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Regulation of Turing patterns in a spatially extended chlorine–iodine–malonic-acid system with a
local concentration-dependent diffusivity
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A chlorine–iodine–malonic-acid Turing system involving a local concentration-dependent diffusivity (LCDD)
has fundamental significance for physical, chemical, and biological systems with inhomogeneous medium. We
investigated such a system by both numerical computation and mathematical analysis. Our research reveals that a
variable local diffusivity has an evident effect on regulating the Turing patterns for different modes. An intrinsic
square-root law is given by λ ∼ (c1 + c2k)1/2, which relates the pattern wavelength (λ) with the LCDD coefficient
(k). This law indicates that the system pattern has the properties of an equivalent Turing pattern. The current
study confirms that, for the Turing system with LCDD, the system pattern form retains the basic characteristics
of a traditional Turing pattern in a wide range of LCDD coefficients.
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I. INTRODUCTION

Pattern formation is a ubiquitous phenomenon in the
physical, chemical, biological, and ecological fields [1]. The
Turing pattern, as a representative type of pattern confirmed
by the Lengyel’s experiment of chlorine–iodine–malonic acid
(CIMA), has been subjected to extensive studies [2,3]. Many
factors play important roles in regulating and manipulating
pattern form. Studying the influence of such factors on the
Turing pattern becomes a major issue in Turing pattern
formation.

Depending on the nature of regulation, the mechanism
underlying regulation of pattern forms can be generally
classified into three categories: an intrinsic mode, an external
mode, and a noise mode.

The intrinsic mechanism refers to the development of
many biochemical patterns, and functions through adjustment
of parameters or models themselves. Maini and co-workers
have figured out some patterns with high similarity to some
special animal skin patterns by coupling and tuning two
Turing systems with different controlling parameters [4–6];
their simulation results have been confirmed by Kondo and
Miyazawa in a certain type of fish pattern observed in nature
[7,8]. The extrinsic mechanism consists in regulating the
pattern of a Turing system driven by an external field. The
intensity, time, and directionality of an applied field plays
a main role in the transitions between different types of
Turing patterns [9–14]. Noise, due to the fluctuation of either
internal or external factors, acts as a new dimension for pattern
regulation and contributes to some new pattern formation by
altering its intensity and formulation [15–18].

Diffusion is also a crucial factor in pattern formation for a
reaction-diffusion (RD) system. For the sake of simplification,
the diffusion coefficient is usually set as a constant in a
conventional RD model [19,20]. This oversimplified approach
is not suitable for most RD systems, especially a biological
system with heterogeneity.
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Research on morphogens in the synthesis-diffusion-
degradation (SDD) model demonstrates that the local
concentration-dependent dynamic behavior, which will elim-
inate or buffer against the influence of the genetic or envi-
ronmental fluctuation, can gain a more precise morphogen
gradient formation [21–23]. Beyond the SDD model, it is
rational to extend the local concentration-dependent diffusivity
(LCDD) approach to a Turing system that is sensitive to
local concentration-dependent dynamic behavior as well. The
relevant approach is implemented to regulate the Turing
pattern through introducing an effective parameter, i.e., LCDD
coefficient. As a motivation of our current investigation, the
study of the LCDD in a Turing system will be useful to
gain insight into the mechanism of intricate pattern formation
in a RD system. Meanwhile, our ideas originated from a
series of interesting findings by Japanese scientists [24–28].
According to their studies, the diffusivity, acting as a key
factor in pattern formation, can lead to preferred directionality
of the Turing stripe pattern. By analogy to this theory,
introducing a LCDD probably brings in a novel concentration
distribution of reactant. In addition, a common phenomenon
of the deformation of the medium during the chemical reaction
is also related to LCDD [29].

