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Cooperation and defection may be considered to be two extreme responses to a social dilemma. Yet the reality
is much less clear-cut. Between the two extremes lies an interval of ambivalent choices, which may be captured
theoretically by means of continuous strategies defining the extent of the contributions of each individual player
to the common pool. If strategies are chosen from the unit interval, where 0 corresponds to pure defection and 1
corresponds to the maximal contribution, the question is what is the characteristic level of individual investments
to the common pool that emerges if the evolution is guided by different benefit functions. Here we consider the
steepness and the threshold as two parameters defining an array of generalized benefit functions, and we show
that in a structured population there exist intermediate values of both at which the collective contributions are
maximal. However, as the cost-to-benefit ratio of cooperation increases, the characteristic threshold decreases
while the corresponding steepness increases. Our observations remain valid if more complex sigmoid functions
are used, thus reenforcing the importance of carefully adjusted benefits for high levels of public cooperation.
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I. INTRODUCTION

The public goods game is a typical example of an evolu-
tionary game [1–3] that is governed by group interactions. It
requires players to decide simultaneously whether they wish
to bare the cost of cooperation and thus to contribute to the
common pool. Regardless of their decision, each member of
the group receives an equal share of the public good after
the initial contributions are multiplied by a benefit factor that
takes into account the added value of collaborative efforts.
Individuals are best off by not contributing anything to the
common pool, i.e., by defecting, while the group is most
successful if everybody invests in the common pool, i.e.,
cooperates. Since the interests of individual players evidently
do not agree with the interests of the group as a whole, we
have a blueprint of a social dilemma that threatens to evolve
toward the “tragedy of the commons” [4]. While the impetus
of prosocial behavior in settings described by the public goods
game is commonly attributed to between-group conflicts [5]
and alloparental care [6], mechanisms that might facilitate
and maintain highly cooperative states are still being sought
ardently [7].

Public goods are particularly vulnerable to exploitation
since group interactions that bring them about tend to blur
the traces of those that defect. For example, reciprocity [8,9],
i.e., the act of returning a favor for a favor, is straightforward
in games governed by pairwise interactions, but it becomes
problematic in games governed by group interactions. The
same is true for punishment [10], as those that ought to be
punished may not be easily traced down. In spite of these well
known difficulties associated with the promotion of coopera-
tion in the public goods game, complex interaction networks
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[11–16], inhomogeneous player activities [17], appropriate
partner selection [18,19], diversity [20–22], voluntary partic-
ipation [23,24], heterogeneous wealth distributions [25], the
introduction of punishment [26–31] and reward [32,33], risk
of collective failures [34], coordinated investments [35], as
well as both the joker [36] and the Matthew effect [37] were
all recently identified as viable means to avoid the tragedy of
the commons in structured populations [38–43].

In the present paper, we deviate from the traditionally
assumed notion of discrete strategies by taking into account the
whole continuous range of the strategy space. That is, players
are no longer either pure cooperators or pure defectors; they
can choose between all the possible nuances between these two
extremes. Indeed, the continuous version of the public goods
game [44,45] can be considered an additional step toward
more realistic conditions, given that humans are particularly
unlikely to stick with one simple pure strategy. The transition
from the two discrete strategies to a continuous strategy set
can be achieved most elegantly by introducing a continuous
variable from the unit interval defining the fraction of the total
cost a given player is willing to bare. While the limits 0 and 1
recover the two pure strategies, intermediate values from the
unit interval correspond to more or less cooperative players.
An obvious but important distinction from the discrete version
of the public goods game is that the continuous version allows
for the evolution of an intermediate level of investments from
players, which makes it particularly apt for the investigation
of the impact of different benefit functions.

