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One-dimensional lattice of oscillators coupled through power-law interactions: Continuum limit and
dynamics of spatial Fourier modes
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We study synchronization in a system of phase-only oscillators residing on the sites of a one-dimensional
periodic lattice. The oscillators interact with a strength that decays as a power law of the separation along the
lattice length and is normalized by a size-dependent constant. The exponent α of the power law is taken in the
range 0 � α < 1. The oscillator frequency distribution is symmetric about its mean (taken to be zero) and is
nonincreasing on [0,∞). In the continuum limit, the local density of oscillators evolves in time following the
continuity equation that expresses the conservation of the number of oscillators of each frequency under the
dynamics. This equation admits as a stationary solution the unsynchronized state uniform both in phase and over
the space of the lattice. We perform a linear stability analysis of this state to show that when it is unstable, different
spatial Fourier modes of fluctuations have different stability thresholds beyond which they grow exponentially in
time with rates that depend on the Fourier modes. However, numerical simulations show that at long times all the
nonzero Fourier modes decay in time, while only the zero Fourier mode (i.e., the “mean-field” mode) grows in
time, thereby dominating the instability process and driving the system to a synchronized state. Our theoretical
analysis is supported by extensive numerical simulations.
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I. INTRODUCTION: THE MODEL

A large collection of coupled oscillating components of
different natural frequencies getting spontaneously synchro-
nized to oscillate at a common frequency is a phenomenon
commonly observed in a variety of biological and physical
systems, e.g., yeast cell suspensions [1,2], networks of pace-
maker cells in the heart [3,4], groups of flashing fireflies [5,6],
arrays of superconducting Josephson junctions [7,8], and many
others [9].

The Kuramoto model provides a simple setting to inves-
tigate the physics of synchronization [10–12]. The model
considers a large population of phase-only oscillators of
distributed natural frequencies. The oscillators are globally
coupled with coupling strengths that are equal and indepen-
dent of their spatial distribution. The governing dynamical
equations are

dθi

dt
= ωi + K

N

N∑
j=1,j �=i

sin(θj − θi) (1)

for i = 1,2, . . . ,N � 1. Here θi is a periodic variable of
period 2π that denotes the phase of the ith oscillator whose
natural frequency is given by ωi ∈ R. The parameter K � 0
denotes the coupling strength. The frequencies are distributed
according to a probability density g(ω), assumed to be one-
humped and symmetric about its mean. It is known that above a
critical coupling strength Kc = 2/(πg(0)), the stationary state
that the system attains at long times is a synchronized state. For
K < Kc, however, there is no synchronization at long times,
and each oscillator keeps running at its own natural frequency.

Although the Kuramoto model has been studied extensively
in recent years, much less is known about the case in which the
oscillators are coupled with a strength that is a function of their
spatial distribution, e.g., an inverse power law in the separation.

Such a form of interaction is relevant for many situations, for
example, in the study of long-range synchrony in a network of
coupled neurons [13] or in modeling flashing fireflies where
the intensity of light signals carrying information from one
firefly to another falls off in the three-dimensional space as the
inverse of square of the distance from the source.

A simple modification of the Kuramoto model (1) to include
a power-law interaction is to consider a one-dimensional
periodic lattice of N sites, with each site containing one
oscillator, and with the oscillators interacting with one another
with a strength that decays as a power law of the separation
along the lattice length [14]. Consequently the governing
equations are modified from (1) to

dθi

dt
= ωi + K

Ñ

N∑
j=1,j �=i

sin(θj − θi)

|xj − xi |α ; α � 0. (2)

Here xj = jε is the coordinate of the j th site on the lattice,
where ε is the lattice constant. The constant Ñ = ∑N

j=1 |xj −
xi |−α∀i is a size-dependent normalization. Being on a periodic
lattice, we adopt the closest distance convention:

|xj − xi | = min (|xj − xi |,1 − |xj − xi |), (3)

where the total length Nε of the lattice has been taken to equal
unity without loss of generality. From Eq. (2), we see that for
α < 1, the cumulative interaction of one oscillator with all the
remaining oscillators with aligned phases would diverge in the
continuum limit N → ∞ in the absence of the normalization
Ñ , which explains its inclusion [14,15]. Note that the case α =
0 of the model corresponds to the usual Kuramoto model (1).
Let us mention that a model with space-dependent phases as
in Eq. (2), but with a different form of coupling between the
oscillators, has recently been studied in Ref. [16].
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A previous study of the model (2) addressed by numerical
simulations the issue of synchronization, in particular, the
conditions for its emergence at long times as a function of α