Local concentration-dependent diffusion in a RD system
has attracted much attention in a variety of fields [30–32].
Malchow’s study indicates that both the symmetry and the
amplitude of patterns vary considerably due to the introduction
of LCDD [33]. Roussel and Wang applied the first order
expression of the diffusion coefficient to the one-dimensional
(1D) and two-dimensional (2D) excitable media, and observed
a unique pattern form that is different from a traditional
Turing pattern [34,35]. The evolutional behavior of a LCDD
CIMA Turing RD system is not yet fully studied due to
the involvement of complicated reaction terms, the difficulty
in linear stability analysis, and little evidence available in
experiment. How does the pattern of the Turing system evolve
after introducing a LCDD? Is there a specific relationship in
the LCDD Turing system that relates the pattern wavelength
with the variable diffusion coefficients? In this paper, we will
address these two problems.
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The remainder of the paper is organized as follows. In
Sec. II, we describe the LCDD Turing model and the method
for quantitative image processing used to classify patterns.
In Sec. III, we present the results of pattern formation
with different spatiotemporal parameters; the relationship
concerning the pattern wavelength, system size L, and LCDD
coefficient k, and a theoretical analysis for the simulated results
is given. The concluding remarks are included in Sec. IV.

II. MODEL AND METHOD

A. Model and modification

In this study, the CIMA activator-inhibitor model (Lengyel-
Epstein model) [3,36] was selected as the basic model to
investigate the pattern regulation of a Turing system with a
LCDD. The dimensionless reaction-diffusion equation is

∂u

∂t
= 1

σ

(
a − u − 4uv

1 + u2
+ ∇2u

)
, (1a)

∂v

∂t
= b

(
u − uv

1 + u2

)
+ d∇2v, (1b)

where u and v denote the dimensionless concentration of
the activator iodide ion (I−) and inhibitor chlorite (ClO−

2 ),
respectively; σ , a, and b stand for the control parameters of
the reaction kinetics; d is the ratio of diffusion coefficient of
inhibitor Dv to that of activator Du.

The concentration of the iodide ion as well as its diffusion is
vital to the CIMA ionic reaction. Assuming that the diffusion
coefficients of both substances, Du and Dv , depend on u,
we adopt the diffusivity expression by which both diffusion
coefficients relate linearly with the concentration u [34]:

D′
u ∼ (1 + kuu), (2a)

D′
v ∼ d(1 + kvu), (2b)

where D′
u and D′

v are the diffusion coefficients of activator
u and inhibitor v after introducing a LCDD, respectively; ku

and kv are the LCDD coefficients in relation to dimensionless
concentration u and v, respectively. We set ku = kv = k for
the sake of simplicity and exclude the influence of the ratio
of D′

v to D′
u. Combining Eqs. (2a) and (2b), one can rewrite

Eqs. (1a) and (1b) as below:

∂u

∂t
= 1

σ

(
a − u − 4uv

1 + u2

)
+ 1

σ
∇ · [(1 + ku)∇u], (3a)

∂v

∂t
= b

(
u − uv

1 + u2

)
+ d∇ · [(1 + ku)∇v]. (3b)

Equations (3a) and (3b) are employed in this study to
explore the influence of a LCDD on the pattern formation
of the system by simply adjusting the value of amplitude
parameter k.

According to Ref. [36], we set the relative diffusion
parameter σ = 50, d = 1.07. The choice of parameters a

and b should be in accord with the relative position in the
CIMA phase diagram (Fig. 1) [36,37]. In order to realize
different types of pattern forms under a LCDD state, we
chose three typical points near the critical point region in
the phase diagram (Fig. 1): point α (a = 9.2, b = 0.14) at
which both stripe and hexagon spot pattern coexist; point

FIG. 1. The schematic phase diagram for pattern selection of the
CIMA model (see Rudovics et al., Ref. [36] for details). bT means
the Turing bifurcation line; points α, β, and γ represent three types of
different patterns, respectively: H0 + B (the mixed mode of 0-phase
hexagon spot pattern and stripe pattern), B (pure stripe pattern),
Hπ + B (the mixed mode of π -phase hexagon spot pattern and stripe
pattern). S denotes a uniform state. Th represents the bifurcation point
of H0 and Hπ , which occurs at ah = 9.3908.