The most frequent assumption is that the benefit returned
by the public goods game scales linearly with the amount con-
tributed by the cooperators, i.e., the more that is contributed,
the more that can be shared. There are situations, however,
in which this assumption obviously fails and a nonlinear
function becomes more appropriate. A prominent example
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is constituted by the so-called threshold public goods game,
where the sum of contributions is multiplied by the benefit
factor only if the former exceeds a certain threshold [46–48].
If all players are equal, this simplifies to the critical mass
problem [49]. Thresholds, being described by steplike benefit
functions, can be considered as an extreme case of a general
nonlinear benefit function [50,51], with the other extreme case
being when the public good depends only slightly (or not at all)
on the contributions of the members. The generalized sigmoid
function bridges these two extremes and is characterized
by two parameters, namely the threshold and the steepness
parameter. Here we consider such a sigmoid benefit function
and study how both the steepness and the threshold affect the
evolution of cooperation in the spatial public goods game with
continuous strategies. Before proceeding with a more accurate
description of the model and the presentation of the main
results, our conclusions can be summarized briefly as follows:
There exist intermediate values of the steepness and the
threshold in the sigmoid function, which warrant the evolution
of the highest collective efforts of players. Upon increasing
the cost-to-benefit ratio, however, the steepness increases,
whereas the corresponding threshold value decreases. These
results are highly robust to variations in the complexity of the
sigmoid function and bolster the importance of benefits for the
successful evolution of public cooperation.

II. MODEL

We consider the continuous public goods game on a square
lattice of size L × L with periodic boundary conditions and
nearest-neighbor interactions. The strategy of each player x

is initially drawn uniformly at random from the unit interval
sx ∈ [0,1], defining its level of contribution in each of the five
groups Gi (i = 1, . . . ,5) of size N = 5 where it is a member.
Accordingly, the total payoff of player x is Px = ∑

i P
i
x , where

P i
x = bB(Si) − sxc (1)

is the payoff obtained from group Gi . In Eq. (1), b is the
benefit of the public good, c (c < b) is the cost of cooperation,
Si = ∑

y∈Gi
sy is the total amount of collected contributions,

while B(Si) is the benefit function determining the total
amount of the produced public good. In order to take into
account both extremes, namely when the produced public
good depends slightly or heavily on the contributions of group
members, the function

B(Si) = 1

1 + exp[−β(Si − T )]
(2)

is used, where T represents the threshold value and β

represents the steepness of the function [50]. For β = 0, the
benefit function is a constant equaling 0.5. In this situation, the
public goods are insensitive to the efforts of group members.
Conversely, for β = +∞ the benefit function becomes steplike
so that group members can enjoy the benefits of collaborative
efforts via b only if the total amount of contributions in the
group Si exceeds a threshold. Otherwise, they obtain nothing.
For clarity, the benefit function B(Si) is plotted in Fig. 1 for
different values of β.

After playing the game, each player is allowed to learn from
one of its neighbors and potentially update its strategy. Player
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FIG. 1. (Color online) Outlays of the benefit function B(Si) for
different values of β, as indicated on the graph. The threshold value
is T = 2.5.

x adopts the strategy sy from one randomly chosen neighbor
y with a probability

f = 1

1 + exp[(Px − Py)/κ]
, (3)

where κ denotes the amplitude of noise [52]. Without losing
generality, we set κ = 0.5 so that it is very likely that the
better performing players will pass their strategy onto their
neighbors, yet it is also possible that players will occasionally
learn from those performing worse. We note that the presented
results are largely independent of the actual value of noise and
remain valid up to κ ≈ 3.

According to the imitation rule, player x imitates accurately
the strategy of player y, which may cause a problem during
numerical simulations because we have an infinitely large
number of strategies but only a finite number of players. As
a result, the final output might depend on the initial condition
especially at small system sizes. This problem can be elegantly
alleviated if we introduce imitation errors resulting in a slightly
different sy for player x. More precisely, the new strategy
of player x is sx ′ = sy ± wσ |sx − sy |, where σ ∈ [0,1] is a
random number and w = 0.1 is a weight factor to limit the
deviation from the precise imitation. When using this update
rule, we have observed a result similar to those obtained when
applying the accurate strategy imitation at large system sizes.

Our simulations were carried out using a 100 × 100 system
size, but the results remain valid also if we use larger lattices.
We implement the model by using synchronous updating,
where all the individuals first collect their payoffs through
the group interactions and subsequently update their strategies
simultaneously. This choice, however, does not limit the
validity of our observations because very similar results can be
obtained by using asynchronous strategy updating as well. To
quantify the cooperative behavior in the population, we com-
pute the cooperation level according to ρ = L−2 ∑

x sx(∞),
where sx(∞) denotes the strategy of player x when the
system reaches dynamical equilibrium. We also compute the
variance of the cooperation level in the equilibrium according
to L−2 ∑

x[sx(∞) − ρ]2. All the results reported in the next
section are averages over 100 independent initial conditions.
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III. RESULTS

