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Synchronization of many nanomechanical resonators coupled via a common cavity field
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Using amplitude equations, we show that groups of identical nanomechanical resonators, interacting with a
common mode of a cavity microwave field, synchronize to form a single mechanical mode which couples to
the cavity with a strength dependent on the squared sum of the individual mechanical-microwave couplings.
Classically this system is dominated by periodic behavior which, when analyzed using amplitude equations, can
be shown to exhibit multistability. In contrast, groups of sufficiently dissimilar nanomechanical oscillators may
lose synchronization and oscillate out of phase at significantly higher amplitudes. Further, the method by which
synchronization is lost resembles that for large amplitude forcing which is not of the Kuramoto form.
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I. INTRODUCTION

Synchronization of coupled oscillators arises in many
different contexts in biology, chemistry, and engineering [1,2].
Such systems show surprising emergent behavior and can
be used to encode and process information [3]. In this
paper we show how synchronization can arise in arrays of
nanomechanical resonators interacting via a common elec-
tromagnetic field mode. Recent progress in optomechanical
and nanomechanical systems now enables very high frequency
mechanical resonators to be coupled strongly to one or more
modes of the electromagnetic field in a resonant cavity [4,5].
This is largely driven by a desire to explore the deep quantum
domain in which the mechanical resonator is prepared at or
near its vibrational ground state [6,7]. As the coupling is
essentially nonlinear, the resulting classical dynamics can be
complex and must be thoroughly understood if one is to make
sense of the quantum phenomenon.

The common feature in these systems is the so-called
radiation-pressure coupling, whereby the displacement of each
mechanical resonator independently changes the resonance
frequency of a common electromagnetic cavity field by an
amount proportional to the displacement of each mechanical
resonator. This means that there is an effective conservative
force acting on each mechanical resonator proportional to the
circulating power in the electromagnetic cavity. If the cavity is
externally driven, this interaction mediates an indirect all-to-all
coupling between each of the mechanical resonators that is
highly nonlinear.

If the oscillators are identical, a collective variable can
be used to understand the dynamics. In this paper each
of the oscillators is a bulk flexural vibrational mode of
a mechanical resonator. The resulting set of equations is
similar to that considered by Marquardt et al. [8], who found
that multistability was an important feature of the dynamics
for small mechanical damping. Here we are able to derive
amplitude equations for the collective variables and use these
to map out regions of multistable behavior in the system.

For nonidentical phase oscillators Kuramoto [9] used a
collective variable (Kuramoto’s order parameter) to char-
acterize the synchronization between the oscillators. More
recently the collective dynamics of optomechanical arrays
has been described by Heinrich et al. [10], who give some

results on synchronization based on a phase model related to
Kuramoto’s model. Like our model, Ref. [10] is based on the
radiation-pressure coupling between the field and mechanical
elements. Unlike our model, the mechanical resonators in
Ref. [10] interact with a local electromagnetic field mode
and are directly coupled by elastic forces. The more complex
coupling in our model results in a different mechanism for
the loss of synchronization which typically occurs for large
amplitude forcing, not small amplitude forcing as occurs in
the model of Heinrich et al. [10]. Nevertheless, we are able
to give specific results on synchronization for two and three
mechanical resonators interacting via a common cavity mode
and relate these to the behavior of a collective variable, which
is related to the cavity field amplitude.

Much of the previous work on synchronized nonlinear
oscillators is based on a direct, usually nearest-neighbor,
interaction between the individual oscillators, and amplitude
equations have been used successfully to analyze the dynamics
of such models [11]. We show that amplitude equation
methods can also be applied to understand the dynamics of
the more complex all-to-all coupling that occurs in our model.
Synchronization in coupled microelectromechanical systems
has been described [12] and observed [13].

There are at least four kinds of physical implementation of
the system discussed here. First, in circuit QED, a coplanar
microwave cavity contains the electric field which forms the
common field mode. Nanomechanical resonators can then be
placed so as to form one plate of a capacitor with the central
conductor of the microwave cavity thereby modulating the
microwave cavity frequency [14]. Second, at optical rather
than microwave frequencies, an optomechanical system can
be formed by placing micromechanical dielectric membranes
inside the optical cavity [15]. Third, a toroidal optical whisper-
ing gallery mode (WGM) cavity is manufactured on a tapered
platform raised off a substrate [16]. The mechanical vibrations
of the toroid modulate the frequency of the WGM. Finally,
optomechanical phononic crystals can be fabricated which are
simultaneously photonic crystal lattices to produce localized
optical and mechanical modes [17,18].

In the bulk of this paper we will consider a nanome-
chanical system where a single mode of a superconducting
microwave resonator is coupled to the displacements of N
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FIG. 1. A schematic of the nanoelectromechanical system under
consideration. A superconducting microwave cavity of frequency
ωc mediates a coupling between N nanomechanical resonators
capacitively coupled to it. The ith nanomechanical resonator has
resonant frequency ωi and microwave-mechanical coupling strength
gi . The microwave cavity is driven by a linear drive of amplitude ε at
a detuning from the cavity of δ.

nanomechanical resonators. However, the dynamical model
we derive in this section is applicable to other physical
implementations in different experimental contexts. In general
our model applies to a system of N + 1 oscillators: N single
flexural modes of independent mechanical resonators whose
displacements are coupled to a common single electromag-
netic field mode, also modeled as a single simple harmonic
oscillator. The coupling between each mechanical resonator
and the microwave field in the cavity is capacitive and
results in a frequency shift of the cavity resonance frequency
that, to lowest order, is proportional to the displacement of
the mechanical resonator. This results in a force on each
mechanical resonator that is proportional to the intensity
of the microwave field in the cavity. This is often called
radiation-pressure coupling [19]. A schematic of this system
is given in Fig. 1.

We model the dynamics of the microwave field in the co
planar transmission line by a lumped circuit LC electrical
resonator, and the dynamics of each mechanical resonator
is modeled as a single simple harmonic oscillator. The
Hamiltonian for a single nanomechanical resonator interacting
with the microwave field is

H = Φ2

2L
+ Q2

2C(q)
+ v(t)Q + p2

2m
+ mω2

2
q2, (1)

where the first term is the inductive energy with the Φ the
flux through the equivalent inductor with inductance L. The
second term is the charging energy with Q the charge on
the equivalent capacitor with capacitance C(q), which varies
with the displacement of the mechanical element. The third
term represents the potential energy due to an external ac bias
voltage of the equivalent circuit resonator. The fourth term
is the kinetic energy of the mechanical resonator of effective
mass m, and the last term is the elastic potential energy of a
single flexural mode of the mechanical resonator with ω. As
the displacement is small compared to the equilibrium distance
between the mechanical resonator and the central conductor
of the microwave cavity, we can expand C(q) to linear order
in q around the equilibrium displacement q0 to get an effective
Hamiltonian

H = Φ2

2L
+ Q2

2C0
+ p2

2m
+ mω2q2 + AQ2q + v(t)Q, (2)

where C0 = C(q0) and A = − 1
2

dC(q)
dq

|q=q0 . The classical
Hamilton equations are

dΦ

dt
= Q

C0
+ 2AQq + v(t),

dQ

dt
= −�

L
,

dq

dt
= p

m
, (3)

dp

dt
= −mω2q − AQ2.

When A = 0, the circuit equations of motion describe simple
harmonic oscillation at the frequency

ωc = 1√
LC0

. (4)

It is convenient at this point to define dimensionless canonical
variables. We do this by first fixing two energy scales,
one for the circuit degrees of freedom Ec and one for
the mechanical degrees of freedom Em. The dimensionless
canonical variables, (xc,yc) for the circuit and (x,y) for the
mechanics, are then defined by

xc = �√
2EcL

, yc = Q√
2EcC0

,

(5)
x = q√

2Em

mω2

, y = p√
2mEm

.