β (a = 9.5,b = 0.16) where only stripe pattern occurs; and
point γ (a = 10.5,b = 0.26) where π -phase hexagon spots
dominate over stripes.

The spatiotemporal equations (3a) and (3b) were solved
numerically by using commercial software COMSOL Mul-
tiphysics for different evolution times and spatial sizes.
A random initialization perturbed around a homogeneous
steady state was used as the initial condition and a zero-
flux boundary condition was employed. We carry out five
independent calculations for each case (unless mentioned
particularly) and obtain their statistical average. Generally,
all simulations, unless otherwise specified, were performed in
100 × 100 square grids with a time step of 0.1 arbitrary units.
Meanwhile, the relationship between pattern wavelength (λ)
and a LCDD coefficient (k) with different system size (L) was
also investigated.

B. The method of image processing

A typical method of two-dimensional fast-Fourier trans-
form (2D FFT) was utilized to distinguish the pattern of
spots from stripes and acquire the wavelength of pattern. A
quantitative image processing method was adopted to quantify
the developmental spots in the pattern. By the method of
fuzzy C-means clustering (cluster number: 2), both spot and
stripe pattern can be separated from the background with a
compactness parameter C, which is defined as a spot criterion
to discriminate spot from stripe in the pattern:

C = ρ2

4πS
, (4)

where ρ and S represent the perimeter and area of a pending
image, respectively [38]. Then we set up a threshold value
for classifying the pattern. The pattern is perceived to be the
stripe pattern when the compactness of the pending image is
larger than the threshold value and vice versa. Finally, after
subtracting the background area, we figured out the area of
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FIG. 2. (Color online) Pattern formation and corresponding 2D
fast Fourier transform (FFT) with different concentration-dependent
diffusivity k values when the system is located at point α (a = 9.2,
b = 0.14). k = 5(a) and k = 5(b) stand for the two types of completely
different patterns: uniform H0 spot and stripe patterns, respectively,
when k = 5 with the same parameter. (t = 10 000 for the first two
graphs and t = 100 000 for the last three graphs, system size L =
100). Red corresponds to a higher concentration of iodide (u).

the spot and stripe pattern in the domain and calculated the
percentage of them, respectively.

III. RESULTS AND DISCUSSION

A. Regulation of Turing patterns with LCDD

Figures 2– 4 show the snapshots of the evolutional patterns
and relevant 2D FFT images when the system is at points
α (a = 9.2,b = 0.14), β (a = 9.5,b = 0.16), and γ (a =
10.5,b = 0.26) with various LCDD amplitudes k, respectively.
Figures 5(a)–5(c) display the relevant percentage of spot
pattern (R) in the snapshots depicted by box plot for the three
points above.

At point α: In the absence of a LCDD (k = 0), the system
pattern takes on a mixed mode (H0 and B) with a stripe
domination (a small R value). On introduction of a LCDD

FIG. 3. (Color online) Pattern formation and corresponding 2D
fast Fourier transform (FFT) with different concentration-dependent
diffusivity k values when the system is located at β (a = 9.5,
b = 0.16) (t = 10 000, except the last graph where t = 50 000,
system size L = 100). Red corresponds to a higher concentration
of iodide (u).

coefficient, namely k �= 0, a remarkable change occurs in the
pattern form, i.e., growing spots and thickening stripes, as
well as statistically increasing R with k. Note that a broad
distribution of R occurs in a large LCDD state. When k = 5,
the system exhibits a striking difference on the evolution of
pattern form in that two distinctive patterns form: a hexagonal
spot pattern [k = 5(a) in Fig. 2] and a stripe pattern [k = 5 (b)
in Fig. 2], that evolve from a random initial condition. The 2D
FFT images in Fig. 2 demonstrate clearly the transition from
a mixed mode with blurred spots to a nearly single mode with
either clear hexagonal spots or stripes.