for a fixed value of K [14]. It was reported that a critical value
αc = 2 exists, such that only when α < αc does the system
in the limit N → ∞ synchronize at a finite value of K . For
α > αc, there is no finite value of K at which synchronization
occurs. A recent theoretical study, however, predicted the value
3/2 for αc [17]. In Ref. [18] the model was studied without
the normalization Ñ , and for finite values of N . In this work
mainly numerical simulations were employed to investigate the
dependence of N on α and K that leads to synchronization.

In this paper we consider the model (2) with values of α

in the range 0 � α < 1. We take the frequency distribution
g(ω) to be symmetric about its mean (taken to be zero)
and nonincreasing on [0,∞). We analyze the model (2) in
the continuum limit N → ∞, when the lattice is replaced
by a continuous line characterized by the spatial coordinate
x ∈ [0,1]. Since in this limit each infinitesimal element dx

contains a diverging number of oscillators, it is natural to
define a local density of oscillators ρ(θ ; ω,x,t) dx such that
of all oscillators with natural frequency ω that are located
between x and x + dx at time t , the fraction ρ(θ ; ω,x,t) dθ dx

have their phase between θ and θ + dθ . Because the dynamics
conserves the total number of oscillators with frequency ω,
the time evolution of ρ(θ ; ω,x,t) is given by the continuity
equation. In this equation the local densities at different spatial
locations appear coupled due to the interaction between the
oscillators.

The unsynchronized state, uniform both in the phase θ and
in the spatial coordinate x, solves the continuity equation in
the stationary state. By performing a linear stability analysis
of such a state, we show that when it is unstable, different
spatial Fourier modes of fluctuations have different stability
thresholds beyond which they grow exponentially in time with
different rates. However, numerical simulations show that at
long times, all the nonzero Fourier modes decay in time, while
the zero mode (the “mean-field” mode) grows in time and
dominates the instability process, thereby driving the system
to a synchronized state. Such a long-time dominance of the
mean-field mode in characterizing dynamic instability has
been observed in systems with power-law interactions evolv-
ing under a deterministic Hamiltonian dynamics [19]. The
present study demonstrates this dominance for the dissipative
dynamics of the model (2). Our theoretical predictions for
the growth rates of the unstable modes are corroborated by
numerical simulations.

The outline of this paper is as follows. In the following
section, we consider the model (2) in the continuum limit
N → ∞ and analyze the linear stability of the unsynchronized
state. In the region in which it is unstable, we derive analytic
expressions for the stability thresholds and the growth rates of
the various Fourier modes of fluctuations. In Sec. III we test
our theoretical predictions for the growth rates by performing
numerical simulations and illustrate the dominance of the
mean-field mode in characterizing the long-time instability
of the unsynchronized state. In simulations, we employ a fast
numerical algorithm to compute the interaction among the
oscillators, the details of which are relegated to the Appendix.
In the final section, we draw our conclusions.

II. CONTINUUM LIMIT ANALYSIS

In this section, we consider the model (2) in the continuum
limit N → ∞, and investigate in detail the issue of linear
stability of the unsynchronized state. Finite-N effects are
known to be quite subtle and difficult to tackle even for the
usual Kuramoto model [11,12], so we do not attempt a finite-N
analysis of the model (2) in this work.

In the continuum limit, the lattice of the system (2)
is densely filled with sites. Let the continuous variable
x ∈ [0,1] stand for the spatial coordinate along the lattice
length. Now that each infinitesimal element dx contains a
diverging number of oscillators, we define a local density
of oscillators ρ(θ ; ω,x,t) dx such that of all oscillators with
natural frequency ω that are located between x and x + dx at
time t , the fraction ρ(θ ; ω,x,t) dθ dx have their phase between
θ and θ + dθ . This density is non-negative, 2π periodic in θ ,
and obeys the normalization∫ 2π

0
dθρ(θ ; ω,x,t) = 1. (4)

The equations of motion (2) become
∂θ (ω,x,t)

