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Sequence motifs are words of nucleotides in DNA with biological functions, e.g., gene regulation. Identification
of such words proceeds through rejection of Markov models on the expected motif frequency along the
genome. Additional biological information can be extracted from the correlation structure among patterns of
motif occurrences. In this paper a log-linear multivariate intensity Poisson model is estimated via expectation
maximization on a set of motifs along the genome of E. coli K12. The proposed approach allows for excitatory
as well as inhibitory interactions among motifs and between motifs and other genomic features like gene
occurrences. Our findings confirm previous stylized facts about such types of interactions and shed new light on
genome-maintenance functions of some particular motifs. We expect these methods to be applicable to a wider
set of genomic features.
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I. INTRODUCTION

Counting processes are the most natural way to model the
occurrence of a particular type of event. Such a process is
fully described by the probability Pt to observe the event at
a time t . Eventually an additional variable St may indicate
the actual state of the system.1 The description of many
physical, biological, and social systems lies in the class
of point processes in which the probability P i

t of the ith
process is determined by the past history of all the processes
that enter in the system, including the process itself (point
processes with stochastic intensity). Related researches en-
compass very different fields such as photon counting, laser
physics, astrophysics, geophysics, social phenomena, and, as
discussed in detail in this paper, genomics. For example, a
self-exciting point process (usually called Hawkes’ process;
see Ref. [1]) is used in Ref. [2] to model the photomultiplier
tubes’ dark pulses: In this model an occurrence a time ti of a
dark pulse event increases the probability to observe another
dark pulse for t > ti , with an exponential decay interaction. An
identical process is adopted by the authors of Ref. [3] to model
a feedback-controlled cavity in a steady state. Along the same
line, the occurrence of a photon count can be used to inhibit
the probability of another photon count. Such a photon anticor-
relation mechanism is used in Refs. [4–6] for the production
of a particular state of light, namely, photon-number-squeezed
light. In astrophysics Hawkes’ processes are introduced to
model hot spots’ interactions in accretion disks (see [7,8]). A
similar idea is behind the modeling of the small earthquake
shocks that follow a main shock. Usually, in these models,
several features are included for explaining the total amount of
the observed intensity. In Ref. [9] the seismic activity (i.e., the
probability of a seismic event) is described by a point process
with stochastic intensity that includes self-excitation as well as
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1For example, if the events under study are earthquake shocks,

St can be a measure of their magnitude.

trends, periodicity, and interactions with other earthquakes in
other locations (mutually exciting point processes). Not only
the simple occurrence of a shock can increase the probability
of subsequent shocks, but also its magnitude, as encompassed
by the Epidemic-Type Aftershock Sequence (ETAS) model,
which is the baseline model used in Refs. [10–12]. Finally, sev-
eral kinds of social phenomena originated by complex network
interactions are successfully described by point processes with
stochastic intensity (as an example, think about the spatiotem-
poral pattern of a disease or opinion spreading). Among many
we suggest the analysis of the book sale dynamics proposed
by Ref. [13], in which the probability of a buy is conditioned
by all the previous buys, as in an epidemic or avalanche
model.

Given the recognized ductility of stochastic intensity point
processes, in this paper we propose the adoption of such
a process for the detection of statistical interactions among
events along a string of DNA. The type of events we have in
mind can be either the occurrence of a gene or the occurrence
of another genomic feature. As an illustration of the method,
we will focus on occurrences of gene and motifs.

In the next section we will briefly describe what functional
motifs are, and we will shortly review the empirical evidences
that can be found in the existing literature on the interaction
between motifs and genes.

The model we propose is a log-linear multivariate intensity
Poisson model2 borrowed from the neuroscience literature (see
Refs. [14,15] among others), where these models are quite
common, and we show how it can be used to detect positive
and negative correlations in a set of words suspected to play a
biological function. We apply this method to some motifs in
the E. coli genome, and we show that these models fit the data
well.

