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Measures of centrality based on the spectrum of the Laplacian
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We introduce a family of new centralities, the k-spectral centralities. k-spectral centrality is a measurement
of importance with respect to the deformation of the graph Laplacian associated with the graph. Due to this
connection, k-spectral centralities have various interpretations in terms of spectrally determined information.
We explore this centrality in the context of several examples. While for sparse unweighted networks 1-spectral
centrality behaves similarly to other standard centralities, for dense weighted networks they show different
properties. In summary, the k-spectral centralities provide a novel and useful measurement of relevance (for
single network elements as well as whole subnetworks) distinct from other known measures.
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I. INTRODUCTION

Over the past two decades, techniques of network analysis
have come to play an important role in the representation
and understanding of the structure of complex systems. In
particular, measures of importance and centrality have allowed
us to quantify aspects of networks which are fundamental to
their structural or dynamical properties. For example, highly
central nodes in social networks can indicate actors with the
most influence on the spread of information or disease through
the graph. Different measures are crafted using different mech-
anisms and assumptions involved in measuring importance.
Degree centrality simply assigns importance to those nodes
with the highest number of edges. Betweenness centrality [1]
and related measures [2] assign importance to nodes based
on the number of shortest (geodesic) paths passing through
them, while random walk betweenness centrality [3] considers
all possible paths. An intermediate measure, communicability
betweeness [4], considers all paths with appropriate weights.
Moreover, there are further extensions of this idea: Subgraph
centrality [5], for example, characterizes the importance of a
node through its interaction with all subgraphs of a network.
Eigenvector centrality [6], on the other hand, measures a type
of relative importance—a node is important if it is neighbors
with other important nodes. (See Refs. [7,8] for a review and
discussion of many centrality measures. The former paper
discusses centralities in the context of spectral properties of the
adjacency matrix.) In a different direction, some authors use
notions of vulnerability to define centrality (see, e.g., Ref. [9]).
While the basic measures are often (roughly) commensurate
when analyzing sparse symmetric graphs, they can diverge
dramatically when considering dense symmetric graphs. The
basic reason is straightforward: Dense graphs have many
short paths as most nodes are connected to one another.
Thus, measures such as betweenness and degree centrality can
become less meaningful; if all nodes have roughly the same
degree and almost every node is connected to every other node,
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these measures carry very little information. In this paper, we
introduce a new family of measures of centrality, k-spectral
centralities, which can be more effective for dense graphs.

k-spectral centralities are measures of importance relative to
properties of the graph Laplacian [10], defined as L = D − A,
in which A is the (symmetric) adjacency matrix and D a
diagonal matrix with node connectivities as its terms: Dii =
di = ∑

j aij . There are many interpretations of the information
encoded in the graph Laplacian (and, hence, measured by the
spectral centralities). First, the graph Laplacian is known to
encode various aspects of the geometry and dynamics of the
graph. For example, the number of zero eigenvalues gives
the number of connected components, the size of the first
nontrivial eigenvalue—the Fiedler value—encodes aspects
of the graph’s connectivity [11–13]. Alternatively, the ratio
between the Fiedler value and the largest eigenvalue encodes
the rate at which a network can synchronize [14]. Second, the
Laplacian operator over a graph L · �x (where the components
of �c, xi , i = 1, . . . N are the values of a function defined on
the N nodes) can be seen as a natural discretization of the
Laplace-Beltrami operator on a manifold. Thus, the graph
Laplacian is central to modeling many dynamic processes,
such as heat flow, on graphs (see Ref. [15] and references
therein for a review). The spectral decomposition of the
Laplacian therefore encodes the various modes of the heat
flow. So for networks where such mechanism are appropriate
(e.g., in models of the evolution of opinion in social networks),
these modes identify relevant substructures of the graph. Third,
the graph Laplacian plays a key role in the graph segmentation:
into two pieces, via the relaxed ratio-cut problem [16], or into
multiple clusters using spectral clustering [17].

With these points of view in mind, we define k-spectral
centrality of a subset B of a connected graph (e.g., a single
edge or node or a whole subnetwork) by measuring the subset’s
relevance in terms of eigenvalues of the graph Laplacian. Let
A be the adjacency matrix of the graph and L its associated
graph Laplacian. We define the k-spectral centrality of B to
be |λ′

k(0)|, where λk(ε) is the kth smallest nontrivial eigenvalue
of the graph Laplacian of AB(ε), the adjacency matrix for the
network under a perturbation induced by the removal of B
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(see the following section). While the definition applies to
generic subsets, we focus primarily on two special cases, single
edges and single nodes (i.e., a node with all of its edges).

k-spectral centrality measures the extent to which a subset,
e.g., a node or edge, contributes to the information encoded
in the kth eigenvalue-eigenvector pair. For example, 1-spectral
centrality encodes information on network connectivity. So
perturbations of subsets with high 1-spectral centrality have
the most impact on connectivity. While this is similar in
some respects to other centralities, for example, betweenness
centrality, in many cases 1-spectral centrality is a distinct mea-
sure. Similarly, higher spectral centralities provide measures
of higher-order connectivity as demonstrated by their role in
efficient decomposition of graphs via spectral clustering.