At point β: The spots grow and stripes thicken, and R

increases monotonically with k. Nevertheless, the transforma-
tion of the system pattern is not as apparent as that of the
pattern at point α, and a much larger k is required to realize
a clear transition. The 2D FFT images show this transition
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FIG. 4. (Color online) Pattern formation and corresponding 2D
fast Fourier transform (FFT) with different concentration-dependent
diffusivity k values when the system is located at γ (a = 10.5, b =
0.26) (t = 10 000 except the last graph where t = 50 000, system size
L = 100). Blue corresponds to a lower concentration of iodide (u).

clearly. This result shows that the stripe pattern of the pure
stripe mode is more robust than that of the mixed mode when
the pattern transforms from stripe to spot.

At point γ : The result shows that when k = 0, the system
pattern is highlighted by a more typical π -phase spot feature.
With the increment of k, spots grow but the value of R

fluctuates around 0.85. The system evolves steadily into a
uniform hexagon spot pattern at k = 5. The information
in relevant 2D FFT images confirms this transformation
precisely.

At point α, owing to the enhancement of the CIMA
autocatalyst reaction as well as the involvement of LCDD, the
isotropic diffusion of the hexagon pattern occurs more readily
than that of the stripe pattern, because the stripe pattern diffuses
only in a certain direction under the influence of an enhanced
CIMA autocatalyst reaction and LCDD. Consequently, the
hexagon spot pattern grows more easily than the stripe pattern
with an increasing R when LCDD coefficient k increases in
this circumstance. At point β, the situation is similar to that at

FIG. 5. (a) The box plot of the percentage of spot R with different
k values when the system is located at α. In this picture, the box
contains the data whose value ranges from rank 25% to rank 75%
when we arrange the data in order from small value to large; the solid
black square symbol denotes the algebraic mean value of R after five
independent calculations; the horizontal line in the box manifests the
median of R; the asterisklike symbol stands for extreme values.
The median of R increases statistically with k, except at k = 5, and the
result distribution is scattered broadly. (b) R with different k values
when the system is located at β. R increases monotonously with k.

All of the results are based on five independent calculations except
the case where k = 2 or k = 5 which experiences ten independent
calculations. (c) R with different k values when the system is located
at γ . The R fluctuates randomly when k increases from 0 to 2. When
k = 5, R equals 1, indicating that the system pattern is a uniform
array of hexagon spots. All of the result based on five independent
calculations except the case where k = 2 which experiences ten
independent calculations.

point α and the system undergoes a transition from stripe to
spot also for a larger k. While at point γ , within the range of
k from 0 to 2, the system has no remarkable change of pattern
form except expanding hexagon spots. It is suggested that the
influence of LCDD on the hexagon spot pattern is trivial other
than expanding due to its higher stability under LCDD at point

066132-4



REGULATION OF TURING PATTERNS IN A SPATIALLY . . . PHYSICAL REVIEW E 85, 066132 (2012)

FIG. 6. The box plot with data points of the percentage of spot
pattern (R) when k = 5, at point α after 12 independent calculations.
The horizontal axis label indicates that there is only one case where
k = 5. The solid diamond and hollow square represent the calculation
result and mean value of R, respectively; the asterisklike symbol
stands for extreme values. This result indicates that most of data have
a larger value of R and the hexagon spot pattern dominates in such
system.

γ . This phenomenon is explicable by a greater stability of the
hexagonal spot pattern than the stripe pattern under LCDD for
pattern transformation at points α and β. Nevertheless, when
k = 5, the effect of a LCDD is so strong that the system evolves
into a larger and uniform hexagonal spot pattern.