We now anticipate an eventual quantum mechanical treatment
and set Ec = h̄ωc, Em = h̄ω. The appearance of h̄ at this stage
does not signify anything more than a convenient conversion
factor between energy and frequency. We also define a complex
amplitude for the circuit degrees of freedom as

α = xc + iyc, (6)

in terms of which we can write the Hamilton equations of
motion as

dα

dt
= −iωcα − ig(α − α∗)x + E(t),

dx

dt
= ωy, (7)

dy

dt
= −ωx − gy2

c ,

where

g =
√

2 AC0Ec√
mEm

, E(t) = v(t)√
2EcL

. (8)

We now assume that the circuit is harmonically driven and set

E(t) = E0 sin ωDt (9)

and define the rotating variable ᾱ = αeiωDt (equivalent to
going to the interaction picture in the quantum description). If
we then drop rapidly rotating terms (compared to the time scale
of observations), the equations of motion may be approximated
by

d ᾱ

dt
= −iδᾱ − igᾱx − iε,

dx

dt
= ωy, (10)

dy

dt
= −ωx − g

2
|ᾱ|2 ,
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where ε = − E0
2 , and the detuning δ = ωc − ωD . Noting the

time averaged energy of the energy in an LC circuit is
proportional to |α|2, we see that the effective coupling
between the microwave field and the mechanical resonators
is described by the effective Hamiltonian g|α|2x. This form of
coupling is often termed radiation-pressure coupling [19]; it is
proportional to the circulating power in the cavity field.

We include dissipation of both the microwave field mode
and the nanomechanical resonators using the quantum me-
chanical master equation to incorporate fluctuations correctly.
We derive this in Sec. III. There we show that in the classical
description the systematic effect of damping (i.e., ignoring
fluctuations) change the Hamilton equations to

dα

dt
= −iδα − igαx − iε − κα,

dx

dt
= ωy − γ x, (11)

dy

dt
= −ωx − g

2
|α|2 − γy,

where κ and γ are the energy decay rates for the electrical
and mechanical energy, respectively, and we have dropped the
overbar as from this point on we simply take it for granted that
we are working with the rotating variables for the cavity field.

In this paper we are interested in the dynamics of N

mechanical resonators interacting with a single mode of the
microwave field in the circuit. Assuming a coupling of the
form

∑
i gixi |α|2, we see that the equations of motion may be

expressed in terms of collective variables:

dα

dt
= −iδα − iε − iα

M∑
i=1

NiXi − κα,

dXi

dt
= ωiYi − γiXi, (12)

dYi

dt
= −ωiXi − Gi

2
|α|2 − γiYi,

where Xi , Yi , and Gi are the M collective combinations

Xi = 1

Ni

∑
j∈Si

gjxj , Yi = 1

Ni

∑
j∈Si

gjyj ,

Gi = 1

Ni

∑
j∈Si

g2
j , (13)

and Si are collections of Ni identical nanomechanical os-
cillators with individual classical positions and momenta xj

and yj , respectively. We note that the other experimental
contexts mentioned in this Introduction can also be described
by the same differential equations (12). For example, multiple
optomechanical membranes in an optical cavity are described
by these equations with different resonant frequencies and
coupling strengths [15]. We give a list of the achievable
experimental values for various experiments in Table I in the
Appendix.

In the following section, we present a detailed analysis of
the steady state structure of the nonlinear semiclassical system,
including local and global bifurcations. Since the behavior
is dominated by oscillatory motion, amplitude equations are
derived from which we can obtain specific results about
the existence and stability of periodic orbits. It is then a
simple step to derive coupled amplitude equations for the case
where the mechanical oscillators are not identical, and we
analyze two and three coupled oscillator systems. In Sec. III
we give a quantum description of the many-body system,
and calculate the steady state quantum noise spectra as the
first stable limit cycle is approached. Finally, in Sec. IV we
summarize our results and suggest new directions for further
work.

II. DYNAMICS OF THE CLASSICAL MODEL

Although there are regions of the parameter space where
stable critical points exist, periodic motion plays a major
role in the dynamics for the cases of both the identical and
the nonidentical resonators. If the mechanical resonators are

TABLE I. Raw experimental coupling values for various systems. The “Type” column indicates the experimental context: “S” indicates a
superconducting microwave coplanar waveguide resonator (â ) coupled to a nanomechanical resonator (b̂i); “M” indicates an optical cavity (â )
coupled to a micromechanical membrane (b̂i); “T” indicates a toroidal microresonator (â ) coupled to a nanomechanical string resonator (b̂i);
and “C” indicates an optomechanical crystal array where an optical mode of a cell (â ) is coupled to a mechanical mode of a cell (b̂i).

Experiment Mode â Mode b̂i Coupling

Ref. Type ωc

2π
(Hz) 2 κ

2π
(Hz) |ε|

2π
(Hz) ωi

2π
(Hz) 2 γi

2π
(Hz) gi

2π
(Hz)

[31] S 7.49 × 109 <2.88 × 106 1.04 × 106 0.67 866.7 × 10−3

[22] S 5.22 × 109 230 × 103 �2.145 × 109 1.53 × 106 <5.08 190.7 × 10−3

[14] S 4 × 109 400 × 103 0.1 × 106 < 1
→ 10 × 109 → 1 × 106 → 6 × 106 →<6

[14] S 7.55 × 109 302 × 103 1.41 × 106 <371.1
[32] S ∼5 × 109 490 × 103 2.3 × 106 19.2 49.55 × 10−3

[23] S 7.64 × 109 382 × 103 �2.434 × 109 67 × 106 248.1 25.03
[15] M 282 × 1012 4.07 × 106 134 × 103 0.122 27.8
[16] T >4.9 × 106 6.5 × 106 65

→ 16 × 106 → 1600
[16] T 50 × 106 10.74 × 106 202.64 147.3
[16] T 50 × 106 8 × 106 200 55.6
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identical, even if their couplings are nonidentical, they will
synchronize, in phase, to form a single mechanical mode. How-
ever the synchronized motion exhibits multi stable behavior.
The first two sections, below, discuss the synchronized motion
of identical mechanical resonators (14), largely via amplitude
equations. If, on the other hand, the mechanical resonators
naturally oscillate at different frequencies, desynchronization
can occur. To analyze this we consider the synchronization
between different frequency groups. The resonators can then
be attracted to out-of-phase solutions that oscillate at much
greater amplitudes. In the final section we obtain specific
results, via coupled amplitude equations, for synchronization
between two and three frequency groups.

For all of the bifurcations that occur a scaled version of
the cavity forcing ε, which is tunable in an experiment, can
be thought of as the bifurcation parameter. There are two
time scales in the system; the amplitude decay rate κ of the
common cavity mode and the decay rate of the resonators,
which is an order of magnitude smaller and will be important
for the derivation of the amplitude equations. The amplitude
decay rate κ of the common cavity mode provides a natural
time scale and we introduce a new time parameter t ′ = κt ;
rescaled nanomechanical variables X′

i = Xi

κ
and Y ′

i = Yi

κ
; and

dimensionless coupling constants δ′ = δ
κ

, ε′ = ε
κ

, ω′
i = ωi

κ
,

γ ′
i = γi

κ
, G′

i = Gi

κ2 , and ω̄i
′ =

√
ω′

i
2 + γ ′

i
2. This gives

dα

dt ′
= −(1 + iδ′)α − iα

M∑
i=1

NiX
′
i − iε′,

(14)
d2X′

i

dt ′2
= −ω̄i

′2X′
i − G′

iω
′
i

2
|α|2 − 2γ ′

i

dX′
i

dt ′
.