2Here for multivariate intensity Poisson model we mean a set of
Poisson processes whose intensities (i.e. instantaneous probabilities
of an occurrence) may interact each other.
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The rest of the work is organized as follows: In Sec. III we
derive a model of motifs’ dependencies starting from a very
simple empirical evidence. The model is formally described
in Sec. IV where we also sketch the iterative algorithm used
to estimate it. Maximum likelihood estimates are reported in
Sec. V, while a goodness-of-fit test is developed in Sec. VI
together with the a posteriori validation of the hypotheses
introduced in Sec. III. Finally, we discuss our findings in
Sec. VII, and we report our conclusions in Sec. VIII.

II. NONRANDOM SEQUENCES IN DNA:
THE CASE OF FUNCTIONAL MOTIFS

Functional motifs are short strings of DNA, RNA, or even
proteins that share the same biological function. Functional
motifs differ from structural motifs as they require the amino
acid to be adjacent, while the latter ones require a three-
dimensional (3D) arrangement. Protein binding sites and cis
regulatory motifs are typical examples of DNA functional
motifs. They are present in all types of genomes from Archaea
to humans, in both coding and noncoding regions.

Sometimes a single sequence can perform the same function
in a wide range of genomes. In other cases slightly different
sequences perform the same function in different species. In
such cases a consensus sequence is built that spans a certain
number of species [16].

One of the most important open problems in computational
genomics nowadays is predicting functional motifs. The most
common computational approach to the problem is to compile
a list of previously characterized functional motifs and perform
a genome-wide scan for overrepresented motifs contained in
the list. This approach is based on the assumption that a
sequence that is functional in all its occurrences will be more
frequent than if it was appearing by chance [17].

Another purely computational approach is just based on
retrieving overrepresented words in the genome. As the
probability of an overrepresentation by chance is very low,
overrepresented motifs have to be functional at least in some
of their occurrences.

The list of motifs that have been identified in past years is
quite long, among them the gene promoter TATAAT [18,19],
the very frequent uptake signal sequence (USS) AAGT-
GCGGT present in H. influenzae and the USS sequence GC-
CGTCTGAA of N. meningitidis (both analyzed in Ref. [20]),
and the CHI recombinational hot spots GCTGGTGG of E.
coli [21] and GCGCGTG of L. lactis [22]. The latter coincides
with the CHI site of Streptococcus pyogenes, St. pneumoniae,
S. agalactiae, and S. thermophilus, as shown in Ref. [23].
The same authors find, by predictive modeling, that the motif
GAAGCGG is the functional CHI site in the Staphylococcus
aureus. The prominent role in chromosome replication of
the motif GATC in E. coli is analyzed in Ref. [24]: the
replication origin (oriC) of the E. coli chromosome contains
11 GATC sites in 254 bp, a density that points toward a
total rejection of a random accumulation. Moreover GATC-
GATC interactions clearly appear when the GATC distribution
along the genome is put under investigation. In Ref. [25] is
shown that, in whole the genome of E. coli, GATCNNGATC
pairs are underrepresented while the most favored distance
between two consecutive GATC occurrences ranges between
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FIG. 1. (Color online) Observed empirical densities (in percent-
age) of the distances (in kilo base pairs) between an occurrence of
a gene, GATC, TATAAT, TTGACA, and CHI and the subsequent
occurrence of a gene. The bin width is set to 100 bp.

1100 and 1200 bp. Along the same line in Ref. [26] it was
found that a very short distance of 10–20 nucleotides between
GATC motifs is most favorable in SeqA-bound regions of
E. coli. This suggests at least two different functions for the
palindrome GATC. Other motifs operating in bacterial genome
are described in Ref. [27].

A completely different approach comes from the adop-
tion of chaotic maps for the identification of “nonrandom”
sequences in genomic data (see, among others, Refs. [28,29]).
Quite recently, in Ref. [30] the authors adopted a multifractal
spectrum analysis to identify correlations in motif sequences of
the human genome. They show that the observed multifractal
spectra of all human chromosomes are far away from those
expected if the sequences were randomly generated. Notably
in Ref. [31] it is shown that this spectrum can be surprisingly
well fitted, for positive order exponents, with that of a coupled
map lattice.

III. A MODEL OF MOTIF DEPENDENCIES

We start our analysis from a very simple empirical observa-
tion. On the genome of E. coli K123 consider the set of motifs
GATC, TATAAT, and TTGACA, and the CHI recombinational
hot spot GCTGGTGG. We further include in our sample the
gene position as it is provided from GenBank resources.