We examine 1-spectral centrality and other standard cen-
tralities for several sparse networks: a toy model, the Zachary
karate club network [18], and a social network of dolphins
[19]. We then move to larger, dense networks: a network
formed from roll call vote data for the 111th US House of
Representatives, a correlation network of equities prices from
the S&P 500, and a biological weighted network obtained
from the immune system [20]. Generally, we see that for the
small, sparse networks, 1-spectral centrality behaves similarly
to existing centralities while for the denser examples there
are significant differences. Higher spectral centralities (k > 1)
behave in a way that differs from that of existing centralities
in all examples.

We also discuss the spectral centralities in the context of
applications to opinion propagation and consensus formation
[21–24] where they have direct interpretation.

II. SPECTRAL CENTRALITY

For this discussion, we assume that A is symmetric, con-
nected, and without self-loops, aii = 0 (weighted undirected
graphs). As A is symmetric, L is symmetric and diagonalizable
with eigendata given by (λi,vi)ni=0 with λ0 � λ1 � λ2 � · · · �
λn (λ0 = 0 as L1 = 0); assuming the network connected,
λ1 > 0 [11–13]. The first nontrivial eigenvalue-eigenvector
pair, known as the Fiedler value and vector, have been
extensively studied (see, for example, [12,13] for the initial
work).

The graph Laplacian is directly related to the so-called
ratio-cut problem, which consists in dividing the graph in
two (almost equal) parts by removing the minimum number
of edges. Solving the ratio cut problem is NP-hard, but one
can solve a relaxed version of the problem via an analysis of
the graph Laplacian [16]. More precisely, if v1 is the Fiedler
vector associated with the graph Laplacian, then sgn(v1)
gives an indicator function which provides an approximation
of the solution. The first l eigenvectors associated with
nonzero eigenvalues provide a dimension reduction of the
data. This dimension reduction, the l-dimensional spectral
embedding, simply uses the l vectors to give coordinates of
the nodes in an l-dimensional space. In our examples, many
of the visualizations are created using the two-dimensional
spectral embedding. The spectral embedding is the basis for
the technique of spectral clustering [17], where a Euclidean
clustering method such as k-means is used to cluster the nodes
given these coordinates.

Within this framework, we define spectral centralities
in terms of the effect of a deformation on the size of
the eigenvalues. We define the k-spectral centrality as the
derivative of the k-th Laplacian eigenvalue with respect to
a deformation induced by a subset B of a graph A (a single
node, edge, or an induced subgraph) controlled by a continuous
parameter ε (see the Appendix for details):

sk
B = |λ′

k(0)|. (1)

Our primary example is 1-spectral centrality. As the Fiedler
value λ1 defines the so-called algebraic connectivity [12,13],
we see from the definition that 1-spectral centrality is a
measure of how much the deformation changes the algebraic
connectivity (and, hence, the standard connectivity) of the
network. For our purposes, we will mainly focus on 1-spectral
centrality and, in discussing higher spectral centralities, we
will do so in the context of the role of the (λk,vk) in
algorithms such as spectral clustering. We note that spectral
perturbations arise in many applications and that the general
idea of measuring importance via perturbation is similar to the
to δ-centrality framework of Ref. [2].

A. Edge centrality

For an edge between node i and node j , we consider the
matrix B(i,j ) = δij + δji , with L̃ the graph Laplacian of B(i,j ).
Then observe that L + εL̃ is the graph Laplacian of the original
network under a deformation of the edge between node i and
node j . Let (λi(ε),vi(ε)),i = 1 : N be the eigendata associated
with this deformed Laplacian, it can be easily shown that

sk
(i,j ) = [νi(0) − νj (0)]2,

where vk(0) = [ν1(0), . . . ,νn(0)] is the kth eigenvector of the
graph Laplacian associated with A. Considering the 1-spectral
centrality, this result reflects the intuition given by the link
between this graph Laplacian and the ratio-cut problem. Edges
have high 1-spectral centrality if they connect two nodes which
are very far apart when measured by the Fielder vector values.
These are precisely the edges of highest importance to the
relaxed ratio-cut problem.

B. Node centrality

In a similar manner, we define the node spectral centrality
by first defining a deformation. For node i, we consider the
matrix B(i) where

B
(i)
kl =

{
Akl if (k,l) ∈ {(i,�),(�,i)}
0 otherwise.

Notice that we have picked the deformation slightly differently,
adding the weights of edges. Letting L̃ be the graph Laplacian
of B(i), L + εL̃ is again the graph Laplacian of the original
network under a deformation of all of the edges associ-
ated with node proportionally to their weight. Note that L̃
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has a more complicated form that in the case of a single edge:

L̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1i 0 . . . 0 −a1i 0 . . . 0
...

...
...

−ai1 −ai2 . . . −ai,i−1
∑

j aij −ai,i+1 . . . −ain

...
...

...

0 . . . 0 −ani 0 . . . ain

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2)

With this notation in place we have the following result:

sk
i =

n∑
j=1

Aij [νi(0) − νj (0)]2, (3)

where vk(0) = [ν1(0), . . . ,νn(0)] is the kth eigenvector of
the graph Laplacian associated with A. Similarly to edge
1-spectral centrality, this makes sense in the context of the
relaxed ratio cut problem—a node is as important as the
weighted sum of its edges.