Before presenting the results of the evolutionary process,
we note that due to the nonlinearity of the benefit function,
a higher collective effort from group members will not
necessarily result in higher group benefits. This is evident
for high β values where the collective benefit function B(S)
saturates, but it may also apply to moderate values of β.
To clarify this point, one can calculate the optimal value
of group investments S, where the group interest function
P = NbB(S) − Sc has a maximum according to

S = T − 1

β
ln

1 − 2y − √
1 − 4y

2y
, where

y = 1

Nβ

c

b
. (4)

From this it follows that for a real value of S, the steepness
parameter should be β > 4c/Nb. Additional necessary con-
ditions that will result in an optimal group income at S < N ,
however, will depend on the parameters β, T , S, and c/b in a
nontrivial way.

Turning to the simulation results, we begin by showing
in Fig. 2(a) the stationary cooperation level in dependence
on the cost-to-benefit ratio c/b for five different values of
the threshold T at a fixed steepness β = 1. As expected,
the average willingness to contribute to the common pool
decreases with increasing c/b for various values of T .
When the cost-to-benefit ratio is not large, however, maximal
investments from players can be achieved at an intermediate
value of the threshold. Figure 2(b) shows the cooperation
level in dependence on the cost-to-benefit ratio c/b for the
fixed threshold T = 2.5 and five different values of the
steepness parameter. It can be observed that the collective
investment decreases with increasing c/b for various values of
β. Qualitatively similar to what is shown in panel (a), players
invest the most at an intermediate value of the steepness when
c/b is not large. With increasing c/b, the value of β that
results in the maximum increases. We have also investigated
how the variance of the collective investment in the stationary
state varies (not shown), finding that it approaches zero for

FIG. 2. (Color online) The average cooperation level and its
variance as a function of the cost-to-benefit ratio c/b by using b = 1.
(a) Different values of T (as indicated on the graph) are considered
while the steepness is fixed at β = 1. (b) Different values of β (as
indicated on the graph) are considered while the threshold is fixed
at T = 2.5. The error bars are marked, but they are hardly visible as
their size is comparable to that of the symbols.

FIG. 3. (Color online) Cooperation level as a function of
the steepness parameter β for different cost-to-benefit ratios:
(a) c/b = 0.1, (b) c/b = 0.3, (c) c/b = 0.45, and (d) c/b = 0.6. The
applied threshold values are indicated in panel (c).

different parameter settings. This implies that the system can
fixate into a uniform state where every player contributes to the
common at the same rate, i.e., where every player adopts the
same strategy from the unit interval. As we will elaborate on
in the remainder of this section, however, the reported fixation
may depend on the parameters that characterize the benefit
function.

In order to explore the impact of the sigmoid benefit
function more precisely, we show the cooperation level in
dependence on β at different values of T for four representative
cost-to-benefit ratios in Fig. 3. These plots clearly show that
there always exists an intermediate value of β warranting the
best conditions for the selection of the strategy with the highest
level of collective contributions within the constraints imposed
by any given c/b ratio.

To provide a more complete view on how the shape of
the benefit function influences the evolution of cooperation,
we plot the average of stationary sx values on the whole T -β
plane in Fig. 4 for four different cost-to-benefit ratios. It can be
observed that for different values of c/b, there always exists
an intermediate value of T that insures the highest collective
investment from the population. Furthermore, if the cost of
cooperation is not too high, there also exists an intermediate
value of β that helps the players to maintain their highest level
of contributions to the group. Moreover, upon increasing the
cost-to-benefit ratio c/b, the related region of β and T shrinks.
As a result, the corresponding value of T is decreasing while
the β value is increasing. Even if c/b is high, e.g., c/b = 0.6,
there exist appropriate values of β and T that are able to
elicit the highest level of collective efforts. However, in such
a scenario the average investment first increases from zero to
the maximum value, but then for even higher values of T there
is little change with increasing β. Finally, if much higher c/b
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FIG. 4. (Color online) Contour-encoded cooperation level de-
pending on the steepness parameter β and the threshold T for different
cost-to-benefit ratios: (a) c/b = 0.1, (b) c/b = 0.3, (c) c/b = 0.45,
and (d) c/b = 0.6.

ratios are used, the optimal region of β and T vanishes, and
expectedly, full defection reigns in the whole parameter space.