Is the explanation above also suitable for the distinctiveness
when k = 5 at point α (shown in Fig. 2)? It is necessary
to collect more data for analyzing this problem from the
viewpoint of statistics. Figure 6 shows the broad bistable
distribution of R values after repeating 12 independent
calculations. Statistically, most of the data points are located
above R = 0.5, indicating that the two distinctive patterns
[shown in Fig. 2, k = 5(a) and k = 5(b)] do not develop
from a random initialization with an equal probability. The
hexagon spot [Fig. 2, k = 5(a)] pattern dominates the mixed
bistable state in the evolution of the LCDD system, namely the
preference of a biased bistability. The reason for the preference
of a biased bistability at a larger k value is under investigation.

Note that in Fig. 5 the distributions of pattern forms scatter
broadly no matter which point (α, β, γ ) is concerned. The
scattering distribution can be attributed to the use of a non-flux
boundary condition [39]. Figure 5 also shows that in the case
of a larger k (k = 2 or k = 5), the resulting distribution also
become more scattered. This is because the boundary effect
becomes remarkable while pattern wavelength increases and
pattern form extends in size at a large value of k. According to
Fig. 5, the result distribution at point α is more scattered than
that of its counterparts at β and γ ; this will be discussed later.

We must emphasize the difference between our pattern
regulation and those reported previously [6,14,18] in that
our pattern regulation is characterized by a variable pattern
wavelength (λ). As for the pattern regulations reported
previously, their pattern wavelengths (wave numbers) have no
remarkable change regardless of either an intrinsic or extrinsic
mode involved. In this study, however, pattern regulation
became available with a considerable change of wavelength,

which provides a new means to regulate both growth and
transformation of spot and stripe pattern while LCDD is
included.

Based on the above results and discussion, the pattern
regulation of the system with LCDD elicits two fundamental
issues for further discussion:

(1) The intrinsic law underlying the pattern regulation and
the formula of wave number versus LCDD coefficient k.

(2) The relationship between pattern wavelength (λ) and
system size (L).

B. The intrinsic law between pattern wavelength
and LCDD coefficient k

According to the 2D FFT images from Figs. 2–4, the
wave numbers of patterns decrease with increasing LCDD
coefficient k, which is similar to the result by Guiu-Souto
et al. [40]. They studied the manipulation of diffusivity in
the Turing system through an external mode and found the
decline of wave number with increasing diffusion coefficients.
The manipulation of diffusivity in our study is an intrinsic
mode and the diffusion coefficients are closely related with the
local concentration of reactants. In spite of differences in the
mode of manipulating diffusivity, the dependence of the wave
number on diffusivity in the Turing system turns out to display
a similar trend. Figure 7 shows the pattern wave number
(K = 2π/λ, here, uppercase K is used to avoid confusion
with the LCDD coefficient k) versus LCDD coefficient k at
points α, β, and γ , respectively. Evidently, there is a specific
square-root law by which the wave number (2π/λ) is related
with LCDD coefficient k near the critical point region:

2π

λ
= (c1 + c2k)−1/2, (5)

where c1 and c2 are curve-fitting constants. To clarify the
problem, we performed the linear stability analysis for the
traditional CIMA Turing system (k = 0) and extended it into
the system with LCDD (k �= 0).

Concerning Eqs. (1a) and (1b), the system has a unique
uniform steady state, that is, u0 = a/5, v0 = 1 + a2/25. Now
we introduce a pair of perturbations, x and y, to this state:

x = u − a

5
, y = v − 1 − a2

25
. (6)

From Eqs. (1a) and (1b), we can get the linear perturbation:

∂x

∂t
= a11x + a12y + 1

σ
∇2x,

(7)
∂y

∂t
= a21x + a22y + d∇2y,

where a11, a12, a21, and a22 are the four elements of a Jacobian
matrix,

J =
(

a11 a12

a21 a22

)
=

(
∂f

∂u

∂f

∂v
∂g

∂u

∂g

∂v

)
u0,v0

=
⎛
⎝−5+ 8a2

25+a2

σ
−20a

(25+a2)σ
2a2b

25+a2
−5ab
25+a2

⎞
⎠ .