C. Spectral centrality for general subsets

We can also do this with any subgraph: Simply pick the
deformation matrix, B, to be the adjacency matrix of the
subgraph in question. As before, we let L̃ be the graph
Laplacian associated to B and we find a similar result,
specifically, if A is an adjacency matrix which represents
a connected, undirected, weighted network. For the general
deformation B,

sk
B =

∑
i,j

Bij [νi(0) − νj (0)]2,

where vk(0) = [ν1(0), . . . ,νn(0)] is the kth eigenvector of the
graph Laplacian associated with A.

D. Relation to other measures of centrality

In Ref. [25], Borgatti introduced a typology of centrality
measures based on characterizations of their flow processes.
The graph Laplacian induces a flow process which, in that
terminology, follows walk trajectories (paths that are traced on
the network can loop) and spreads via a parallel process (nodes
spread simultaneously to all neighbors rather than just one). To
make this precise, we describe the flow process induced by the
graph Laplacian in terms of information propagation, where
we view the information on the network as a function supported
on the nodes. The values of this function then change over
time according to the flow dynamics. In the case of dynamics
governed by the graph Laplacian, the function value at the node
is replaced by a value proportional to the weighted average of
the function values over all the node’s neighbors:

xt+1 = xt − Lxt = xt − Dxt + Axt ,

so xt+1(i) = xt (i) − ∑
j Aij [xt (i) − xt (j )]. This is the discrete

analog of heat flow instantiated on the network.
As such, of the types of traffic—used goods, money,

gossip, e-mail, attitudes, infection, and packages—described

in Ref. [25], the spread of attitudes is modeled by this
case. However, the diffusion mechanism differs from that of
parallel duplication (used in, for example, models of gossip
propagation) whereby, instead of a node exerting influence
over its neighbors by duplication of its attitude, there is
merely a nudging of the attitudes of neighbors which may
be either tempered or enhanced by the attitudes of other
neighbors. Thus, we see application of a notion of centrality
based on the graph Laplacian to situations where this type
of information diffusion is appropriate. Two of our main
examples below—the network of roll call votes in the House
of Representatives and the correlation network of the S&P 500
network—have substantial aspects of this type of information
diffusion. Indeed, in both cases the behavior of the nodes is, at
least in part, influenced by the behavior of the nodes they are
connected to via measures of similarity.

E. Opinion dynamics

As mentioned in the Introduction, spectral centralities have
a direct connection to the models of De Groot [21] and
Lehrer [22] (see also Refs. [23,24] for a broader framework
of consensus in multiagent systems with similar dynamics).
Those models posit a social network encoded in an adjacency
matrix A where the matrix is normalized so the degree of
each node is 1. In that case, L = I − A. If we let xi(t) be the
measure of opinion of node i at time t , the model then updates
the opinions by the weighted sum of neighboring opinions:

xt+1 = Axt = (I − L)xt = xt − Lxt .

Thus, under the further restriction that A has been normal-
ized to unit degree, we have that the heat flow modeled by the
Laplacian is precisely this model of opinion dynamics.

We note that some investigations using similar spectral
perturbation methods in this direction have already been
completed to maximize connectivity [26] or synchronization
dynamics [27,28]. With the assumptions above and our
terminology, these are investigations related to the 1-spectral
centrality. Interested readers should also see Ref. [29] for
related work when considering social networks which incor-
porate interaction dynamics.

III. RESULTS

In this section, we discuss several different applications of
the node 1-spectral centrality of real networks and compare
them to other centrality statistics: degree, betweenness cen-
trality, random walk centrality, information, and eigenvector
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centrality. We begin with three examples of small unweighted,
undirected networks and move to more complicated networks.
The examples convey a general observation: For small, undi-
rected, and unweighted networks which are not particularly
dense, 1-spectral centrality performs often similarly to existing
centrality measures. We next examine three dense weighted
networks: a network associated to roll call votes in the US
House of Representatives, an equities network, and a biological
network related to the biochemical mediators controlling im-
mune system cell signaling. These analyses provide evidence
that for complicated networks, particularly dense weighted
networks, 1-spectral centrality differs substantially from other
measures.

The behavior of higher spectral centralities (k > 1) com-
pletely differs from that of existing measures. The equities
network case provides a good example of the environment
where the k-spectral centralities can be most useful: a dense,
complex network with structure determined at multiple scales
by (potentially) multiple processes.

In the first two dense examples, the network edges are
given by a similarity measure and, in each case, this results in
all-to-all connections. The last dense example is also almost a
complete graph, with connections distinguished only by their
weights. Thus, we focus on weighted versions of the centrality
measures which then allow sensible comparison to spectral
centrality.

As we shall see in the analysis, these examples provide
different glimpses into the varying interaction and relation-
ship between the different measures. We argue that spectral
centralities provide either a better way of understanding the
data or provide a new window of investigation.

