq. (2)].

As mentioned in the previous section, the initial phase
difference ζ plays a fundamental role in the suppression or
enhancement of escape irrespective of the shape parameter
value. To test the predictions concerning the dependence of
the impulse-controlled escape scenario on ζ , we calculated
the escape probability normalized to that of the corresponding
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0.014

0.018

0.022

0.026
0 0.2 0.4 0.55 0.717 0.85 0.99

0.014

0.018

0.022

0.026

m

Ηmin

FIG. 6. (Color online) Dots, see the text: lowest value of the
EC amplitude η preserving the safe basin without erosion and solid
line, Eq. (8): lower threshold for suppression of chaotic escape
ηmin vs shape parameter m. System parameters: γ = 0.08, δ = 0.1,

T = 2π/0.85. The quantities plotted are dimensionless.

case with no EC excitation P (η > 0)/P (η = 0) versus ζ for
several values of m. Figure 7 shows an illustrative example
comparing the cases corresponding to m = 0 (harmonic
pulse), m = 0.717 � m

impulse
max (nearly square-wave pulse) and

m = 0.999 (double-humped pulse) in which the numerical
results confirm the theoretical predictions of Sec. II. Specif-
ically, one finds, in general, that the wave form associated
with the maximum impulse transmitted by the EC excitation
has a greater effectiveness at controlling (suppressing and
enhancing) escape than any other wave form as predicted.
One sees, for the small EC amplitude considered in Fig. 7
η = 0.016, that such a greater effectiveness is slightly less at
the optimum suppressory value of the initial phase difference
(ζ sup

opt = 0) than at the optimum enhancer value (ζ enh
opt = π ) (see

Fig. 7). Remarkably, the escape scenario is fairly insensitive to
the excitation’s impulse over certain ranges of the initial phase
difference around the values ζ = π/2,3π/2, respectively, i.e.,
those values of the initial phase difference having neither a
significant suppressor effect nor a significant enhancer effect
[cf. Eq. (18)], confirming, thus, the theoretical predictions of

FIG. 7. (Color online) Normalized escape probability (see the
text) vs initial phase difference for three values of the shape pa-
rameter: m = 0 (inverted triangles), m = 0.717 (triangles), and m =
0.999 (squares). System parameters: η = 0.016, γ = 0.08, δ = 0.1,

T = 2π/0.85. Straight lines are solely plotted to guide the eye. The
quantities plotted are dimensionless.
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FIG. 8. (Color online) Restoration of the safe basin of the system (1) in the window 0 � x � 1.8, − 0.8 � .
x � 1 for η = 0.016, γ = 0.08,

δ = 0.1, T = 2π/0.85, ζ = 3π/4, and four values of the shape parameter: (a) m = 0, (b) m = 0.717, (c) m = 0.999, and (d) m = 1 − 10−14.
The color cyan (pale gray) represents the nonescaping basin, and blue (black) represents the escaping basin.

Sec. II. Our numerical experiments typically show that the
excitation’s impulse is the quantity properly controlling the
erosion and stratification of the safe basin. An illustrative
example of impulse-induced enhancement of escape is shown
in Fig. 8 for the value ζ = 3π/4 (see Fig. 7) and four val-
ues of the shape parameter (m = 0,0.717,0.999,1 − 10−14).
One sees how the safe basin undergoes ever greater ero-
sion as the excitation’s impulse approaches its maximum
value [m = 0.717 � m

impulse
max , Fig. 8(b)] from both harmonic

[m = 0, Fig. 8(a)] and double-humped [m = 0.999, Fig. 8(c);
m = 1 − 10−14, Fig. 8(d)] pulses.

Next, we provide evidence for the generality of the essential
role of the excitation’s impulse by considering other alternative
EC excitations instead of choices (1) and (2),

..
x − x + x2 = −δ

.
x + γ sin(ωt) + ηγF ′(t),

F ′(t) ≡ sn2n

[
2Kt

T
+ 


]
cn

[
2Kt

T
+ 


]
, (20)

in which the EC excitation is an external forcing instead
of a parametric excitation, 
 = 
(m,ζ ) ≡ K(m)ζ/π, ζ ∈
[0,2π ], T ≡ 2π/ω, and n = 1,2,3, . . .. For a fixed value of the
exponent n, the elliptic excitation F ′(t) has the same amplitude
(which depends on n) and period T for any wave form
(i.e., ∀ m ∈ [0,1]; see Fig. 9, top). When m = 0, then