∂t
= ω + κ(α)K

∫
dθ ′dω′

× dx ′ sin(θ ′ − θ )

|x ′ − x|α ρ(θ ′; ω′,x ′,t)g(ω′),

(5)

where κ(α) is such that N/Ñ → κ(α) as N → ∞, and
therefore one has

κ(α)−1 =
∫ x+1/2

x−1/2

dx ′

|x ′ − x|α . (6)

Since we consider α in the range 0 � α < 1, the above integral
is convergent. The number of oscillators with frequency ω

is conserved by the dynamics, so that the time evolution of
ρ(θ ; ω,x,t) follows the continuity equation

∂ρ

∂t
= − ∂

∂θ

(
ρ

∂θ

∂t

)
, (7)

where ∂θ
∂t

is given by Eq. (5).
Next, consider the unsynchronized state uniform both in

the phase θ and in the spatial coordinate x:

ρ0(θ ; ω,x,t) = 1

2π
. (8)

Such a state is evidently a stationary solution of the time
evolution (7). To study its linear stability under the dynamics,
consider adding small fluctuations, so that

ρ(θ ; ω,x,t) = 1

2π
+ δρ(θ ; ω,x,t); δρ(θ ; ω,x,t) 	 1.

(9)

Substituting into Eq. (7) and keeping terms to linear order in
δρ, we find that δρ satisfies

∂δρ(θ ; ω,x,t)

∂t
= −ω

∂δρ(θ ; ω,x,t)

∂θ
+ κ(α)K

2π

∫
dθ ′ dω′

× dx ′ cos(θ ′ − θ )

|x ′ − x|α δρ(θ ′; ω′,x ′,t)g(ω′).

(10)
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FIG. 1. (Color online) �m(α) as a function of m, obtained by
numerically evaluating the integral in Eq. (15). The different curves
correspond to different α values given by α = 0.25, 0.5, 0.75, 0.9
(bottom to top).

Expressing δρ in terms of its Fourier series with respect to the
periodic variable θ as

δρ(θ ; ω,x,t) =
∞∑

k=−∞
δ̂ρk(ω,x,t)eikθ , (11)

we find from Eq. (10) that only the modes k = ±1 are affected
by the coupling between the oscillators, and that δ̂ρ±1 satisfies

∂δ̂ρ±1(ω,x,t)

∂t
= ∓iωδ̂ρ±1(ω,x,t) + κ(α)K

2

×
∫

dω′ dx ′ δ̂ρ±1(ω′,x ′,t)
|x ′ − x|α g(ω′). (12)

One thus gets a set of equations for each position x, all coupled
together by the second term on the right.

Since we have a periodic lattice, it is natural to consider the
spatial Fourier series of δ̂ρ±1(ω,x,t):

δ̂ρ±1(ω,x,t) =
∞∑

m=−∞
δρ±1,m(ω,t)ei2πmx. (13)

On substituting in Eq. (12), we get

∂δρ±1,m(ω,t)

∂t
= ∓iωδρ±1,m(ω,t) + κ(α)K�m(α)

2

×
∫

dω′δρ±1,m(ω′,t)g(ω′), (14)

where

�m(α) =
∫ x+1/2

x−1/2
dx ′ e

i2πm(x ′−x)

|x ′ − x|α . (15)

Note that �m(α) = �−m(α). We have checked numerically
that �m(α) � 0, and that it is a monotonically decreasing
function of m; see Fig. 1. These properties can also be proved
analytically [20]. It is also easy to prove that �m(α) → 0 as
m → ∞. Defining w ≡ my, we get

�m(α) = 2

m1−α

∫ m/2

0
dw

cos(2πw)

wα
. (16)

In the limit m → ∞, the integral evaluates to a finite constant
equal to (2π )α−1 sin(πα/2)�(1 − α), while the prefactor tends

to zero, yielding

lim
m→∞ �m(α) = 0. (17)

Following [11], we consider the right-hand side of Eq. (14)
to define a linear operator A as

Aδρ±1,m(ω,t) = ∓iωδρ±1,m(ω,t) + κ(α)K�m(α)

2

×
∫

dω′δρ±1,m(ω′,t)g(ω′). (18)

Then, in terms of the eigenvalues λm of the operator A, Eq. (14)
gives

δρ±1,m(ω,t) = δ̃ρ±1,m(ω,λm)eλmt , (19)

with δ̃ρ±1,m satisfying

δ̃ρ±1,m(ω,λm)

= κ(α)K�m(α)

2(λm ± iω)