We interpret each occurrence (of a motif or of a gene) as an
“event” along the genome. If a dependence among occurrences
of events exists, it must affect the distribution of interevent
distances. Figure 1 reports the observed distribution of the
distances between pairs of events.

More precisely, the black line with triangles (the
Gene→Gene in the legend) is the empirical density of the
distances between an occurrence of a gene and the next

3The complete genome sequence can be downloaded from GenBank
using accession number U00096 and is composed of 4 639 810 bp.
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occurrence of a gene; similarly the red line with stars (the
GATC→Gene in the legend) corresponds to the density of the
distances between an occurrence of a motif GATC and the next
occurrence of a gene, etc. The distances are reported in kilo
base pairs (kbps).

An eye inspection of the empirical densities reveals that
there is a notable difference in the structure of the interevent
distances. While the TATAAT→Gene and TTGACA→Gene
interevent distances are peaked around small values, the
remaining ones display an empty zone around the origin,
especially in the Gene→Gene case, and a shifted and less
pronounced peak. Both TATAAT and TTGACA are well-
known gene promoters of E. coli [32], and therefore their
corresponding distribution of motif-gene distances is expected
to be peaked around small distances. In the other cases it seems
that a repulsive effect exists on short distances that avoids a
gene being located near a gene/GATC/CHI locus. Note that
while the repulsion between genes can be explained by their
finite size (about 1 kbps), motifs are practically pointlike, and
therefore, for a random distribution of events, their theoretical
density of interevent distances should be well approximated
by a negative exponential, and therefore no repulsive effect at
short distances is expected.

This simple preliminary analysis points toward the adoption
of a model apt to capture attractive as well as repulsive
interactions among occurrences of words that are supposed
to have a biological function in the genome of E. coli. To
obtain such a model, we assume that the presence of a motif
q in position t in the genome is a random Bernoulli variable,
where randomness comes from the stochastic nature of the
mutational and evolutionary processes acting on the genome.
The probability Pq(t) that the motif q could be found in t

depends actually on the local genomic features (other motifs,
local GC content, regulatory sequences, genes, noncoding
RNA, local chromatin structure, etc.), denoted collectively
here as g(t). Since most of these features are unknown or
not considered in the analysis, the probability is given by the
integral over the distribution of genomic features:

Pq(t) =
∫

dμ[g(t)]Pq[t |g(t)].

In this case, the continuum limit of the model would reduce to
a (possibly inhomogeneous) Poisson model with parameter
Pq(t) = λq(t) dt . If we assume that the genome dynamics
is approximately invariant under translations over distances
much shorter than the size of the genome, then the parameter
λq does not depend on the location, and the distribution of
motifs is described by a simple Poisson model.

Now we include interaction among motifs. We denote by
{n,s} the occurrence of an event of type n in position s

and by Nn(s) the cumulative number of events of type n in
position s. An additional motif n in position s will modify
the probability Pq[t |g(t)] of a factor δPq[t |g(t)]/δNn(s) =
Pq[t |g(t),{n,s}] − Pq[t |g(t)], where Pq[t |g(t),{n,s}] is the
probability to find motif q at position t conditioned on g (t)
and on the presence of n in position s. We assume that (1)
the effect of each feature on the probability of finding a motif
Pq[t |g(t)] is small, that is, |δPq[t |g(t)]/δNn(s)| � Pq[t |g(t)];
(2) the genome dynamics is translationally invariant, that is,
the interaction between the events {n1,t} and {n2,t + �t} does

not depend on the absolute position t but only on the relative
position �t .