F ′(t)m=0 = sin2n(πt/T + ζ/2) cos(πt/T + ζ/2), (21)

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.1

0.0

0.1

0.2

t T

Fo
rc
e

0.0 0.2 0.4 0.6 0.8 1.0
0.9

1.0

1.1

1.2

1.3

1.4

m

N
or
m
al
iz
ed
im
pu
ls
e

FIG. 9. (Color online) Top: Force F ′(t) [cf. Eq. (20)] vs t/T ,
where T is the temporal period, for n = 2, ζ = 0, and three
values of the shape parameter: dashed line: m = 0, thick line: m =
0.918 � m

impulse
max (n = 2), and sharp pulse: m = 1 − 10−12. Bottom:

The normalized excitation’s impulse I ′(m,T ,n)/I ′(m = 0,T ,n) [cf.
Eq. (22)] vs m for three values of the exponent: dashed line: n = 1,
thick line: n = 2, and n = 5. The quantities plotted are dimensionless.
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FIG. 10. (Color online) Dots, see the text: Normalized escape
probability corresponding to the system (20) and solid lines, cf.
Eq. (22): normalized excitation’s impulse cI ′(m,T ,n)/I ′(m = 0,T ,n)
vs m for two values of the exponent n. Top: n = 2,c = 1.114,

η = 0.8. Bottom: n = 1,c = 1.19,η = 0.4. System parameters:
γ = 0.08, δ = 0.1, T = 2π/0.85, ζ = 0. The quantities plotted are
dimensionless.

whereas, for the limiting value m = 1, the excitation vanishes.
Also, with T and n constant, solely the excitation’s impulse is
varied by increasing the shape parameter m from 0 to 1. Note
that, as a function of m, the excitation’s impulse,

I ′ = I ′(m,T ,n) ≡ T
2F1

(
1
2 , 2n+1

2 ; 2n+3
2 ; m

)
2(2n + 1)K

(22)

presents a single maximum at m = m
impulse
max ≡ m

impulse
max (n)

(see Fig. 9, bottom) and where 2F1(1/2,n + 1/2; n + 3/2; m)
is the hypergeometric function [24]. Thus, one has m

impulse
max

(n = 1) � 0.730, m
impulse
max (n = 2) � 0.918, m

impulse
max (n= 3) �

0.957, . . .. In addition to choice (2), the family of functions

{F ′(t)}n [Eq. (20)] allows one to study the generality of
the effect on the EC scenario of the impulse transmitted by
the EC excitation. Numerical results corresponding to the
Helmholtz oscillator (20) confirm again such an essential role
of the excitation’s impulse. Figure 10 shows two illustrative
examples of a situation where the EC excitation enhances
the escape for two values of the exponent n, respectively. In
this case, one straightforwardly obtains ζ enh

opt = 0 ∀ n, i.e.,
the optimum enhancer value of the initial phase difference
is independent of the exponent n. One finds again that the
wave form associated with the maximum impulse transmitted
by the EC excitation has a greater effectiveness at enhancing
escape than any other wave form as shown in Fig. 10.

IV. CONCLUSIONS

To summarize, we have demonstrated theoretically and
numerically that the impulse transmitted by secondary res-
onant excitations is a fundamental quantity for the optimum
control of escape from a metastable state, which is induced
by primary periodic excitations. Numerical experiments of
a dissipative Helmholtz oscillator showed good agreement
with theoretical predictions obtained from two independent
approaches: Melnikov analysis and energy-based analysis.
Additional numerical experiments corresponding to other
alternative escape-controlling excitations demonstrated the
generality of the essential role of the excitation’s impulse.
The present findings can be readily tested experimentally
(for instance, in electronic and laser systems [25–27]) and
can find application to improve the control of elementary
dynamic processes characterized by escape from a metastable
state, such as transport phenomena in dissipative lattices or
diverse atomic and molecular processes. Future research will
be devoted to examining various noisy escape-controlling
scenarios in light of the essential role of the excitation’s
impulse. In particular, this quantity could be useful in
the study of Josephson junctions as detectors of periodic
signals [28].
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