It can be seen in Fig. 4 that there always exists a value of T

(except for very small β values) that ensures the evolution
of the highest collective investments. For small threshold
values, the amount of produced public goods is high in each
group. Thus, everyone can look forward to a high amount
of the benefit, and individuals withholding a contribution
can have a higher payoff than those that do contribute. On
the other hand, for high threshold values, the amount of
produced public good is small in each group. Thus, everyone
obtains only a small amount of the benefit, but individuals
withholding a contribution can still have higher payoffs than
those that do contribute something. Either way, the level of
cooperation cannot be high in these two situations. Conversely,
for intermediate threshold values, the collective contribution
level in some groups can be larger than the threshold, and
the amount of produced public goods is hence higher. In
this case, individuals with a higher contribution level have
the opportunity to collect higher payoffs than their neighbors
with a lower contribution level. Consequently, the former
can survive and prevail. In agreement with this insight, there
exists an intermediate threshold value that warrants the highest
investment from group members. At high β values, when
the benefit function is practically steplike, the value of T

is in strong correlation with the sx strategy that ultimately
prevails. The mechanism that explains this fact, however, will
be discussed later in this section.

As we have demonstrated, different shapes of the benefit
function influence the final output significantly differently. To
understand the origins of this better, we plot the time evolution
of the spatial distribution of strategies for three representative
values of β in Fig. 5. In the top row, where a small β is
applied, players that contribute a lot die out fast. Afterward,
the players that are characterized by a small sx will also go

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

0.0
0.2
0.4
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0.8
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FIG. 5. (Color online) Evolution (from left to right) of the
distribution of individual contributions (strategies) on a square lattice
for different values of the steepness parameter: (a)–(d) β = 0.1,
(e)–(h) β = 1, and (i)–(l) β = 10. Individuals withholding the entire
contribution (pure defectors) are marked gray, while pure cooperators
are marked blue. Individual players adopting an intermediate strategy
are pink. For further details, we refer the reader to the color bar on the
right of the figure. Other parameter values are c/b = 0.1, T = 2.5.
An identical random initial state was used for three values of β.

extinct, and finally full defection will prevail. In this case,
there are no real consequences related to the size of the
contributions that players invest into the common pool because
the benefit is virtually independent from it. Given the lack of
a substantial advantage, players who have sx > 0 must bear a
substantial cost relative to a negligible benefit. Consequently,
if the steepness parameter is low, defectors will always prevail
regardless of the fact that players are organized in a structured
population. At an intermediate steepness [middle row, panels
(e)–(h)], full defectors die out first because network reciprocity
works in this case: if players cooperate and invest more in
the common pool, then they can also harvest more, which
ultimately results in a higher payoff if compared to those
not contributing. In the stationary state, shown in panel (h),
different strategies can coexist. Here a delicate balance of
investment and cost results in a situation in which individuals
whose investments are high enough can survive longer. At
large β [bottom row, panels (i)–(l)], where the prize of mutual
investment emerges suddenly, players who contribute less will
go extinct soon because they can collect nothing due to the
shape of the benefit function. Only those whose investment
is large enough to affect the public good will survive for an
intermediate period, but eventually the system fixates into a
uniform state in which only one strategy remains. Typically
this cooperation is approximately consistent with the S value
that can be obtained from Eq. (4) and yields the highest
collective benefit.

To illustrate the different mechanisms that shape the final
output at intermediate and large steepness values, we com-
pare the propagation of fronts separating different strategies
(contributing differently to the common pool). For this reason,
we have used a prepared initial state containing only three
different strategies. In particular, players contribute either 0.1,
0.55, or 1, as described in the caption of Fig. 6. In the top row,
both sx = 0.55 and 1 will invade against the sx = 0.1 strategy
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FIG. 6. (Color online) Comparative snapshots depicting the front
propagation (from left to right) for the intermediate β = 1 (a)–(e)
and the large β = 10 (f)–(j) value of the steepness parameter at T =
2.5. In both rows the initial state contains players having sx = 0.1
(pink), sx = 0.55 (green), and sx = 1 (dark blue). It can be observed
that in the top row, both the strategy sx = 0.55 and the strategy
sx = 1 will successfully invade the territory occupied by sx = 0.1.
Simultaneously, the interface between sx = 0.55 and sx = 1 is heavily
fluctuating and rugged. Conversely, in the bottom row, sx = 0.55 will
dominate not just sx = 0.1 but also the sx = 1 strategy. Because of
this unambiguous superiority, the interface separating sx = 0.55 and
1 remains comparably smooth and stable. The propagation of this
border, however, is slower than that of the one separating sx = 0.1
and 0.55.