A. Unweighted sparsely connected networks

To place 1-spectral centrality in the constellation of cen-
trality measures, we will compute it as well as other measures
on three simple networks. The first is a toy model: a hand-
made network that possesses features which reflect different
aspects of notions of centrality. The other two examples are
well-known smaller networks which have been substantially
studied in the literature: the Zachary karate club [18] and a
social network of dolphins [19].

1. Toy model

The toy model consists of 13 nodes. There is one “central
node,” a pinch point which gives the only connections between
two halves of the network. In each half, there are six nodes with
differing connectivity. Figure 1 (top left) shows the structure of
the network as well as a comparison of betweenness centrality
and 1-spectral centrality. We see visually that the two measures
are qualitatively the same. This is reflected in Table I, which
shows that all of the measures are fairly highly correlated. But
there is a distinction: 1-spectral centrality, betweenness, and
random walk centrality are very similar. The remaining three
(degree, eigenvector, and information centralities) are also very
similar but the two groups have a weaker cross-correlation.
This again can be seen in the figure by observing the degree
which, for example, is small for the most “between” node in
the center but higher for others.

(a)

(b)

(c)

(d)

FIG. 1. Comparison of 1-spectral centrality and betweenness
centrality in the toy network, the Zachary karate club, and the dolphin
social network. In (a) and (b), size of the nodes is proportional to the
1-spectral centrality while color (white is high and black is low) is
reflective of the betweenness centrality. In (c) and (d), color indicates
1-spectral centrality (white is high and black is low). In (c), size is
proportional to betweenness and in (d) to eigenvector centrality.

2. Zachary karate club

The Zachary karate club is a social network of 34 nodes,
individuals in the karate club, with edges given by social
ties. The adjacency matrix for this network is unweighted
and undirected. Computing degree, betweenness centrality,
eigenvector centrality, random walk centrality, information
centrality, and 1-spectral centrality, we see that (a general fact
that has been previously observed) degree is closely related to
all centralities but that the centralities are differently related to
one another. The results are summarized in Table I, which
shows the correlations between the various computations.
Figure 1 (top right) illustrates the difference between be-
tweenness centrality and 1-spectral centrality. Note that both
measures give roughly the same results but with different
emphasis. This is illustrated by comparing the two for nodes 1
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TABLE I. Correlations between centralities for unweighted example networks.

Toy network Zachary karate club

D B E RW I S D B E RW I S

D 1 0.70 0.97 0.74 0.92 0.48 1 0.92 0.92 0.98 0.89 0.70
B 1 0.81 0.99 0.91 0.96 1 0.80 0.96 0.74 0.87
E 1 0.84 0.98 0.64 1 0.89 0.96 0.58
RW 1 0.94 0.94 1 0.87 0.81
I 1 0.79 1 0.55
S 1 1

Dolphin network
D 1 0.59 0.72 0.81 0.89 0.22
B 1 0.28 0.89 0.55 0.82
E 1 0.39 0.74 − 0.13
RW 1 0.79 0.72
I 1 0.28
S 1

Note. The rows and columns are labeled as follows: D: degree; B: betweenness centrality; E: eigenvalue centrality; RW: random walk centrality;
I: information centrality; S: spectral centrality.

and 34. Node 1 has the highest centrality in both measures
while node 34 has very high betweenness but only moderately
high 1-spectral centrality. This is reflective of the differences in
the ideas behind the two measures. Node 1 clearly bridges two
parts of the network, either from the perspective of finding
shortest paths or from the perspective of disconnecting the
network (or making it more cohesively connected). On the
other hand, node 34 plays a strong role in the configuration of
shortest paths but its removal would not harm the connectivity
of the graph as much as some other nodes.

3. Dolphin network

This data set consists of 64 nodes (dolphins) and edges
between them representing a measure of social ties—in this
case, affinity is measured via sustained proximity. Like the
Zachary karate club network, the dolphin network is undirected
and unweighted. The correlations of the various centrality
measures are again summarized in Table I. These computations
have some similarities with those for the karate club: Degree is
highly correlated with betweenness, eigenvector, information,
and random walk centralities. However, the correlations are
generally not quite as strong and 1-spectral centrality is
more weakly correlated with degree. Moreover, there is a
small negative correlation between 1-spectral and eigenvector
centrality. Thus, these two networks show some of the
subtleties in the relationships between the various measures.

To give a sense of these relationships, in Figs. 1(c) and
1(d) we show two views of the network. In both views, color
represents spectral centrality with white indicating high and
black indicating low spectral centralities. In Fig. 1(c), the size
of nodes is proportional to betweenness centrality while in
Fig. 1(d), size is proportional to eigenvector centrality. Note
that the planar embeddings of the network differ slightly
in order to emphasize the different relationships. We see
that betweenness and 1-spectral centralities are highly cor-
related, giving qualitatively similar results. In particular, two
dolphins—Beescratch and SN100—have the highest scores in

both measures. In contrast, the eigenvector centrality differs
substantially from the 1-spectral centrality.