If the uncoupled mechanical resonators are identical (ω′
1 = ω′,

γ ′
1 = γ ′ ⇒ ω̄1

′ = ω̄′), then the oscillators synchronize. This
is a natural consequence of linear damping and the fact that
each oscillator experiences the same forcing. Consider u =
X′

i − X′
j ; then u = 0 is a stable solution of its equation of

motion:

d2u

dt ′2
= −ω̄′2u − 2γ ′ du

dt ′ , (15)

provided γ ′ > 0.
The synchronized motion can then be represented in

collective variables (14) which, suppressing the use of primes,
gives the following:

dα

dt
= − (1 + iδ) α − iαNX − iε,

(16)
d2X

dt2
= −ω̄2X − Gω

2
|α|2 − 2γ

dX

dt
.

For the remainder of this paper we suppress the uses of primes
in the notation, and remind the reader that all couplings are
now dimensionless with the cavity decay rate determining the
natural time scale of the system.

From a dynamical point of view ε
√

NG acts as one
parameter, and in fact both N and G could be removed by
scaling

X̄ = NX, ᾱ = α
√

NG, ε̄ = ε
√

NG. (17)

So if the number of resonators is increased, smaller values of
the driving are necessary to achieve the same effect.

A. Critical points, bifurcations, and stability

Without forcing, ε = 0, the origin is a stable critical point.
As the ε is increased from zero the critical point moves away
from the origin, its position given by the single real root of the
cubic

2ω̄2X0[1 + (δ + NX0)2] + Gωε2 = 0, (18)

where α0 = − iε
1+i(δ+NX0) . However, it loses stability on a

Hopf bifurcation, creating a periodic orbit, for both δ > 0
(red detuning) and δ < 0 (blue detuning), provided γ > 0 and
small. The dynamics of this periodic motion is the subject of
the next section.

For δ > 0 (red detuning) the Hopf curve is a perturbation
of that from the γ = 0 case where

√
NGε = √

2δω̄. To first
order in γ it is given by

ε = εH (ω,δ,γ,NG) =
√

2ω

NG

(
δ + γ

(1 + ω2)2

2δω2

)
. (19)

For δ < 0 (blue detuning) ε is of order
√

γ :

ε = εH (ω,δ,γ,NG) =
√

γ (1 + δ2)[(δ2 − ω2 + 1)2 + 4ω2]

−δNGω
.

(20)

The Hopf bifurcation is subcritical for δ < −
√

8ω2+3
5

(blue detuning), where periodic orbits can exist for ε <

εH (ω,δ,γ,NG). In fact many stable limit cycles can exist
for some parameter values because of the presence of saddle
node bifurcations of limit cycles each creating a stable and
unstable pair of limit cycles. This leads to multistable behavior
that has been noticed elsewhere [8,20] for similar systems.
These bifurcations are shown in Fig. 2 for ω = 2 and γ =
0.001. The limit cycle bifurcations were produced using the
amplitude equations described in the next section; however,
similar results can be produced by following the limit cycles
numerically using the package MATCONT [21]. For δ < 0 (blue
detuning) eight of the saddle node bifurcations of limit cycles
are shown, indicating regions where there are 1–8 pairs of
stable and unstable periodic orbits. See the caption for specific
details. MATCONT indicates that the situation is dynamically
more complicated for δ > 0 (red detuning), involving period
doubling and regions of chaos.

Although most of this paper is devoted to the case of blue
detuning, where δ < 0, it is worth mentioning that for δ >

√
3

there is a region where three critical points exist given by
the roots of the cubic given above. This triangular shaped
region

2ω̄(2δ + √
δ2 − 3)

3
√

NGω
√

δ + √
δ2 − 3

= εsn+ < ε < εsn− = 2ω̄(2δ − √
δ2 − 3)

3
√

NGω
√

δ − √
δ2 − 3

(21)
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FIG. 2. (Color online) The bifurcation diagram for ω = 2 and
γ = 0.001. In the shaded region there are no periodic orbits and there
is one stable critical point. The Hopf bifurcation curve, which is in red,
provides a partial boundary of this region. At the generalized Hopf
GH (which is at δ = √

7 for ω = 2) the Hopf bifurcation changes from
super- to subcritical. For δ <

√
7 the Hopf bifurcation is subcritical

and periodic orbits exist to the left of the Hopf curve. Also for 0 <

δ <
√

3 there are regions where periodic orbits exist to the left of
the Hopf curve. The blue curves A-GH, BGK, CFK, DEK, KHCusp,
KMcusp, etc., are saddle node bifurcations of periodic orbits creating
a stable and an unstable periodic orbit existing to their right. (Only the
first eight are shown.) The lozengelike dashed curves are also saddle
node bifurcations of periodic orbits, this time destroying a stable and
an unstable periodic orbit. (Once again only a sample are shown.) In
the regions ABG(GH) and HMCusp there is one stable critical point
and a pair of periodic orbits with opposite stability. In the region
G(GH)HK there is one unstable critical point and one stable periodic
orbit. In the region BCFG and the region to the left of MCusp there is
one stable critical point and two pairs of periodic orbits with opposite
stability. In the region FGK there is one unstable critical point and two
stable periodic orbits and one unstable periodic orbit. In the region
CDEF there is one stable critical point and three stable and three pairs
of periodic orbits with opposite stability, etc.

is bounded by (ε = εsn±) saddle node bifurcations, shown as
green lines in Fig. 2. These intersect in a cusp bifurcation at
δ = √

3 and ε
√

NGω = 4ω̄√
3
.

The case ω = 2 is relevant for the experiments described in
[8,10]. However, for ω > 2, as in [22,23], there is no qualitative

change in the bifurcation diagram, although the generalized

Hopf bifurcation (δ = −
√

8ω2+3
5 ) occurs for larger values of

|δ|. Figure 3 shows the corresponding situation for (a) ω = 5
and (b) ω = 10 and γ = 0.001 with δ < 0 (blue detuning).
Multistable behavior due to the presence of limit cycles stacked
above each other remains an important feature (see also
Fig. 4).

B. Amplitude equations and multistability
for blue detuning (δ < 0)

Periodic orbits and multiple periodic orbits can exist, if
the weakly forced oscillators are sufficiently weakly damped.
This multistable behavior, resulting from the playoff between
weak damping and cavity forcing, has been noted elsewhere
[8,10,24]. Here we explore it in more depth using amplitude
equations.

The method relies on defining a slow time which is
proportional to the damping rate of the resonators (τ = γ t)
and on assuming that the forcing is on the order of the square
root of the damping, ε = √

γ ε̄. Then the cavity amplitude is
naturally of the same order as the forcing and we can obtain
equations for the slowly varying amplitude A(τ ). Let

X = X0 + [A(τ )eiω̄t + c.c.] = X0 + 2|A(τ )| cos(ω̄t + θ ),

(22)

where X0 is the critical point of the system given in the previous
section, which is O(ε2). Given that γ is small and both ε and
|α| are O(

√
γ ) then Ẍ + ω̄2(X − X0) ≈ 2γ iω dA

dτ
eiω̄t + c.c.

[25]. The cavity forcing (Gω
2 |α|2) can then be written as a

sum of products of Bessel functions. To see this, substitute
X = X0 + 2|A| cos(ω̄t + θ ) into the cavity equation;

dα

dt
= −{1 + i[δ + NX0 + 2N |A| cos(ω̄t + θ )]}α − iε .