(8)
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FIG. 7. (a)–(c) The plot of wave number of system pattern versus
LCDD coefficient k at points α, β, and γ , respectively. The solid line
represents the simulation line (curve-fitting line) while the dashed
line denotes the theoretical line derived from Eq. (15).

Then we expand x and y in Fourier space,(
x

y

)
=

∑
k

(
c1
k

c2
k

)
eλkt+ikx, (9)

and acquire the characteristic equation:

λk

(
c1
k

c2
k

)
=

(
a11 − 1

σ
k2 a12

a21 a22 − dk2

)(
c1
k

c2
k

)
. (10)

The dispersion relation is

λ2
k − trkλk + 
k = 0, (11)

where

trk = a11 + a22 − k2

(
1

σ
+ d

)
,


k = a11a22 − a12a21 − k2

(
1

σ
a11 + a22d

)
+ dk4

σ
. (12)

TABLE I. The wave number of pattern from numerical simula-
tions (K) and the critical wave number (Kc) by Eq. (13) when the
system is located at points α, β, and γ , respectively.

Point α β γ

Kc 0.7486 0.7756 0.8441
K 0.7124 0.7335 0.8224

The critical wave number is(
2π

λc

)2

= σda11 + a22

2d
= K2

c . (13)

Substituting the values of a and b at points α, β, γ

into Eq. (13), we can calculate the critical wave number
analytically. Since points α, β, γ are located near the Turing
bifurcation line, we expect that the wave number of the pattern
at points α, β, γ calculated from the numerical simulation
(K = 2π/λ, shown in Fig. 7.) is close to the critical wave
number (Kc = 2π/λc) from Eq. (13). The results are listed in
Table I. Consequently, the wave number of the pattern (K)
can be treated as the critical wave number (Kc) approximately
when k = 0.

In the case of k �= 0, the effective diffusion coefficients of
u and v are

1

σ
→ 1

σ
(1 + ku), d → d(1 + ku). (14)

After a long time evolution, the development of the system
patterns at points α, β, and γ become stationary and the wave
numbers stay fixed at a certain k regardless of either a zero or
nonzero k value, as shown in Fig. 8. This is important evidence
that the pattern form of the system with LCDD still retains
the basic nature of the classic Turing pattern; therefore the
system with LCDD could be regarded as an equivalent Turing
system. According to the properties of the system pattern, the
pattern wavelength is a constant that does not change with
local concentration u. As a result, the LCDD effect on pattern
wave number should be “constantized” and we need to define a
constant ue (equivalent local concentration induced by LCDD)

FIG. 8. The wave number of simulated pattern versus evolution
time with different k values when system is located at points α, β,
and γ , respectively.
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TABLE II. The equivalent local concentration of pattern (ue),
uniform steady state (u0), and their relative deviation (E) at points α,
β, and γ , respectively.

Point α β γ

u0 1.840 1.900 2.100
ue 1.631 1.823 2.033
E 11.36% 4.05% 3.19%

to characterize and average the LCDD effect on pattern wave
number with different u. The pattern wave number of the
system with LCDD is expressed as below:

2π

λ
= K =

√
σda11 + a22

2d(1 + kue)
= Kc

√
1

1+kue

∝ (1 + kue)−1/2,

(15)

by which the square-root law [Eq. (5)] can be derived
successfully. Comparing Eq. (15) with Eq. (5), we can work
out ue = c2 /c1 at points α, β, and γ , respectively. A new
parameter E was defined to characterize the relative deviation
of ue from the uniform steady state u0 :

E = |ue − u0|
u0

. (16)

The calculated results are listed in Table II. Here, a = 9.2,
9.5, and 10.5 were used for the calculation of u0 at points α,
β, and γ , respectively; c1α = 1.919, c2α = 3.130, c1β = 1.910,
c2β = 3.481, c1γ = 1.498, and c2γ = 3.046 from Fig. 7 were
employed to calculate the ue approximately at points α, β, and
γ , respectively.