4. Roll call votes in the 111th US House of Representatives

For this example, we use roll call data collected by J. Lewis
and K. Poole, available at Ref. [30]. The data consist of all
roll call votes for the 111th US House of Representatives. For
each member of the House, each of their votes is recorded as
a yes (1), no (−1), or abstain/not present (0). We remove any
legislator who did not vote in at least one-third of the time.
Then, omitting the missing votes, we compute the percentage
of votes that pairs of legislators have in common. The resulting
matrix, P , has values between 0 and 1 and encodes, as a
weighted undirected graph, the aggregate voting profiles. We
note that this graph is dense—most legislators vote on most
bills, so all legislators have some relation to one another. To
create a weighted adjacency matrix, we use a scaling of the
data given by

Aij =
{

e
− (1−Pij )2

σ2 for i �= j

0 for i = j
,

where σ = 0.25. This value of σ was selected to focus the
analysis on the relevant aspects of the data. It represents
a scaling of the raw percentages we initially computed by
accounting for the fact that almost every pair of representatives
has at least half of their votes in common due to a host of
noncontroversial bills. To ensure no self-loops, we remove the
diagonal entries.

Table II shows the correlations between the various cen-
tralities. In contrast to the previous cases, we see a marked
difference between most traditional centralities and 1-spectral
centrality. Degree, eigenvector, and information centrality are
all highly correlated to one another and are negatively corre-
lated with 1-spectral centrality. Betweenness centrality differs
from all others, exhibiting only a weak negative correlation
with other centralities. Random walk centrality shows almost
a perfect correlation with 1-spectral centrality. Figure 2(a)
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TABLE II. Correlations between centralities for dense weighted example networks.

Equities network Roll call network

D B E RW I S D B E RW I S

D 1 0.26 0.95 0.78 0.86 0.78 1 − 0.24 0.96 − 0.25 0.99 − 0.40
B 1 0.23 0.41 0.28 0.24 1 − 0.07 − 0.21 − 0.34 0.08
E 1 0.59 0.71 0.80 1 0.30 0.91 − 0.37
RW 1 0.96 0.66 1 − 0.17 0.92
I 1 0.70 1 − 0.36
S 1 1

Note. The rows and columns are labeled as follows: D: degree; B: betweenness centrality; E: eigenvalue centrality; RW: random walk centrality;
I: information centrality; S: spectral centrality.

shows a graphical comparison of degree, betweenness, and
1-spectral centrality.

This example begins to show one of the positive aspects
of 1-spectral centrality. Analyses in political science (see
Refs. [31–33]) have shown that recent US legislative bodies are
basically unidimensional with respect to the structure encoded
in the roll call votes when analyzed with spatial models.
This structure corresponds to our intuitive identification by
party and ideology. In that sense, members of the House

−0.2 −0.1 0 0.1

Degree

Betweenness

1−Spectral Centrality

Fiedler axis

−0.1 −0.05 0 0.05 0.1 0.15
−0.15
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−0.05

0

0.05

Spectral axis 1

S
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FIG. 2. (Color online) 1-spectral centralities in example dense
weighted networks. (Top) A comparison of degree, betweenness, and
spectral centralities of the roll call network of the 111th US House of
Representatives. Shading denotes party affiliation [lighter gray (red),
Republican; darker gray (blue), Democrat] while size is proportional
to the relevant statistic. Nodes are ordered by the Fiedler vector.
(Bottom) The S&P 500 network given by its two-dimensional spectral
embedding where node size is proportional to spectral centrality.
Node color is given by an eight-cluster spectral clustering using two
eigenvectors, the edges are the 30 edges with the highest spectral
centrality.

who would be most “central” are ones whose ideological
preferences lie somewhere between the median preferences of
the two major parties. From Fig. 2, we see that the traditional
centrality measures are not overly informative from this point
of view—they do not reflect this intuitive notion, instead
assigning higher centrality scores to more peripheral members
[the most peripheral, all the way to the left, is Rep. Ron Paul
(R-TX)]. 1-spectral centrality, on the other hand, better reflects
the intuitive notion of centrality in terms of ideology.

In this example, the 2-spectral centrality does not contain
much useful information. The 2-centrality score for one node
is very high (roughly 35) while the rest are between zero and
one. This is possibly a reflection of the basic unidimensionality
of the data at this scale; the Fiedler data captures the majority
of the information, leaving little to be encoded in the rest of the
eigendata. Another indication of the lack of information in the
higher spectral centralities is the substantial similarity between
the 1-spectral centrality and the random walk centrality—both
of these measure aspects of moving randomly throughout
the network, and their similarity indicates that higher-order
spectral data does not contribute significantly to the diffusion
process.

5. Equities network

In this example, we begin with raw data given daily close
prices over a 3-year period (7/2003–12/2006) of the equities
in the S&P 500 index. We perform some preprocessing—
converting the prices to percent changes from day to day and
detrending the results. We then take the pairwise correlations,
Cij , between these time series and form a similarity matrix by
converting to chordal distance, Sij = sin[arccos(Cij )/2]. We
construct a scaled adjacency matrix:

Aij =
⎧⎨
⎩ e

− S2
ij

σ2 for i �= j

0 for i = j
,

where σ = 0.25. This value of σ was selected similarly to
the example of the roll call network. Even after cleaning, the
data still had substantial average correlation. This value of σ

helps to promote significant correlation and devalue average
correlation.

Table II shows the correlations between the various
centralities: betweenness centrality is again only weakly
associated with other centralities, but degree, eigenvector,
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random walk, information, and 1-spectral centralities are all
highly correlated.