(23)

Then if

α = eiψ(t)
∑
m

Bmeimωt (24)

it follows that

α̇ = iψ̇(t)α + eiψ(t)
∑
m

imωBmeimωt , (25)

and using the Jacobi Anger expansion [8]
∑∞

n=−∞ inJn(z)
einθ = eiz cos θ , this can be matched to the right hand side of
the cavity equation if

ψ̇(t) = −2N |A|
ω

cos(ωt + θ ) and
(26)

Bm = − im+1εJm

( 2N |A|
ω

)
κ̄ + imω

,

where κ̄ = 1 + i(δ + NX0) and Jm(x) are Bessel functions of
the first kind. Substituting this back into

Ẍ = −ω̄2X − Gω

2
|α|2 − 2Ẋ (27)
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FIG. 3. (Color online) Bifurcation diagrams (a) ω = 5 and (b) ω = 10 and γ = 0.001 with δ < 0 (blue detuning) showing the Hopf
bifurcation (red) and saddle node bifurcations of periodic orbits. The labeling in (a) is similar to that in Fig. 2. For instance, in the region
ABG(GH) there is one stable critical point and a pair of periodic orbits with opposite stability.

gives an amplitude equation for the oscillation in terms of sums
of pairs of Bessel functions,

dA

dτ
= −A − iGε2eiθ

4

∞∑
m=−∞

Jm

( 2N |A|
ω

)
Jm+1

( 2N |A|
ω

)
[κ̄ + i(m + 1)ω](κ̄∗ − imω)

.

(28)

Identical mechanical resonators synchronize to oscillate with
amplitude A(τ ) given by this equation.

In polar form (A = reiθ ) the equations become

dr

dτ
= −r + Gε̄2

∞∑
m=0

amr (δ̄,ω)Jm

(
2Nr

ω

)
Jm+1

(
2Nr

ω

)
,

dθ

dτ
= +Gε̄2

r

∞∑
m=0

ami(δ̄,ω)Jm

(
2Nr

ω

)
Jm+1

(
2Nr

ω

)
, (29)

where

amr (δ̄,ω) = δ̄ω2(2m + 1)[1 + δ̄2 + ω2m(m + 1)]

[(1 + δ̄2 − m2ω2)2 + 4m2ω2]{[1 + δ̄2 − (m + 1)2ω2]2 + 4(m + 1)2ω2} ,
(30)

ami(δ̄,ω) = δ̄ω(2m + 1){(1 + δ̄2 − m2ω2)[1 + δ̄2 − (m + 1)2ω2] + 4m(m + 1)ω2}
2[(1 + δ̄2 − m2ω2)2 + 4m2ω2]{[1 + δ̄2 − (m + 1)2ω2]2 + 4(m + 1)2ω2} ,

and δ̄ = δ + X0. For δ < 0 (blue detuning) then X0 ≈
γ [(δ2−ω2+κ2)2+4κ2ω2]

2κω2δ
. Since each term in the sum has |A| as

a factor, the amplitude equation may be rewritten as

dA

dτ
= −A + Gε̄2NAF (N |A| ,ω,δ), (31)

where F (Nr,ω,δ) is a complex function. The conditions for
the Hopf bifurcation, given in Sec. II A, can be obtained by
setting d r

dτ
= 0 in the linearized radial equation,

Since θ does not appear in the equation for r , the periodic
orbits of the system are given by

Fr (Nr,ω,δ) = 1

r

∑
m=0,∞

amr (δ̄,ω)Jm

(
2Nr

ω

)

× Jm+1

(
2Nr

ω

)
= 1

NGε̄2
. (32)

These curves are plotted in Fig. 4 for ω = 2 and γ =
0.01,0.001,0.0001 and various values of δ. Corresponding to

these oscillations, the cavity field amplitude oscillates with
frequency ω̄ + Fi (Nr,ω,δ) and amplitude ε

√
2Nr |F |:

(Leading oscillatory term in |α|2)

= 2Nrε2|F (Nr,ω,δ)| cos{[ω̄ + Fi(Nr,ω,δ)]t + ζ }, (33)

where ζ is a constant.
Although the equation governing the periodic orbits is

simple, the multiple ranges of the function Fr (Nr,ω,δ), whose
contours are plotted in Fig. 6 for ω = 2, result in multistability.
Its turning points define the positions of the saddle node
bifurcations, which map out the number of periodic orbits
existing in parameter space, as shown in Fig. 2. (The curves
shown in Fig. 2 were calculated using ten terms in the sum.)
Expanded in a Taylor series as a function of r2 about zero,

Fr (Nr,κ̄,ω) = Fr0(κ̄,ω) + r2Fr1(κ̄,ω) + r4Fr2(κ̄,ω) + · · · ,

(34)
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FIG. 4. (Color online) The amplitudes (N |A| = Nr) of the
periodic orbits of the system calculated from the amplitude equations
as a function of

√
NGε for ω = 2 and γ = 0.01,0.001,0.0001 and

various values of δ. In (a) δ = −2, (b) δ = −5, (c) δ = −9, and (d)
δ = −10. The unstable periodic orbits are given by dashed lines and
the stable one are given by solid lines.

the linear term Fr1 (κ̄,ω) defines the criticality of the Hopf
bifurcation. The Hopf bifurcation is supercritical, creating a
stable periodic orbit, if Fr1 (κ̄,ω) < 0, which is the case here

for γ small if δ > −
√

8ω2+3
5 .

For larger values of ω the oscillations occur at radii with
greater values of N |A| (= Nr). Figure 5 compares the
amplitudes |α| and N |A| with the bifurcation diagram for
ω = 10 and γ = 0.000 01. For instance in the experiment
described in [22] the upper bound for the magnitude of ε

implies that oscillatory behavior occurs for N on the order
of 10 and multistable behavior occurs for N on the order
of 500.
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FIG. 6. (Color online) The contours of the function Fr (Nr,ω,δ)
for ω = 2 plotted as a function of (Nr,δ), calculated using 10 terms in
the sum of products of Bessel functions. Stable periodic orbits exist
in green shaded regions. There are no periodic orbits in the regions
enclosed by red lines where Fr (N |A| , 2,δ) < 0.

Here we will not consider the case with δ > 0, which
corresponds to red detuning, except to note that the dynamics
is more complicated and deserves a separate study. While
periodic orbits, similar to those discussed here, exist, there
are other orbits as well, associated with the Hopf bifurcation,
and many of these undergo period doubling (see Fig. 2) to
chaos.

C. N nonidentical mechanical resonators and synchronization

If the frequencies and/or dampings of each individual
mechanical resonator differ, reduction to a single collective
variable is no longer possible. However, the results of the
previous section can be generalized to give a set of N

-
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FIG. 5. (Color online) The amplitudes |α| and N |A| as ε is increased for ω = 10 and γ = 0.000 01 compared with the saddle node
bifurcations that create them. (a) is the cavity amplitude |α|, (b) N |A|, and (c) the bifurcation diagram.
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coupled amplitude equations. Here we consider the case
where the linear frequencies of the mechanical resonators are
approximately the same: ω̄i = ω + γ�ωi . The equations of
motion (14) then become

dα

dt
= − (1 + iδ) α − iα

∑
i

NiXi − iε,

(35)

Ẍi = −(ω2 + 2ω�ωi)Xi − Giωi

2
|α|2 − 2γ Ẋi .

As in the previous section, amplitude equations, as functions
of a slow time (τ ), can be derived for the dominant oscillatory
term [11]:

Xi = X0 + [Ai(τ )eiωt + c.c.] = X0 + 2|Ai(τ )| cos(ωt + θi).