Note that Eα is larger than Eβ and Eγ , which is consistent
with the broadest distribution of R at point α after introducing
a LCDD. Considering generally, the combination of the three
factors listed below, in addition to bistability, are also probably
responsible for the extreme scattering of the pattern form at
point α when k = 5 (Figs. 2 and 5):

(1) Non-flux boundary condition;
(2) Strong boundary effect induced by drastic change of

pattern wavelength (λ) when k = 5;
(3) The largest divergence between ue and u0.
The parameter ue is introduced as a substitution variable

to characterize the LCDD Turing system, and it provides a
feasible way to study the LCDD Turing system analytically.

The results of both Fig. 8 and Eq. (15) suggest that the
pattern formation of the system with LCDD still holds the
character of Turing patterns when L = 100, which differs from
the result of Roussel and Wang [35,36]. Their work shows that
a new type of pattern different from the traditional Turing
pattern emerges after introducing the LCDD in excitable
medium based on the Gray-Scott model.

We explore the pattern wavelength λ and system size L

under conditions of various k values in order to reveal the
combinational effect of both L and k on pattern development.
The system wavelengths λ increase with k but are independent
of system size except at small L as displayed in the inset of
Fig. 9. This is consistent with the feature of stationary Turing
pattern shown in Fig. 8. Furthermore, we rescaled λ against k

FIG. 9. The scaled wavelength (λ′) versus L by square-root law.
(Inset) The plot of pattern wavelength (λ) and system size (L) with
different k values when system is located at point α (a = 9.2, b =
0.14).

using the intrinsic square-root law between λ and k [Eq. (5),
Fig. 7] and acquired the scaled wavelength λ′:

λ′ = λ

(78.54074 + 139.41879k)1/2
. (17)

Figure 9 shows that scaled wavelengths λ′ versus L for
different k clearly approach the line λ′ = 1 when L �80.
The rescaling λ against k, namely elimination of the LCDD
coefficient, not only manifests the size dependence of the
wavelength of the Turing system with LCDD, but also verifies
the fundamentality of intrinsic square-root law between λ and
k in the Turing system with LCDD. And it also proves the
self-consistency of the analysis above.

Overall, our study confirms that for the Turing system
which involves a local concentration-dependent diffusivity, it
is possible for the system pattern to maintain the characteristics
of the traditional Turing pattern in a wide range of LCDD
coefficient k.

IV. CONCLUSIONS

We study the evolution and regulation of the pattern form
in the CIMA Turing system modified by a local concentration-
dependent diffusivity (LCDD), which is referred to as an
equivalent Turing system and has a fundamental significance
for physical, chemical, and biological systems with hetero-
geneity. The evolutional patterns of the system are regulated
by adjusting the LCDD coefficient k systematically and are
quantitatively evaluated through the image processing proce-
dure of fuzzy C-means clustering. The introduction of LCDD
in a Turing system serves as an important intrinsic means for
pattern regulation through altering pattern wavelength, and
it can bring about the pattern transformation from stripe to
hexagon spot at point α (in the pattern area of H0 + B),
β (in the pattern area of B), and γ (in the pattern area of
Hπ + B). There is an intrinsic square-root law relating to the
pattern wavelength (λ) and LCDD coefficient k, and we extend

066132-7



LI, HU, PANG, LIU, ZHONG, AND SHAO PHYSICAL REVIEW E 85, 066132 (2012)

the linear stability analysis into the system with LCDD to
explain such law. The system wavelength is invariant with
the system size (L �80) and can be well rescaled by the
LCDD coefficient k. The method that we employ for pattern
regulation, in itself, has certain biophysical significance in that
it suggests a potential mechanism for modeling the expanding
spots and stripes in the biological matrix with constant size.
These results are beneficial to interpreting the development
of some biological patterns with special size and shape,
and exploring the intrinsic laws in a complicated biological
matrix.
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