∫
dω′δ̃ρ±1,m(ω′,λm)g(ω′). (20)

Multiplying both sides of Eq. (20) by g(ω), and then integrating
with respect to ω, one gets

I±,m(1 − J±,m) = 0, (21)

where

I±,m =
∫ ∞

−∞
dωδ̃ρ±1,m(ω,λm)g(ω), (22)

J±,m = κ(α)K�m(α)

2

∫ ∞

−∞
dω

g(ω)

(λm ± iω)
. (23)

Since I±,m �= 0, Eq. (21) gives the dispersion relation

J±,m = 1. (24)

Let us consider g(ω) to be symmetric about its mean. We
may assume a zero mean without loss of generality (one can
easily achieve this by going into a rotating frame of reference).
Moreover, we take g(ω) to be nonincreasing on [0,∞), i.e.,
g(ω) � g(ν) whenever ω � ν. Examples include common
frequency distributions of interest like the Gaussian and the
Lorentzian distributions. One can prove by using Theorem 2
in Ref. [21] that for such g(ω)’s, Eq. (24) has at most one
solution for λm, and if it exists, it is necessarily real. Then
Eq. (24) gives

κ(α)K�m(α)
∫ ∞

0
dω

λm

λ2
m + ω2

g(ω) = 1. (25)

The above equation implies that λm � 0, as otherwise the
left-hand side is negative. Since the mth spatial mode of
fluctuations δρ±1,m has the time dependence δρ±1,m ∼ eλmt

[Eq. (19)], it follows that this mode is either linearly neutrally
stable corresponding to λm = 0, or that it is linearly unstable
corresponding to λm > 0. The borderline between these two
behaviors is achieved at the critical coupling K (m)

c , obtained
by taking the limit λm → 0+ in Eq. (25); we get

K (m)
c = 2

κ(α)�m(α)πg(0)
. (26)
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Combining the last equation with Eq. (25), the growth rate
λm > 0 for K > K (m)

c is given by

2K

πg(0)K (m)
c

∫ ∞

0
dω

λm

λ2
m + ω2

g(ω) = 1. (27)

With �m(α) = �−m(α), it follows that the Fourier modes m

and −m have the same critical thresholds and the same growth
rates. Since �|m|(α) decreases on increasing |m|, we conclude
that

K (0)
c < K (1)

c < K (2)
c < · · · . (28)

The unsynchronized state (8) is linearly stable if all the spatial
modes of fluctuations decay in time; using Eq. (28), this
is achieved when K < K (0)

c . On the other hand, it becomes
unstable for K > K (0)

c .
For α = 0, when our model (2) reduces to the Kuramoto

model (1), Eqs. (6) and (15) give κ(α)�m(α) = δm,0. In this
limit the oscillators are globally coupled with equal coupling
strengths, and therefore, it is physical to talk of only the zero
Fourier mode. This mode has the critical coupling given by
Eq. (26) to be K (0)

c = 2/πg(0), such that it is linearly unstable
for higher values of K; this matches with known results for
the Kuramoto model [11,12]. For finite values of K , all the
other modes are linearly neutrally stable because of diverging
critical thresholds.

In order to have some representative numbers for the
critical thresholds K (m)

c and for comparison with numerical
simulations reported in the next section, let us choose a
Gaussian g(ω) with zero mean and unit variance:

g(ω) = 1√
2π

e−ω2/2. (29)

Then, using Eq. (27), we see that for K > K (m)
c , the growth

rate λm > 0 of the mth mode satisfies

K

K
(m)
c

eλ2
m/2Erfc

[
λm√

2

]
= 1, (30)

where Erfc[x] is the complementary error function: Erfc[x] =
2√
π

∫ ∞
x

e−t2
dt . In obtaining Eq. (30), we have used the result∫ ∞

−∞ dp e−βp2/2

p2+a2 = π
a
eβa2/2Erfc[

√
β

2 a].