In contrast to the roll call network, spectral centrality
in the equities network is best interpreted in terms of its
definition: What are the nodes which most determine the
shape of the network? In this case, we see two groups
with higher-than-average centrality which corresponds to two
sectors: the basic materials sector and the technology sector.
Roughly, the same groups are identified by the centralities
correlated with 1-spectral centrality (14 nodes in common in
the top-ranking 20 for spectral centrality and degree). The 12
remaining nodes come from all positions on the list. Thus,
1-spectral centrality is detecting nodes with fairly low scores
in other centralities. This reflects the fact that such nodes may
still have a substantial contribution to the shape of the network
despite not scoring particularly highly on other measures. One
way to view this is that these nodes have connections which
are significant to the solution to the relaxed ratio-cut problem.
Figure 2 illustrates this idea. In that picture, nodes are placed
according to the two-dimensional spectral embedding with
sizes proportional to their 1-spectral centrality. The included
edges are the 30 edges with the highest spectral edge centrality.
One can see from this illustration how 1-spectral centrality
reveals structure. The nodes in the lower right corner, a cluster
of technology equities, are the most central. If one computes
the relaxed ratio cut, it is essentially this cluster which is
separated from the rest. Evidence of this is encoded in the
edges—most of these 30 most central edges connect one of
these nodes to nodes in other areas of the network. However,
some connect other pieces show higher-order structure.

Higher-order spectral centralities carry interesting and use-
ful information. Figure 3 shows the same spectral embedding
of the network as shown in Fig. 2 with node sizes proportional
to the 1-spectral centrality (left), 2-spectral centrality (middle),
and 3-spectral centrality (right). These three centralities show
three distinct clusters of high centrality nodes. As discussed
above, the cluster in the lower right-hand side shows the
technology sector, which have high 1-spectral centrality
values. The cluster in the lower left-hand corner, with high
2-spectral centrality, are members of the basic materials sector.
The cluster emerging from the middle when scaled by the
3-spectral centrality is a group of equities from multiple
sectors, with the majority being from the healthcare sector.

To better understand how the spectral centralities encode
structure, we consider a sequence of windows of the S&P
500 data. We construct the matrix A described above for each
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FIG. 4. (Color online) A comparison of spectral centrality and
other centralities over windows of the S&P 500 data. Darker (bluer)
colors indicate lower centrality scores while lighter (redder) colors
indicate higher ones.

450-day window of the data (with one-day lags between the
windows) and compute the centralities for each window. This
allows us to see how the centrality of various nodes changes
over time. Figure 4 shows the results for 1-, 2-, and 3-spectral
centrality (top row), degree (bottom left), betweenness (bottom
middle), and eigenvector centralities (bottom right). In all
cases, the nodes, as labeled by the y axis, are ordered by
sector identification while the x axis shows the window index.
For each case, the centralities are normalized to take values in
[0,1] to make the computations comparable.

We see that in the case of 1-spectral centrality, there is a
clear transition between one group, which is high for roughly
the first 150 windows, and another which is high for the rest
of the windows. The majority of equities in the first group are
members of the technology sector while the second group is
dominated by the basic materials sector. 1-spectral centrality
shows an aspect of the effect of the business cycle on the
equities market: recording a transition from the dominance of
technology stocks to that of basic materials stocks. 2-spectral
centrality shows roughly the opposite picture, demonstrating
how the first two eigenvalue-eigenvector pairs encode this tran-
sition. 3-spectral centrality shows a complementary picture,
where a different sector (healthcare) rises in importance in
later windows.

In contrast, the same picture for the other centralities
miss the dynamic picture entirely. Degree and eigenvector
centralities show prominence only for the basic materials
sector and with a peak at a different time than that of spectral
centrality. Betweenness again emphasizes basic materials and
scattered other equities of importance.

Spectral centralities also help us determine the relevance
of the results of spectral clustering. The color of the nodes in
Fig. 2 is given by cluster membership where we have run the
spectral clustering algorithm for five clusters using two eigen-
vectors. In choosing the parameters for spectral clustering—
the number of clusters and number of eigenvectors—one
is always faced with the consequences of making poor
choices. Choosing too many clusters leads to a version of
overfitting (vectorization), where natural geometric clusters
can be artificially subdivided. In this figure, we can see
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how the combination of edge and node spectral centrality
sheds light on this issue. Qualitatively, we see that the blue
(medium-dark gray, left), yellow (light gray, right), and purple
clusters (medium-light gray, center-left) are significant from
the perspective of spectral methods while the white, black,
and light blue clusters (gray, center) are more likely due to
vectorization. The green (medium gray, center top) cluster,
which sits in the latter group, has relevance, containing nodes
and edges with substantial 3-spectral centrality. This suggests
that spectral centrality measures may be used in conjunction
with spectral clustering to optimize parameter choices.

6. Immune system mediator network

For our last example, we consider a dense weighted network
describing the mediators in the human immune cell network
[20]. From data available in the literature [34], we construct
a bipartite graph between 19 cell types of the immune system
(e.g., T and B lymphocytes and neutrophils) and 109 mediators
of their mutual interaction (such as cytokines and chemokines).
This graph is then collapsed to a directed cell-cell interaction
network. While the network is almost completely connected,
the link weights—indicating the number of mediators for each
pairs of cell types—carry the structure.