(36)

Taking a sum as before and rewriting this as one oscillatory
term,

X = 1

N

∑
i

NiXi = X0 + 1

N

(∑
i

Ai(τ )eiωt + c.c.

)

= X0 + 2|A| cos(ωt + θ ), (37)

we can see that |A| = r acts as a dynamical order parameter
for the mechanical resonators, in the sense of Kuramoto [9],

A(τ ) = 1

N

∑
i

Ai(τ ) ⇒ |A| eiθ = 1

N

∑
i

rie
iθi . (38)

As before, we can use Bessel functions to work out the
cavity amplitude response and substitute this back into the
equations for the individual oscillators to give the amplitude

equations,

dAi

dτ
= −(1 + �ωi)Ai + NiGε̄2eiθ

∑
m=0,∞

am(δ̄,ω)

× Jm

(
2N |A|

ω

)
Jm+1

(
2N |A|

ω

)
, (39)

where am(δ̄,ω) = amr (δ̄,ω) + iami(δ̄,ω) is defined in the pre-
vious section.

1. Two sets of nonidentical mechanical resonators

In terms of two sets of oscillators this becomes
dA1

dτ
= −(1 + i�ω1)A1 + GN1ε̄

2(A1 + A2)F (|A1 + A2|),
dA2

dτ
= −(1 + i�ω2)A2 + GN2ε̄

2(A1 + A2)F (|A1 + A2|).
(40)

If the �ωi are equal they do not affect the radial motion and
we still have

dr

dτ
= −r + Gε̄2NrFr (Nr,ω,δ), (41)

which implies that N2r2 = r2
1 + r2

2 + 2r1r2 cos(θ2 − θ1) is
a constant of the motion. Substituting this into the
equations for Ai results in a linear system whose
symmetrical solution N1A2 = N2A1 is stable. So apart
from some transients the individual oscillators synchro-
nize, d (N1A2−N2A1)

dt
= − (γ + i�ω) (N1A2 − N2A1), as noted

before.
If the �ωi are not equal the dynamics of the system, which

is a function of the relative phase φ = θ2 − θ1 only, is given
by the nonlinear system

dr1

dτ
= −r1 + ε̄2GN1{r1Fr (Nr) + r2[Fr (Nr) cos φ − Fi (Nr) sin φ]},

d r2

dτ
= −r2 + ε̄2GN2{r2Fr (Nr) + r1[Fr (Nr) cos φ + Fi (Nr) sin φ]}, (42)

dφ

dτ
= �ω21 + ε̄2GFi (Nr)

[
(N2 − N1) +

(
N2r1

r2
− N1r2

r1

)
cos φ

]
+ ε̄2GFr (Nr)

(
N2r1

r2
+ N1r2

r1

)
sin φ,

where Fi,r (Nr) = Fi,r (Nr,ω,δ), Nr = |A1 + A2| =√
r2

1 + r2
2 + 2r1r2 cos φ, and �ω21 = �ω2 − �ω1. For

N1 = N2 we can assume that �ω21 > 0 as the transformation
(�ω21 → −�ω21, φ → −φ) and (r1 → r2 and vice versa)
leaves the equations unchanged. The coupling, however, is
strong rather than weak and the system cannot be reduced
to a phase model. But it is nevertheless useful to compare
our results with those of similar phase and phase amplitude
models [2,9,11,26,27].

In the simplest two-oscillator phase model (φ̇ = �ω −
K sin φ with φ = θ2 − θ1) there are two critical points, ap-
proximately an in-phase and an out-of-phase solution. One of
the critical points is stable, for |�ω| sufficiently small (|�ω| <

K). Unsynchronized motion occurs when the critical points are
lost via a saddle node bifurcation (|�ω| > K). More complex

models include a sin 2φ term in which case the in-phase solu-
tion (φ ≈ 0) may lose stability to a stable out-of-phase solution
(φ ≈ π ). The model here can also be discussed in terms of the
stabilities of in-phase and out-of-phase solutions. However
the “unsynchronized behavior” occurs as a transient state,
resembling the transient rotational motion of a damped non-
linear pendulum started near to the separatrix of the undamped
system. Similar motion has been noted for other systems with
multistability [24].

Nonzero �ω21 breaks the symmetry and the in-phase
critical points, which are still stable for �ω21 very small, exist
only with r1 �= r2. Their relative sizes as |�ω21| is varied
are shown in Fig. 7(b). As |�ω21| is increased they lose
stability via a Hopf bifurcation, Fig. 7(a). This creates a stable
periodic orbit which does not initially envelope the origin.
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FIG. 7. (Color online) The bifurcation diagram for two mechanical resonators for N1 = N2, γ = 0.0001, ω = 2, and δ = −1.5. The
in-phase solutions are stable outside the shaded central regions. The out-of-phase solutions are stable outside the slice near the horizontal axis.
They are singular at �ω21 = 0 and unstable for |�ω21| small, where they occur for very large values of ri . In the unshaded regions both in-phase
and out-of-phase solutions are stable, but have different basins of attraction. (b) shows the in-phase solution in (r1,r2) space as �ω21 is varied.
r1 + r2 remains approximately constant. (c) shows the out-of-phase solution in (r1,r2) space as �ω21 is varied.

However, in a bifurcation scenario typical of large amplitude
coupling [2], it grows rapidly to enclose the origin. [In
(r1,r2,φ) space this transition is a heteroclinic bifurcation with
saddles at r1 or 2 = 0, φ = ±π

2 .] Transient unsynchronized
motion results for solutions started near the (unstable) in-phase
solution, where solutions appear unbounded in phase, but
eventually become trapped by a stable out-of-phase solution.
[In fact the out-of-phase solutions are only unstable for �ω21

very small, where they exist at large amplitude, Fig. 7(c).]
The bifurcation diagram Fig. 7 was created using the package
MATCONT with F (|A|2 ,κ̄,ω) approximated by the first four
terms in its Maclaurin series in |A|2, N1 = N2, γ = 0.0001,
ω = 2, and δ = −1.5.

If we consider only the solutions started near the in-phase
solution then, for sufficiently large

√
N1Gε > 0.5, increasing

|�ω21| engenders a loss of synchronization; see Fig. 8. A
heteroclinic bifurcation provides the real boundary for loss
of synchronization and eventually solutions synchronize into
an out-of-phase solution. In the unsynchronized behavior
the radii execute fairly large oscillations. However, the
oscillations in the cavity amplitude are not large. A typical
example is shown in Fig. 8 for ω = 2, δ = −1.5, γ = 0.0001,√

N1Gε = 2, and �ω21 = 0.04 starting near the unstable
in-phase solution.

If the Ni are not equal the bifurcation diagram is not
symmetrical in �ω21. However, apart from this it is not
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dissimilar. The in-phase solution with φ = 0 occurs for r1
r2

= N1
N2

and loses stability as |�ω21| is increased away from
zero, eventually stabilizing on an out-of-phase solution.