Under these assumptions, the effect of a motif of type n in
position s on the probability of occurrence of a motif of type
q in position t is

δPq(t)

δNn(s)
=

∫
dμ[g(t)]

δPq[t |g(t)]

δNn(s)

=
∫

dμ[g(t)]Pq[t |g(t)] δPq [t |g(t)]/δNn(s)
Pq [t |g(t)]∫

dμ[g(t)]Pq[t |g(t)]
Pq(t)

= E

{
δPq[t |g(t)]/δNn(s)

Pq[t |g(t)]

∣∣∣∣{q,t}
}
Pq(t)

= E

{
δPq[0|g(0)]/δNn(s − t)

Pq[0|g(0)]

∣∣∣∣{q,0}
}
Pq(t),

where the expectation value is conditioned on the event q in
position x using Bayes’ theorem and the last step follows from
translational invariance.4 After redefining the quantity

Kq,n(t − s) ≡ E

{
δPq[0|g(0)]/δNn(s − t)

Pq[0|g(0)]

∣∣∣∣{q,0}
}

and passing to the continuum limit Pq(t) = λq(t) dt , we obtain
for a single event

δ log[λq(t)]

δNn(s)
= 1

λq(t)

δλq(t)

δNn(y)
= Kq,n(t − s). (1)

Now we can consider the joint effect of all events {nj ,sj }. Since
all the effects are assumed to be small, nonlinear interaction
terms among different events can be neglected at first order.
Summing Eq. (1) over all events, we obtain a Poisson model
with parameter

λq(t) ∝ exp

[ ∑
events j

Kq,nj
(t − sj )

]
;

that is, the model reduces to a log-linear intensity Poisson
model.

Note that in the DNA there is an inherent asymmetry
between the two directions 5′ → 3′ and 3′ → 5′, since the
transcription process acts in the 5′ → 3′ direction. This leads
to a causality relation in the 5′ → 3′ direction for some sets
of motifs or features. In the rest of the analysis we assume
that the t axis is 5′ → 3′ oriented and that (3) an event
{n,s} has no influence on the occurrence of the event {q,t} if
s > t [i.e., Kq,n(t − s) = 0 for s > t]. This assumption will be
relaxed in future work. The reliability of assumptions (1)–(3) is
confirmed a posteriori by a goodness-of-fit test of our model
on a specific dataset (see Sec. VI). In particular, note that
while hypothesis 3 can be interpreted as an implication of
the chemical reading sense of the genome, hypotheses 1 and
3 are additional assumptions that we require to justify the
adoption of a log-linear intensity model. Nevertheless they
will be discussed in detail in Sec. VI, where we will give
empirical evidence to support them.

4The assumption of small effects ensures that the ratio δPq [t |g(t)]/δNn(s)
Pq [t |g(t)]

is small in absolute value and therefore cannot diverge.
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IV. FORMAL MODEL

As mentioned above we interpret the occurrence of a motif
or of a gene as an event in the tape represented by the genome.

Let t ∈ [0,T ] be the coordinate along a genome, composed
of T bp. Let Nn (t) be the counting process of the nth process.
In our specific case n = 1,2,3,4,5 corresponds to the counting
process of starting point of a gene, GATC, TATAAT, TTGACA,
and CHI occurrences, respectively. In the log-linear intensity
model the conditional intensity of having an event of type q at
position t is written as

log λq(t |Ht ) = μq +
N∑

n=1

∫ t

0
Kq,n(t − s) dNn(s),

q = 1, . . . ,N, (2)

where the infectious function Kq,n (t − s) describes the effect
of an occurrence at time t − s of motif n (trigger) on the
instantaneous conditional probability [i.e., λq (t |Ht )] of having
a motif of type q (target) at time t and where the conditioning
is given by the filtration5 generated by all the counting process
of the system:

Ht = σ (Nn(s) | 0 < s < t,n = 1, . . . ,N).

In the specification of the model given by Eq. (2) the
quantity exp(μq) ∗ dt represents the spontaneous probability
of having an event q in the infinitesimal portion dt of the
genome. The baseline activity μq is essential to fit the missing
dynamics not captured by the interaction with the other
counting processes.

Let [0,D] be the support of the infectious function Kq,n(τ )
(i.e., the memory of the system) and let � = {t0 = 0 < t1 <

· · · < tM = D} be a partition of [0,D] with evenly spaced
points

ti = i ∗ W, i = 0, . . . ,
D

W
,

where we have assumed, without any restriction, that D
W

≡ M

is an integer. As in Ref. [14] we approximate the infectious
function via simple functions:6

Kq,n(τ ) ≈
M∑

k=1

αq,n,kI[tk−1,tk ](τ ),

where the indicator function I[tk−1,tk ] is defined as

I[tk−1,tk ](τ ) =
{

1 τ ∈ [tk−1,tk]

0 τ ∈ R+/[tk−1,tk].