III. COMPARISON WITH NUMERICAL SIMULATIONS

Here we test the theoretical predictions of the preceding
section by comparing them with results from numerical sim-
ulations. A standard procedure for simulations is to integrate
the equations of motion (2). However, note that the equations
involve computing at every integration step a sum over N

terms for each of the N oscillators and therefore require a
total computation time that would scale with N as N2. In
the Appendix, we show that the equations of motion can be
transformed into a convenient form which when integrated
requires at every integration step a computation time that
scales with N as N ln N . We chose this alternative form of the
equations of motion and integrated them using a fourth-order
Runge-Kutta algorithm with time step equal to 0.01. The
initial state of the system was chosen to have each oscillator
phase θ uniformly distributed in [−π,π ] and frequency ω

sampled from the Gaussian distribution (29), independently

TABLE I. K (m)
c ; m = 1, 2, . . . , 5 as a function of α for the

frequency distribution (29). In all cases, K (0)
c ≈ 1.59577.

α K (1)
c K (2)

c K (3)
c K (4)

c K (5)
c

0.05 52.96519 130.12769 165.38633 240.09713 274.75919
0.1 25.89784 59.98356 76.10483 107.39521 122.97195
0.5 4.26696 6.53664 7.71516 9.10681 10.02918
0.9 1.88898 2.04629 2.12267 2.18907 2.23565
0.95 1.73443 1.80472 1.83837 1.86673 1.88661

of all the other oscillators. Thus, initially, the system is in an
unsynchronized state. We report here simulation results for
N = 214.

We specifically compare the theoretical and simulation
results for the growth rates λm. From Eq. (30) these rates
depend on the critical thresholds K (m)

c ’s, and, thus, their
comparison would indirectly provide a test of the theoretical
predictions for K (m)

c ’s given by Eqs. (26) and (29) as

K (m)
c = 2

√
2√

πκ(α)�m(α)
. (31)

Using the above equation, we show in Table I the dependence
of K (m)

c ’s for m = 1, 2, 3, 4, 5, as a function of α; note
that K (0)

c is independent of α. From the table, we see that the
thresholds for the nonzero Fourier modes get larger and further
apart when α is close to zero. On the contrary, these thresholds
approach the threshold for the zero mode when α has a value
close to unity. From this observation, one may guess that in the
limit of α approaching zero, all thresholds excepting the one
for the zero mode become infinitely large, while in the limit
of α approaching unity, they all acquire the common value of
the zero-mode threshold.
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FIG. 2. (Color online) Time evolution of the observables
r0(t),r1(t),r2(t), and r3(t) for a single realization of the initial
state {θi(0),ωi(0); i = 1,2, . . . ,N}, where θi are chosen uniformly
in [−π,π ], while ωi are chosen from a Gaussian distribution with
zero mean and unit variance [Eq. (29)]. Thus, initially, the system is
in an unsynchronized state. Here α = 0.5 and K = 15. For this value
of α, Eqs. (26) and (29) give K (0)

c ≈ 1.59577,K (1)
c ≈ 4.26696,K (2)

c ≈
6.53664,K (3)

c ≈ 7.71516, . . ., so that the Fourier modes 0, 1, 2, 3 are
all linearly unstable. Consequently, r0(t),r1(t),r2(t), and r3(t) all grow
in time from their initial values. The data in the plot are obtained from
numerical simulations with N = 214.
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FIG. 3. (Color online) Time evolution of r0(t) and r1(t) for 10 different realizations of the initial state {θi(0),ωi(0); i = 1,2, . . . ,N},
where θi are chosen uniformly in [−π,π ], while ωi are chosen from a Gaussian distribution with zero mean and unit variance [Eq. (29)].
Thus, initially, the system is in an unsynchronized state. Each figure corresponds to a value of α indicated therein. For α = 0.1, we took
K = 100. Equations (26) and (29) give K (1)

c ≈ 25.89784,K (2)
c ≈ 59.98356,K (3)

c ≈ 76.10483, . . .. For α = 0.5, we took K = 15; here K (1)
c ≈

4.26696,K (2)
c ≈ 6.53664,K (3)

c ≈ 7.71516, . . .. For α = 0.9, we took K = 10; here K (1)
c ≈ 1.88898,K (2)

c ≈ 2.04629,K (3)
c ≈ 2.12267, . . .. We

have K (0)
c ≈ 1.59577, independent of α. Thus, for these three values of α with the corresponding values of K , the Fourier modes 0 and 1 are

linearly unstable. As a result, in all cases, r0(t) and r1(t) are expected to grow in time from their initial values as r0(t) ∼ eλ0 t ,r1(t) ∼ eλ1 t . The
data in the plots are obtained from numerical simulations with N = 214. The dotted blue line in each plot shows the exponential growth with
the rates λ0 and λ1 given by Eq. (30).