2. Three sets of nonidentical mechanical resonators

The system for N sets of mechanical resonators,

dri

dτ
= −ri + ε2NiG

⎡
⎣∑

j

rj [Fr (Nr) cos(θj − θi) − Fi(Nr) sin(θj − θi)]

⎤
⎦ ,

(43)
dθi

dτ
= �ωi + ε2NiG

⎡
⎣∑

j

rj

ri

[Fi(Nr) cos(θj − θi) + Fr (Nr) sin(θj − θi)]

⎤
⎦ ,

where (Nr)2 = |∑N
i=1 Ai |2 = ∑N

i,j=1 rirj cos(θi − θj ), may
be reduced to 2N − 1 equations of motion because the
equations above are functions only of the relative phase:
φi = θi+1 − θi . So three mechanical resonators are described
by five equations of motion for r1,r2,r3,φ1,φ2. If the �ωi

are equal the model can be reduced to that for a single
collective variable. In fact, if any two of the �ωi are equal
then those two resonators can be thought of as one. Using the
notation �ωij = �ωi − �ωj , the three oscillator case reduces
to the two oscillator case if �ω21 = 0 or if �ω32 = 0 or if
�ω21 + �ω32 = 0. Figure 9 shows a typical example of loss
of synchronization for �ω21 + �ω32 small.

From a dynamical point of view the three resonator case
has only one in-phase motion (φi ≈ 0) and one out-of-phase
motion with φ1 ≈ π, φ2 ≈ 0 or the other way round. (The case
with both φi ≈ π is dynamically the same as φ1 ≈ π, φ2 ≈ 0.)
So as before we can think in terms of the in-phase and out-of-
phase solutions. (This is not the case for N � 4.) Otherwise
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FIG. 8. (Color online) Transient unsynchronized motion for two
nonidentical mechanical resonators for N1 = N2, ω = 2, δ = −1.5,

γ = 0.0001,
√

N1Gε = 2, and �ω21 = 0.04. Started near the in-
phase solution, in the blue shaded region of Fig. 7, the transient
unsynchronized motion is only temporary. Eventually solutions are
trapped by an out-of-phase solution [φ mod (2π ) → π ]. The variables
are plotted against time. In (a) r1 and r2 are shown in solid lines, the
collective variable r is dashed, and φ mod(2π ) is dotted. (b) is a plot
of φ and (c) is a plot of the amplitude of GN |α|2.

the bifurcation diagram is more complicated, involving two
sets of Hopf curves; however, if �ω31 and �ω32 are close the
Hopf curves are also close. In contrast, if they differ, as shown
in Fig. 10 where we have taken �ω21 = 5�ω32, three unstable
regions result. The most complex behavior occurs in the blue
region in which the in-phase solution is unstable to both φi and
the motion may switch from librational to rotational motion in
one or both of the φi apparently randomly.

III. QUANTUM MECHANICAL DESCRIPTION

A. Quantum mechanical model

The classical model derived in Sec. I and analyzed in Sec. II
is given by the classical Hamiltonian

H = h̄δ|α|2 +
N∑

i=1

h̄ωi |α|2 + h̄(ε∗α + εα∗) +
N∑

i=1

h̄gi |α|2xi,

(44)
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FIG. 9. (Color online) Transient unsynchronized motion of the
in-phase solution for three sets of mechanical nonidentical res-
onators for Ni equal, ω = 2, δ = −1.5, γ = 0.0001,

√
NiGε = 2,

�ω21 = 0.04, and �ω21 = 0.045. Eventually solutions are trapped
by an out-of-phase solution [φi mod(2π ) → π here]. The variables
are plotted against time. In (a) ri are shown in solid lines, the collective
variable r is dashed, and φi mod (2π ) are dotted. (b) is a plot of φi

and (c) is a plot of the amplitude of GN |α|2.
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where the microwave cavity amplitude α = xc + iyc, and
the dimensionless canonical positions xc and xi , and their
conjugate momenta yc and yi , respectively, satisfy the Poisson
bracket relations

{xc,yc} = 1

2h̄
,

(45)

{xi,yj } = 1

2h̄
δij .

The original canonical positions � = √
2EcL xc and qi =√

2Em

mω2 xi , and their conjugate momenta Q = √
2EcC0 yc and

pi = √
2mEm yi respectively, satisfy the canonical Poisson

bracket commutation relations

{�,Q} = 2h̄{xc,yc} = 1,
(46)

{qi,pj } = 2h̄{xi,yj } = δij .

The quantum mechanical description of the Hamiltonian
dynamics matches that obtained by canonical quantization
of the classical Hamiltonian. We promote the canonical
position and momenta Φ and Q of the microwave cavity
to the quantum mechanical operators Φ̂ and Q̂, respectively.
Similarly, we promote the nanomechanical resonator positions
qi and momenta pi to the quantum mechanical operators
q̂ i and p̂i , respectively. We then define the annihilation
operators for the microwave cavity field mode â and the
nanomechanical vibrational modes b̂i . We again have the
dimensionless microwave cavity quadrature operators x̂c =
1
2 (â + â †) and ŷc = −i 1

2 (â − â †), and the dimensionless

nanomechanical positions and momenta x̂i = 1
2 (b̂i + b̂

†
i ) and

ŷi = −i 1
2 (b̂i − b̂

†
i ), respectively. We have the commutation

relations for the quantum operators

[â ,â †] = Î , [x̂c,ŷc] = i 1
2 Î , [Φ̂ ,Q̂] = ih̄Î ,

(47)
[b̂i ,b̂

†
j ] = δij Î , [x̂i ,ŷj ] = i 1

2δij Î , [q̂i ,p̂i] = ih̄δij Î ,

in terms of which the corresponding quantum Hamiltonian in
the interaction picture is given by

Ĥ = h̄δ

(
â †â + 1

2

)
+

N∑
i=1

h̄ωi

(
b̂
†
i b̂i + 1

2

)

+ h̄(ε∗â + εâ †) +
N∑

i=1

h̄gi

(
â †â + 1

2

)
x̂i . (48)

For a realistic device we adopt a dissipative model. We model
both the microwave cavity resonator and the mechanical
resonators as being damped in zero-temperature heat baths.
This correctly describes the systematic effect of damping but
does not include thermal fluctuations. However, we have not
included thermal fluctuations in the classical model either. A
zero-temperature heat bath for the cavity is certainly justified
as the typical microwave cavity is at millikelvin temperature
and thus very close to zero [28]. Treating the environment
of the N nanomechanical resonators as a zero-temperature
heat bath is not a good approximation at typical mechanical
frequencies. However, the mean thermal occupation of the ith
bath n̄i �= 0 does not enter the semiclassical equations, and
thus the semiclassical bifurcation structure studied in Sec. II is
the correct one. The quantum model we are using does describe
damping as well as the unavoidable quantum noise arising from
spontaneous emission and the uncertainty principle (which
enters via the nonpositive definite diffusion matrix discussed
below). The amplitude decay for the microwave cavity is
κ , and for the ith nanomechanical resonator is γi . We then
describe the dissipative dynamics with the master equation
(with weak damping and the rotating wave approximation for
the system-environment couplings)

d ρ̂

dt
= − i

h̄
[Ĥ,ρ̂ ] + κ(2â ρ̂ â † − â †â ρ̂ − ρ̂ â †â)

+
N∑

i=1

γi(2b̂i ρ̂ b̂
†
i − b̂

†
i b̂i ρ̂ − ρ̂ b̂

†
i b̂i), (49)

where ρ̂ is the density matrix of the coupled system.
Corresponding to the classical description, we are

interested in the M collective quantities X̂i and Ŷ i defined by

X̂i = 1

Ni

∑
j∈Si

gj x̂j ,

(50)

Ŷ i = 1

Ni

∑
j∈Si

gj ŷj .