In Ref. [20] an efficiency measure [2] was used to
characterize the mediator relevance inside the network and
quantify the relevance of each mediator. This was achieved by
selective removal of the mediator from the original bipartite
graph, collapsing the network, and comparing the efficiency
of the resulting network to that of the original.

For our application, we compute the 1-spectral centrality
of the symmetrized cell-cell network, C0, via a deformation
associated with each mediator. We let Bi = C0 − Ci , where
Ci is the symmetrized cell-cell network after the ith mediator
has been removed from the bipartite network and the bipartite
network has been collapsed. We then compute the 1-spectral
centrality using Eq. (3).

Some of the mediators receive a high ranking from
both centrality measures (e.g., TGF-β, a fundamental anti-
inflammatory citokyne) except for a group of mediators on the
top left of the figure (CSF-1, SDF-1, thrombopoietin, and IL-7)
which have high 1-spectral centrality but low efficiency (see
Fig. 5). In the previous analysis, top-ranking mediators were
related to innate response in the immune system, an ancient and
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FIG. 5. Comparison between efficiency and 1-spectral centrality
for a immune system mediator network.

highly conserved mechanism that involves among the oldest
elements of the mediator network. The efficiency centrality
measure thus seems to have selected the mediators that reflect
the immune system evolution, in which the oldest elements
should be also the most connected ones (as it happens in a
preferential attachment-like model of network growth). Inter-
estingly, the most central mediators obtained by 1-SC have a
completely different role, since they are known from literature
to be jointly involved in cell maturation and differentiation
[35], a mechanism known as hematopoiesis, fundamental for
the maintenance of the whole immune system. Even if we have
a large overlap with the previous analysis (the two centrality
measures look nonlinearly correlated), the information about
mediator relevance from the two measures is not the same.
The relevance of the mediators in the network as attributed by
1-SC seems to be less dependent on network evolution issues
and more related to biological and functional aspects.

This example demonstrates the use of general set defor-
mations for spectral centrality measurements. In this case,
there was a natural deformation associated with each mediator.
However, because the 1-spectral centrality is related to a subset
of the network determined by an underlying bipartite network,
it is inappropriate to compare them to other centrality measures
of C0.

IV. DISCUSSION

We introduce a new notion of centrality for graphs,
k-spectral centrality, based on measuring the effects of de-
formations (i.e., node, edge, or network subset removal) of the
graph Laplacian on its eigenvalues. The k-spectral centralities
reveal information concerning the importance of different
parts of the graph with respect to its geometry. For example,
1-spectral centrality identifies features relevant to the algebraic
connectivity. Higher spectral centralities yield information
relevant to the spectral embedding of the graph as well as to
spectral clustering. We see that for small, sparse, unweighted,
symmetric networks, spectral centrality behaves similarly
to other standard centralities. However, for larger, denser,
weighted symmetric networks, spectral centrality provides a
distinct, new, and potentially useful tool in network analysis.

We see an initial setting in which the k-spectral centralities
are appropriate: consensus formation. For networks which
reflect the substrate on which opinion propagates and consen-
sus does or does not form, the k-spectral centralities provide
relevant summary statistics of importance. Basic models of
consensus formation posit opinion evolution via dynamics
governed by the graph Laplacian. Thus, by construction, the
k-spectral centralities measure importance with respect to
those opinion dynamics. Our first two dense weighted network
examples can be interpreted through the lens of consensus
formation. In each case the behavior of the nodes is correlated
(at different strengths) with that of other nodes. Background
opinion formation dynamics—opinions about bills in the US
House of Representatives and opinions of traders about the
similarities of different equities—create a link between the
correlation and consensus dynamics. In the example of the US
House of Representatives, if we assume that representatives are
influenced by other representatives with strengths associated
with their social or professional ties, this network is then
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well modeled by the consensus formation dynamics. For the
equities market, we assume a hidden network of traders who
form opinions about the equities they trade. The opinions
translate into close prices for equities as the traders buy and sell
their various holdings. Thus, the time series of close prices is a
reflection of the consensus dynamics of the traders and exhibits
its own dynamics as a proxy for the aggregated dynamics of
the traders. The equities network we construct is, therefore, a
proxy for a consensus network of unseen actors.

In this context, we see that the collection of k-spectral
centralities deliver better measures of centrality than existing
measures. In the roll call network, the 1-spectral centrality
reflects our common notion of ideological centrality better
than all other measures except random walk centrality. But,
the lack of information in the higher centralities confirms
that the information in the 1-spectral centrality is essentially
complete. In contrast, the first three spectral centralities for
the S&P 500 network all carry significant information which
shows three different groups of important nodes and identifies
the scale at which they are important. In our experiment with
centrality measures over a windowed version of the S&P 500
network, we see further evidence that the spectral centralities
outperform other measures in this application. Indeed, the
1-spectral centrality is the only measure to capture the
evolution of importance and centrality as the network changes
over time.