In simulations, we monitor the time evolution of the
observable

rm(t) = 1

N

∣∣∣∣∣
N∑

j=1

ei(θj +2πjm/N)

∣∣∣∣∣; m = 0,1,2, . . . . (32)

Note that r0(t) corresponds to the case in which there is
no spatial dependence of the oscillator phases and, thus,
characterizes the mean-field mode.

From our analysis in the preceding section, we see that
for K > K (m)

c , when the mth spatial mode of fluctuations is
linearly unstable, rm(t) should grow exponentially in time:
rm(t) ∼ eλmt . In our simulations, we found that for large
enough K , the observable r0(t) grows in time and saturates to a
value of O(1), while all the other rm(t), after showing an initial
growth in time, decay to a value close to zero. An illustration
of such a behavior is shown in Fig. 2. This observation implies
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FIG. 4. (Color online) The points denote the values of the growth
rate λ0 obtained by fitting the growth of r0(t) in time as r0(t) ∼
eλ0 t for short times, while starting from an unsynchronized state
with Gaussian g(ω) [Eq. (29)]. The data for r0(t) were obtained
by performing numerical simulations with α = 0.5,N = 214, and by
averaging over 100 initial realizations. The numerical errors are of
the size of the points. The solid line shows the theoretical curve for
λ0 given by Eq. (30). From our theoretical analysis, the growth rate is
zero for values of K below K (0)

c and is nonzero above. In the figure,
the theoretical K (0)

c is indicated.

that in the long-time limit, the dynamics is dominated by the
mean-field mode, which drives the system to a synchronized
state signaled by r0(t) settling to a value of order 1.

In Fig. 3 we show the temporal evolution of r0(t) and r1(t)
for 10 different realizations of the initial state for three different
values of α, namely, a value close to zero, a value close to
unity, and a value in between. In each case, the value of K

is such that the Fourier modes 0 and 1 are linearly unstable;
thus, K is at least larger than K (1)

c . Consequently, r0(t) and
r1(t) are expected to grow in time from their initial values as
r0(t) ∼ eλ0t ,r1(t) ∼ eλ1t .

One may see from the plots for r0(t) in Fig. 3 that almost all
realizations exhibit growth rates close to the theoretical value.
It is then natural to average r0(t) over large enough number of
initial realizations in order to reduce statistical fluctuations and
extract the growth rate λ0. We perform this exercise for α = 0.5
and display the result for λ0 as a function of K in Fig. 4, which
shows a very good agreement with the theoretical prediction.

From the plots of r1(t) in Fig. 3, one may note that the
growth rates for most initial realizations are close to the
theoretical value, although there are some realizations for
which significant deviations are seen. On decreasing the value
of K towards K (1)

c , the number of this latter class of realizations
increases, most significantly when K is close to K (1)

c . We
believe that this could be due to pronounced finite-N effects
close to K (1)

c . Also, note from Eq. (30) that λ1 decreases with
decreasing K . Since r1(t) in the limit of long times decays to a
close-to-zero value, it leaves with a very narrow time window
for the growth of r1(t).

From the plots in Fig. 3, one may observe that the growth
rate of r1(t) goes to zero when α approaches zero, while it
gets close to the rate for r0(t) when α approaches unity. This
is in accordance with our discussion above on the behavior of
thresholds as α approaches zero and unity.

IV. CONCLUDING REMARKS

In this paper we considered a system of coupled phase-only
oscillators, in which each site of a one-dimensional periodic
lattice of N sites contains one oscillator of distributed natural
frequency. The oscillators are coupled through a power-law
interaction ∼(K/Ñ )r−α in their separation r along the lattice
length, where the exponent α lies in the range 0 � α < 1,
and Ñ is a size-dependent normalization. The oscillator
frequencies are taken to be distributed according to a density
g(ω) that is symmetric about its mean (taken to be 0) and
nonincreasing on [0,∞).