We can define creation and annihilation operators for these
collective mechanical modes,

B̂i = 1

Ni

∑
j∈Si

gj b̂j ,

(51)

B̂
†
i = 1

Ni

∑
j∈Si

gj b̂
†
j ,
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where from (47), we can show that the commutation relations
for the new collective operators are

[B̂i ,B̂
†
j ] = Gi

Ni

δi,j Î . (52)

B. Fokker-Planck-like equation

From the master equation (49), we proceed by deriving
a Fokker-Planck-like equation for the nanoelectromechanical
system which is the equation of motion of the positive P
function P (χ ). The positive P function is the Fourier transform
of the expectation of the normally ordered characteristic
function,

P (χ) = 1

(2π )2M+2

∫
〈eiλ2M+2B̂

†
M eiλ2M+1B̂M

· · · eiλ4B̂
†
1 eiλ3B̂1eiλ2â

†
eiλ1â 〉e−iλ·χdλ, (53)

where

χ = [αβμ1ν1μ2ν2 · · · μMνM ]T ,
(54)

λ = [ λ1 λ2 · · · λ2M+2 ]T .

We follow the procedure outlined in [19]. Using the appropri-
ate commutation relations, we arrive at the Fokker-Planck-like
equation

dP (χ )

dt
= −

∑
i

∂

∂χi

[A(χ)]i P (χ )

+1

2

∑
ij

∂

∂χi

∂

∂χj

[B(χ)B(χ)T ]ijP (χ ), (55)

where the drift term vector A(χ) is

A(χ ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−iε − (κ + iδ)α − i 1
2α

∑M
i=1 Ni(μi + νi)

iε − (κ − iδ)β + i 1
2β

∑M
i=1 Ni(μi + νi)

−(γ + iω1)μ1 − i G1
2 αβ

−(γ − iω1)ν1 + i G1
2 αβ

...
−(γ + iωM )μM − i GM

2 αβ

−(γ − iωM )νM + i GM

2 αβ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(56)

and the diffusion term matrix B(χ)B(χ )T is

B(χ)B(χ)T

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −i G1
2 α 0 · · · −i GM

2 α 0

0 0 0 i G1
2 β · · · 0 i GM

2 β

−i G1
2 α 0 0 0 · · · 0 0

0 i G1
2 β 0 0 · · · 0 0

...
...

...
...

. . .
...

...
−i GM

2 α 0 0 0 · · · 0 0

0 i GM

2 β 0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(57)

If we consider only the drift term of the Fokker-Planck-like
equation (55) and make the mappings β �→ α∗ and u �→
v∗ to reduce the phase space dimension by half onto the
semiclassical phase space (the positive P function has twice
the dimensionality of the classical phase space), then we obtain
the semiclassical equations of motion.

C. Quantum spectra

A future direction for research that builds on the work of this
paper is the investigation of the quantum physics associated
with the multistable semiclassical limit cycles. As a starting
point, in this section we calculate the linearized spectrum as
we increase the driving strength to approach the first Hopf
bifurcation at the supercritical Hopf line for blue detuning
(δ < 0) in Figs. 2 and 3. We do this calculation for the case
of a single group of nanomechanical resonators following the
procedure of [29]. For a single group, using the dimensionless
notation where we have rescaled the coupling coefficients and
time by the cavity dissipation rate κ , we have the stochastic
differential equations of motion corresponding to the Fokker-
Planck-like equation (55):

dχ

dt
= A(χ) + B(χ )E(t), (58)

where

χ = [α β μ ν]T , (59)

the drift term vector A(χ ) is

A(χ ) =

⎡
⎢⎢⎢⎣

− (1 + iδ) α − i 1
2αN (μ + ν) − iε

− (1 − iδ) β + i 1
2βN (μ + ν) + iε

− (γ + iω) μ − i G
2 αβ

− (γ − iω) ν + i G
2 αβ

⎤
⎥⎥⎥⎦ , (60)

the diffusion term matrix B(χ )B(χ)T is

B(χ )B(χ)T =

⎡
⎢⎢⎢⎣

0 0 −i G
2 α 0

0 0 0 i G
2 β

−i G
2 α 0 0 0

0 i G
2 β 0 0

⎤
⎥⎥⎥⎦ , (61)

and E(t) is the noise process. The principal matrix square root
of the diffusion matrix B(χ )B(χ)T is

B(χ) = B(χ )T =
√

G

2

⎡
⎢⎢⎣

√
α 0 −i

√
α 0

0
√

β 0 i
√

β

−i
√

α 0
√

α 0
0 i

√
β 0

√
β

⎤
⎥⎥⎦ .

(62)

The diffusion matrix and its square root have determinants

det{B(χ )B(χ)T} = 1
16G4α2β2,

(63)
det {B(χ )} = 1

4G2αβ,

and the two matrices are thus positive definite on the
semiclassical manifold where β = α∗. We see that the off-
diagonal terms with the factors of i in the matrix square root
B(χ) will take the solution off the semiclassical manifold and
will lead to quantum correlations.
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We will linearize these equations of motion about the
semiclassical fixed points we obtained in Sec. II. In terms of the
stochastic differential equations above, we make the mappings
β �→ α∗ and u �→ v∗ to reduce the phase space dimension by
half onto the semiclassical phase space (the positive P function
has twice the dimensionality of the classical phase space). The

linearized stochastic differential equations are then

dχ

dt
≈ M(χ − χ0) + D1/2E(t), (64)

where our Jacobian matrix M is

M = ∂ f(χ0)

∂χ
=

⎡
⎢⎢⎢⎢⎣

−(1 + iδ) − i 1
2N (μ0 + μ∗

0) 0 −i 1
2α0 −i 1

2α0

0 −(1 − iδ) + i 1
2N (μ0 + μ∗

0) i 1
2α∗

0 i 1
2α∗

0

−i G
2 α∗

0 −i G
2 α0 − (γ + iω) 0

i G
2 α∗

0 i G
2 α0 0 − (γ − iω)

⎤
⎥⎥⎥⎥⎦ , (65)

X0 = 1
2 (μ0 + μ∗

0), and our diffusion matrix about the semi-
classical fixed points D = B(χ0)B(χ0)T is

D =

⎡
⎢⎢⎢⎢⎣

0 0 −i G
2 α0 0

0 0 0 i G
2 α∗

0

−i G
2 α0 0 0 0

0 i G
2 α∗

0 0 0

⎤
⎥⎥⎥⎥⎦ . (66)

The linearized normally ordered moments at steady state can
be expressed in terms of these matrices [19]

S(Ω) = 1

2π

∫ ∞

−∞
e−iΩτ 〈χ (t)χ(t + τ )T 〉t→∞dτ

= 1

2π
(iΩI − M)−1D(−iΩI − MT )−1. (67)

We plot the microwave cavity component of these quantum
noise spectra in Fig. 11. We see that in Fig. 11(a) as the Hopf
bifurcation is approached, the spectrum becomes more sharply
peaked at two frequencies. The frequency corresponding to the
Hopf bifurcation—the magnitude of the two purely imaginary
eigenvalues—is the peak at the mechanical frequency ω. The

second, shorter but broader peak, is at the detuning δ. For a
drive detuned exactly on a sideband, these two peaks coincide.
Beyond the supercritical Hopf bifurcation, the semiclassical
fixed point is no longer stable and we enter the regime
dominated by the first stable limit cycle, where we have
the oscillatory motion analyzed by semiclassical amplitude
equations in Sec. II. However, we can continue to linearize
about this point, and show the results in Fig. 11(b). The two
peaks begin to converge as the driving strength and coupling
are increased.