because they can both utilize the increasing benefit function.
The dominance between the strategies of higher contribution is
not so obvious because higher contribution also involves higher
cost. Consequently, the interface separating these strategies is
not smooth as time evolves, but rather it fluctuates intensively.
Albeit, the final state is uniform for this case but the coexistence
of strategies is more likely for intermediate values of β, as we
have argued earlier.

In the bottom row, where the benefit function is practically
steplike, the relation between the three strategies is more clear.
Here the strategy sx = 0.1 bares only the cost but experiences
no benefits, hence all the other strategies that fulfill S > T can
invade it. Accordingly, the stripe populated by sx = 0.1 shrinks
fast. Although both sx = 0.55 and 1 fulfill the criteria to reap
the benefits of a collective investment, the latter players have
to bare a larger cost, and consequently sx = 0.55 dominates
this duel too. The explained superiority between the competing
strategies can be observed because the separating fronts remain
well determined (the slight fluctuation is a consequence of the
uncertainty in the strategy adoptions). The dominance between
sx = 0.55 and 1 is weaker than the dominance between 0.55
and 0.1 because the former two strategies differ only in that
they have different costs. This relation can also be observed in
Figs. 6(g) and 6(h), where the speed of propagation separating
the two borders is different (it is faster between 0.1 and
0.55). Finally, 0.55 prevails. The fixation for large β values
is more likely and subject to the following general scenario:
the strategy having the smallest sx that still fulfills the condition
NSx > T to gain the benefit can invade the whole population.

In combination with the above investigations, in the
following we explain why the intermediate value of T that
warrants the highest collective efforts decreases, whereas the
related value of β increases with increasing c/b. In fact, when
the cost-to-benefit ratio c/b is increased, the advantage of
aggregated individuals with a high level of contribution in
collecting payoffs is weakened at large threshold values [49].

FIG. 7. (Color online) Time evolution of the average amount of
produced public goods (a) and the average cooperation level (b)
for three different combinations of the cost-to-benefit ratios and
the steepness parameter: c/b = 0.15 and β = 1 (solid black line);
c/b = 0.3 and β = 1 (dashed red line); and c/b = 0.3 and β = 2
(dotted blue line). In all three cases, T = 2.

On the contrary, at lower threshold values the amount of
produced public goods can be higher so that individuals who
make some contribution to the common pool may have a higher
return than those who contribute nothing. Consequently, the
cooperation level can be higher in this situation. Furthermore,
in Fig. 7(a) we observe that, for small values of c/b and β, the
average amount of produced public goods in the population
is high, which can provide a high benefit for all the involved
individuals. Hence, they can survive and the cooperation level
in the population is not low. However, when only the value of
c/b is increased, the average amount of produced public good
in the population dramatically decreases at the beginning of
the evolutionary process. Correspondingly, those individuals
that do contribute something to the common pool cannot have
a higher payoff than those who contribute nothing. Eventually,
the cooperation level reaches zero [Fig. 7(b)]. If the value of
β is also increased, the average amount of produced public
goods can recover to a higher level. Although the positive
effect induced by an increased value of β is still restricted by
the higher c/b ratio, the final stationary cooperation level can
still reach a relatively higher level.

Finally, to explore the robustness of our findings, we
consider a modified yet more complex form of the benefit
function following previous work [53]:

B(Si) = W (Si) − 1

W (N ) − 1
, (5)

where

W (z) = 1 + exp(βT )

1 + exp[−β(z − T )]
. (6)

It is worth emphasizing that this modified form of the
benefit function is still sigmoid. When β → 0, the produced
public good is a traditionally linear function of individual
contributions; when β → +∞, the produced public good is
a steplike function of the individual contributions. In other
words, this modified sigmoid function is strictly constrained
between the linear and the steplike shape. Figure 8 presents
the cooperation level in dependence on the steepness β for
different values of the threshold T for four different situations:
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FIG. 8. (Color online) Cooperation level as a function of
the steepness parameter β for different cost-to-benefit ratios:
(a) c/b = 0.1, (b) c/b = 0.2, (c) c/b = 0.3, and (d) c/b = 0.6. The
applied threshold values are indicated in panel (c). Importantly, unlike
in Fig. 3, here the more complex benefit function is applied, as defined
by Eq. (5).