The third example of a dense weighted network, the
immune system network, provides an example where it has
already been observed that common centrality measures
fail to provide a clear ranking of mediator relevance [20],
efficiency therefore was used to extract a measure of relevance
for mediators in this network. 1-spectral centrality also
provides a measurement of relevance for mediators, but it
provides a different ranking. While some mediators involved
in anti-inflammatory responses had both high efficiency and
1-spectral centrality, the majority of mediators with highest
1-spectral centrality also had low efficiency. These
mediators are involved in cell maturation and differentiation
(hematopoiesis) while the top-ranking mediators by efficiency
are more related to the biological process of innate response of
the immune system. While our centrality measure highlights
mediators related to fundamental system functions (its
maintenance by means of cell maturation and differentiation),
efficiency ranking in this case seems to depend on the process
of network formation, for which the oldest network elements
are also the most central. This example provides evidence that
1-spectral centrality is a useful tool in identifying functional
structure in biological networks which complements other
existing measures.
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APPENDIX: CALCULUS OF SPECTRAL CENTRALITY

Theorem 1. Let A0 be the adjacency matrix of a connected
undirected network with k nodes. Suppose A : (−δ,δ) → M

is a differentiable path in the space of symmetric matrices
with A(0) = A0 giving a deformation of the matrix A0. Let
L(ε) be the graph Laplacian associated with A(ε) for each ε ∈
(−δ,δ). Let [λi(ε),vi(ε)] be the eigenvalue-unit eigenvector
pairs for L(ε) and assume that λk(0) has multiplicity 1.
For δ sufficiently small, λk : (−δ,δ) → R and vk : (−δ,δ) →
Sk−1, the eigenvalues and vectors associated with L(ε) are
differentiable functions. Then,

λ′
k(0) =

∑
ij

Cij ,

where, C = FL′(0)F , and F is the diagonal matrix with
entries given by the entries of the eigenvector, vk(0).

Proof. The existence of δ > 0 so λk(ε) and vk(ε) are smooth
follows from an application of the implicit function theorem to
the defining equation of eigenvalues and the defining equation
of eigenvectors, respectively. Since we assume that network is
connected, we know that λk(0) > 0 for k > 0. This, together
with the multiplicity assumption, implies that, shrinking δ if
necessary, we may conclude that [λk(ε),vk(ε)] remain the kth
nontrivial eigenvalue-eigenvector pair for ε ∈ (−δ,δ). As λk(ε)
is an eigenvalue of L(ε), we have

det[L(ε) − λk(ε)I ] = 0.

Differentiating with respect to ε using Jacobi’s formula [36]
yields

0 = d

dε
det[L(ε) − λk(ε)I ]

= tr{adj[L(ε) − λk(ε)I ][L′(ε) − λ′
k(ε)I ]},

where adj(M) is the adjugate of the matrix M . L(ε) − λk(ε)I
is diagonalizable and, as we assume the multiplicity of the
kth eigenvector of L(0) is 1, has a single zero eigenvalue
with associated eigenvector vk(ε). Letting V be the matrix
of orthonormal eigenvectors and {0 = μ1,μ2, . . . ,μn} be the
eigenvalues, we have

adj[L(ε) − λk(ε)I ] = det(V V ′)V adj(M)V ′

where M is the diagonal matrix of μi . As V ′V = I , we
have det(V V ′) = det(V ′V ) = 1. The adjugate of the diagonal
matrix M is a diagonal matrix A, where Aii = ∏

j �=i μj . In
particular, as μ1 = 0, only A11 is nonzero. We denote A11 by
	(ε). So, in summary, we have

adj[L(ε) − λk(ε)I ] = 	(ε)vk(ε)vk(ε)t .

Continuing our computation,

0 = tr{adj[L(ε) − λk(ε)I )][L′(ε) − λ′
k(ε)I ]}

= 	(ε)tr{vk(ε)vk(ε)t [L′(ε) − λ′
k(ε)I ]}

= 	(ε){tr[vk(ε)vk(ε)tL′(ε)] − λ′
k(ε)tr[vk(ε)vk(ε)t ]}

= 	(ε){tr[vk(ε)vk(ε)tL′(ε)]} − 	(ε)λ′
k(ε).

The tr[vk(ε)vk(ε)t )] = 1 since vk(ε) is taken to have unit length
for all ε. Solving for λ′

k(ε) yields

λ′
k(ε) = tr[vk(ε)vk(ε)tL′(ε)] =

∑
ij

νi(ε)L′(ε)νj (ε).

The result follows by letting C = F (ε)L′(ε)F (ε) and evaluat-
ing at ε = 0. �
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We make two comments. First, if an eigenvector has
multiplicity greater than 1, the deformation may still be
constructed and analyzed. However, since there are potentially
multiple independent vectors in the kernel of L(ε) − λk(ε)I ,
the calculation breaks down. Second, as eigenvectors are
not unique, the computation is not a priori well posed.

However, as we see from the theorem that |λ′
k(0)| is inde-

pendent of the choice of unit eigenvector. We apply this to
specific deformations using the graph Laplacian L = D − A.
Computations using other definitions of the Laplacian and
other deformations are easily computed from the previous
theorem.
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