The spectra calculated here correspond to the stationary
fluctuations in the cavity field. The power spectrum of these
fluctuations can be directly measured by homodyne detection.
Below the Hopf bifurcation, the noise power spectrum of
these fluctuations is peaked at a frequency associated with
the decay of fluctuations back to the fixed point. The width of
the peaks gives the time scale of this decay. Above the Hopf
bifurcation, the fluctuations decay onto the limit cycles. In our
model, there are no thermal fluctuations and all fluctuations
are due to intrinsic quantum noise manifest as off-diagonal
components in the diffusion matrix in (66). Thus the linewidths
in the spectra are due only to quantum noise: they would be δ

FIG. 11. (Color online) Linearized quantum noise spectrum of the microwave cavity S11(Ω) (a) approaching the Hopf bifurcation;
and (b) continuing the linearization beyond the Hopf bifurcation. The magnitude of the normally ordered cavity spectrum at steady state
(1/2π)

∫ ∞
−∞ e−iΩτ 〈α(t)α(t + τ )T 〉t→∞dτ , the first diagonal element of S(Ω), is plotted at the frequency Ω for varying driving amplitude ε.

Here we have set ω = 10, δ = −4, γ = 0.001, N = 1, G = 1, for which the Hopf bifurcation occurs at a driving strength of εh ≈ 1.76.
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functions in the classical theory at zero temperature. As such
this is a purely quantum feature.

There may be other uniquely quantum features in this
model, for example, dissipative switching between fixed
points. For example, a system localized on one fixed point (or
limit cycle) may show a spontaneous switching to another fixed
point (or limit cycle). This is not equivalent to quantum tun-
neling, neither is it reducible to thermally activated switching,
as it occurs in the presence of dissipation at zero temperature.
A more careful study is required to determine if the multiple
peak structure evident in Fig. 11(b) is evidence for dissipative
quantum switching between limit cycles. Such phenomena
have been investigated in the case of driven damped parametric
amplification in quantum optics [30], which has a similar
linearized diffusion matrix to the model of this paper. This
will form the subject of a future investigation.

IV. DISCUSSION AND CONCLUSION

We have discussed the situation in which multiple me-
chanical resonators are coupled to a single mode of the
electromagnetic field in a microwave superconducting cavity.
This interaction results in an all-to-all coupling between each
of the mechanical resonators that is highly nonlinear. However,
if the oscillators are identical, they synchronize and a collective
variable can be used to understand the dynamics. Analysis of
the dynamics of this collective variable (see the bifurcation
diagram in Fig. 2) reveals the prevalence of periodic behavior
and suggests the use of amplitude equations (28) to describe
the dominant oscillation. Even though the amplitude equations
involve elliptic functions their overall form is relatively simple
for small mechanical damping and from them we are able to
gain considerable insight into the dynamics of the collective
variable.

The form of the amplitude equations imply the presence of
multiple periodic orbits and hysteresis (at the bifurcations of
the periodic orbits). Specific results are also easy to extract; for
instance, we are able to plot the amplitudes of the mechanical
resonators as a function of the external forcing for specific
values of the other parameters (Fig. 4) and to locate the saddle
node bifurcations of periodic orbits where hysteresis would
occur as a result of a slight change in the mechanical forcing
(Figs. 2, 3, and 6).

The simplicity of the amplitude equations means that
it is straightforward to extend the identical mechanical
resonator case to one with distinct subgroups of identical
oscillators. Considering two and three frequency subgroups
we are able to give bifurcation diagrams showing the regions
where synchronization occurs. Synchronization is lost via
a mechanism involving a Hopf and heteroclinic bifurcation
similar to that found in large amplitude forcing, rather than
the sniper bifurcation that is involved in small amplitude
forcing and, although in a reduced form, in Kuramoto’s phase
model. In spite of this difference there is a single collective
variable Nr that functions as a measure of synchronized
behavior and that is related to a measurable quantity, the cavity
amplitude.

Given the current interest in fabricating nanomechanical
resonators in microwave cavities, our model offers a realizable

and very controllable way to study synchronization in a
system with all-to-all coupling via a common field mode.
While the equations for our model cannot be reduced to a
simple phase model, it offers some advantages over more
complex naturally occurring examples of synchronization. A
particularly important feature is that the measured quantity—
the cavity field leaving the microwave resonator—has an
amplitude that is directly proportional to a collective parameter
similar to the order parameter introduced in previous studies
of synchronization. The need to use very low temperatures
required for superconducting circuits may seem a disadvantage
but in fact leads to a huge reduction in noise for both the
mechanics and the microwave field. This should lead to
especially clean observation of multistability and perhaps
even controlled switching between limit cycles. In the long
run it also motivates us to study the effect of quantum
noise on synchronization, and to look for quantum signatures
of synchronization which will be the subject of a future
presentation.
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APPENDIX: EXPERIMENTAL PARAMETERS

A number of experiments are described by the model
examined in this paper,

d ρ̂

dt
= − i

h̄
[Ĥ,ρ̂ ] + κ(2â ρ̂ â † − â †â ρ̂ − ρ̂ â †â)

+
N∑

i=1

γi(2b̂i ρ̂ b̂
†
i − b̂

†
i b̂i ρ̂ − ρ̂ b̂

†
i b̂i), (A1)

where

Ĥ = h̄δ

(
â †â + 1

2

)
+

N∑
i=1

h̄ωi

(
b̂
†
i b̂i + 1

2

)
+ h̄(ε∗â + εâ †)

+
N∑

i=1

1

2
h̄gi

(
â †â + 1

2

)
(b̂i + b̂

†
i ), (A2)

and

[â ,â †] = Î ,
(A3)

[b̂i ,b̂
†
j ] = δi,j Î .

A summary of the different values of the parameters for a
selection of these experiments is given in Table I. In terms
of the dimensionless parameters introduced in Sec. II these
become those listed in Table II. Note that the detuning δ is
typically set to be on a mechanical frequency sideband, such
that δ = ωi ; and thus while not an experimental limitation,
the range of δ we list in the table is δ � ωi . Also note
that the maximum driving |ε| indicates the maximum driving
before the cavity becomes nonlinear, causing our model to
fail. Finally, also note that the factors of 2 in front of κ and
γi in Table I are present because our κ and γi (as defined
by the master equation above) are amplitude decay rates, not
occupation number decay rates.
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TABLE II. Dimensionless experimental coupling values for various systems. The “Type” column indicates the experimental context: “S”
indicates a superconducting microwave coplanar waveguide resonator (â ) coupled to a nanomechanical resonator (b̂i); “M” indicates an optical
cavity (â ) coupled to a micromechanical membrane (b̂i); “T” indicates a toroidal microresonator (â ) coupled to a nanomechanical string
resonator (b̂i); and “C” indicates an optomechanical crystal array where an optical mode of a cell (â ) is coupled to a mechanical mode of
a cell (b̂i).

Experiment Mode â Mode b̂i Coupling

Ref. Type |δ′| = |δ|
κ

|ε ′| = |ε|
κ

ω′
i = ωi

κ
γ ′

i = γi

κ
g′

i = gi

κ

[31] S �0.722 0.722 2.33 × 10−7 6.02 × 10−7

[22] S �13.26 �1.87 × 104 13.26 2.209 × 10−5 1.66 × 10−6

[14] S �0.5 0.5 2.5 × 10−6

→�12 → 12 → 6 × 10−6

[14] S �9.34 9.34 1.23 × 10−3

[32] S �9.39 9.39 3.92 × 10−5 2.02 × 10−7

[23] S �350.8 �1.28 × 104 350.8 6.5 × 10−4 1.31 × 10−4

[15] M �0.066 0.066 3 × 10−8 1.37 × 10−5

[16] T <2.65 <2.65 <1.33 × 10−5

→<6.53 →<6.53 →<3.27 × 10−4

[16] T �0.43 0.43 4.05 × 10−6 5.89 × 10−6

[16] T �0.32 0.32 4 × 10−6 2.22 × 10−6
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