We studied the model in the continuum limit N → ∞.
In this limit one may define a local density of oscillators
which evolves in time according to the continuity equation
expressing the conservation of number of oscillators of each
frequency under the dynamics. The unsynchronized state,
uniform both in phase and in spatial coordinate, represents
a stationary solution of the continuity equation. By analyzing
the linear stability of such a state, we showed that when it
is unstable, different spatial Fourier modes of fluctuations
have different stability thresholds beyond which they grow
exponentially in time with different rates. However, numerical
simulations show that at long times, all the nonzero Fourier
modes decay in time, while the zero mode (the “mean-field”
mode) grows in time to dominate the instability process and
drive the system to a synchronized state. Such a long-time
dominance of the mean-field mode is known for systems with
Hamiltonian systems [19]. The present work illustrates the
dominance for dissipative dynamics within the ambit of a
simple model, while leaving the proof of its general validity
as an interesting open issue.
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APPENDIX: A FAST NUMERICAL ALGORITHM TO
COMPUTE THE INTERACTION TERM IN EQ. (2)

Here we discuss a numerical algorithm that transforms
the equations of motion (2) into a convenient form in which
the interaction term is efficiently computed by a fast Fourier
transform (FFT) scheme in times of order N ln N for a system
of N oscillators. Use of FFT requires that we choose a power
of 2 for N .

We start with Eq. (2) which we rewrite as

dθi

dt
= ωi + K

Ñ

N∑
j=1

sin(θj − θi)

(dij )α
, (A1)

where dij is the shortest distance between sites i and j on a
periodic lattice of N sites. We set dii = 0, while dij for i �= j
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is given by

dij =
{ |j − i| if 1 � |j − i| � N/2,

N − |j − i| otherwise.
(A2)

Equation (A1) may be rewritten as

dθi

dt
= ωi + K

Ñ

(
cos θi

N∑
j=1

Vij sin θj − sin θi

N∑
j=1

Vij cos θj

)
.

(A3)

Here the first summation term may be interpreted as the ith
element of the N × 1 column vector formed by the product
of an N × N matrix V = [Vij ]i,j=1,2,...,N with an N × 1
column vector (sin θ1 sin θ2 . . . sin θN )T , where Vij = 1/(dij )α .
Similarly, the second summation term may be interpreted as the
ith element of the N × 1 column vector formed by the product
of V with an N × 1 column vector (cos θ1 cos θ2 . . . cos θN )T .

Writing out the matrix V , we see that it has the form

V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1 vN . . . v3 v2

v2 v1 vN v3

... v2 v1
. . .

...

vN−1
. . .

. . . vN

vN vN−1 . . . v2 v1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (A4)

where v1 = 0 and

vr =
{

1/(r − 1)α if 2 � r � N/2 + 1,

1/(N − r + 1)α otherwise.
(A5)

Thus, V is a circulant matrix fully specified by the elements in
the first column. The remaining columns of V are each cyclic
permutations of the elements in the first column, with offset
equal to the column index.

Now, note that V can be written as

V = v1I + v2P + v3P
2 + · · · + vNP N−1, (A6)

where P is the N × N cyclic permutation matrix,⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 1

1 0 · · · 0 0

0
. . .

. . .
...

...
...

. . .
. . . 0 0

0 · · · 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (A7)

Since P N = I , the N × N identity matrix, the eigenvalues
of P are given by wj = ei2π(j−1)/N ; j = 1,2, . . . ,N , where
wj is the N th root of unity. Equation (A6) then implies that
the eigenvalues of V are given by �j = ∑N

k=1 vkw
k−1
j for

j = 1,2, . . . ,N .
One may easily check that the eigenvectors of V are the

columns of the N × N unitary discrete Fourier transform
matrix F = 1√

N
[fjk]j,k=1,2,...,N , where

fjk = e−i2π(j−1)(k−1)/N for 1 � j,k � N. (A8)

Then, one has F−1V F = [�jδij ]i,j=1,2,...,N .
In terms of the matrices F and F−1, one may easily rewrite

Eq. (A3) as

dθi

dt
= ωi + K

Ñ

[
cos θi

N∑
j=1

(F−1)ij�j (F sin θ )j

− sin θi

N∑
j=1

(F−1)ij�j (F cos θ )j

]
, (A9)

where (F sin θ )j [respectively, (F cos θ )j ] is the j th element of
the N × 1 column vector formed by multiplying the matrix F

with the column vector (sin θ1 sin θ2 . . . sin θN )T [respectively,
(cos θ1 cos θ2 . . . cos θN )T ]. Note that (F sin θ )j and (F cos θ )j
are just discrete Fourier transforms and may be computed very
efficiently by standard FFT codes (see, e.g., Ref. [22]). The
simulations reported in Sec. III were performed by integrating
Eq. (A9).
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