(a) c/b = 0.1, (b) c/b = 0.2, (c) c/b = 0.3, and (d) c/b = 0.6.
We see that even under the action of an alterative benefit
function, there still exists an intermediate value of T that
warrants the highest investments from players. When the c/b

ratio is increased, the optimal value of T is reduced and the
cooperation level also decreases, whereas for small values
of c/b, e.g., c/b = 0.1, the cooperation level monotonously
decreases upon increasing the steepness β for different values
of T . However, when c/b becomes larger, e.g., c/b = 0.2,
there also exists an intermediate value of β warranting the best
promotion of cooperation for different values of T . As c/b

continues to increase, the nonmonotonous dependence of the
cooperation level on β only occurs at smaller values of the
threshold, and the largest cooperation level is correspondingly
reduced. For still larger c/b ratios, full defection is reached
irrespective of the threshold and the steepness parameters (not
shown here), likewise as reported above for the originally
considered benefit function.

IV. DISCUSSION

Summarizing, we have studied the evolution of cooperation
in the spatial continuous public goods game subject to different
sigmoid benefit functions. We have shown that there exists
an intermediate threshold value as well as an intermediate
steepness, at which the collective contributions to the common
pool are the largest. Upon increasing the cost-to-benefit ratio,
we have found that the threshold value related to this maximum
decreases while the corresponding measure of steepness
increases. Simultaneously, the parameter region where public

cooperation can prevail was found to be shrinking, and it
ultimately vanished completely at a critical cost-to-benefit
ratio. When we employed a more complex variant of the
sigmoid functional form in order to describe the governing
benefit functions, we discovered that our results remain robust,
i.e., there always exist intermediate values of the threshold and
the steepness at which investments to the common pool are the
largest. As with the usage of the simpler benefit functions, in
the case of more complex variants the related specific values
of both parameters were also found to depend significantly on
the cost-to-benefit ratio. Taken together, our results elucidate
the impact of generalized benefit functions on the evolution
of cooperation in the spatial public goods game, which
appear to always enable the tragedy of the commons to be
avoided.

This work continues along the lines of previous investi-
gations considering different benefit functions, yet it does
so on structured rather than well-mixed populations. Unlike
in well-mixed populations [53], however, here we find that
the outcome of the public goods game depends significantly
on the steepness parameter, and therefore that the steplike
benefit function is not necessarily a good approximation for
an arbitrary nonlinear benefit function. In fact, due to spatial
reciprocity, the sigmoid benefit function can significantly
broaden the domain where cooperative behavior can survive
even by relatively unfavorable cost-to-benefit ratios. The
presented results thus promote our understanding of the effects
of nonlinear benefit functions on the evolution of public
cooperation, especially if spatial reciprocity is a contributing
factor.

In comparison to [49], where the impact of the critical mass,
i.e., the threshold number of cooperators that is required for
harvesting the benefits of the collective effort, was considered
in the spatial public goods game with two discrete strategies,
we adopt here a more generalized approach, where instead
of just the threshold, the steepness is also considered as
a free parameter. Moreover, instead of the two discrete
strategies, we consider the full continuous array of strategies
allowing for the delicate variability of contributions to the
common pool. In this broader framework, we confirm that
moderate threshold values can warrant the highest mutual
contributions from all the group members, albeit depending
on the value of the cost-to-benefit ratio and the steepness.
More importantly, we find that there exists an intermediate
steepness of the benefit function, which can further amplify
the positive effects of an appropriately adjusted threshold. Our
results thus convey the possibility of a double enhancement of
collective contributions, thus highlighting the important role
of nonlinear benefit functions for the evolution of prosocial
behavior on structured populations.
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Biol. 6, e1000758 (2010).

[28] K. Sigmund, H. De Silva, A. Traulsen, and C. Hauert, Nature
(London) 466, 861 (2010).
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