The model (2) is now rewritten as

log λq(t |Ht ) = μq +
N∑

n=1

M∑
k=1

αq,n,k dNn([tk−1,tk]), (3)

where the random measure dNn([tk−1,tk]) corresponds to the
total number of events of element n in the interval [tk−1,tk].

5The filtration is a mathematical artifact to model the accumulation
of information from the past.

6Any real function can be approximated in this way.

In the formalism of Ref. [33] a distance tk = k W from an
occurrence of process n and the next occurrence of process
q is favored any time that αq,n,k > 0, unfavored if αq,n,k < 0,
and neither favored nor unfavored when αq,n,k = 0. Note that
the advantage in adopting a log-linear model with respect to
a linear one (as in Ref. [33]) is that there are no constraints
on the parameter space: αq,n,k is allowed to vary in whole real
line R.

The log-likelihood of model (2) is given by (see Ref. [34])

lq =
∫ T

0
log λq(t |Ht ) dNq(s) +

∫ T

0
[1 − λq(t |Ht )] dt (4)

and is a function of the U = N × M + 1 model parameters
(μq,αq,n,k)q,n=1,..., N ;k=1,..., M . The total number of parameters
of the system is thus N × U . Following Refs. [14,15] the like-
lihood (4) can be maximized via the expectation maximization
algorithm of Ref. [35]. Rewriting Eq. (3) using a reduced index
j = (n − 1) ∗ N + k, we obtain

log λq(t |Ht ) =
R∑

j=0

αq,j Ij (t),

where R = N × M + 1 and Ij=(n−1)∗N+k(t) is the number of
events of element n in window [t − k W,t − (k − 1) W ] and
I0(t) = 1 for all t . In this new notation we have defined
αq,0 = μq . Let α0

q,j be a guess for the model parameters.
Defining γ 0

q,j = exp(α0
q,j ) and applying recursively the iter-

ative algorithm:

γ n+1
q,j = γ n

q,j

[∑T
k=0 Ij (k) [Nq(k + 1) − Nq(k)]∑T

k=0 Ij (k)
∏R

l=0

(
γ n

q,l

)Il (k)

]βq,j

, (5)

βq,j =
∑T

k=0 Ij (k) [Nq(k + 1) − Nq(k)]∑T
k=0 Ij (k)

∑R
l=0 Il(k) [Nq(k + 1) − Nq(k)]

, (6)

where we have imposed an unitary “time step” (i.e., dt = 1).
The initial starting point α0

q,j is computed according to the
algorithm proposed by Ref. [15], which gives a reasonable
and easy-to-compute guess of the model parameters. We also
implement the stopping rule of Ref. [15]; that is, algorithm
(5) and (6) is stopped at the iteration n̄ such that7

max
j

(
γ n̄+1

q,j

γ n̄
q,j

− 1,
γ n̄

q,j

γ n̄+1
q,j

− 1

)
< 10−4, q = 1, . . . ,N.

The output of the iterative algorithm are the maximum like-
lihood estimates γ̂q,j of parameters γq,j and, as a consequence,
of the original parameters: α̂q,j = ln(γ̂q,j ). The rejection of
the null hypothesis8 αq,j = 0 is tested using the standard
properties of the maximum likelihood estimator [36]. We first
compute the t statistic:

tq,j = |α̂q,j |
σq,j

, (7)

7The tolerance in Ref. [15] is set to 10−5; nevertheless we have
found that a tolerance of 10−4 gives a good estimate and saves time.

8Null hypothesis is referred here as the benchmark situation in
which correlations among events are absent.
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FIG. 2. Plots the value of A (M) (see definition 8) as a function
of the number M of windows in which the support [0,D] of the
infectious function is partitioned. The value for D is set empirically
to 5 × 103 bp, and the window width W is derived accordingly as
W = D/M .

where the standard deviation σq,j is given by

σq,j =
{√

−
[ (

∂2lq

∂αq,l∂αq,k

)
l,k=0,...,R

]−1
}

j,j

,

i.e., the diagonal element of the square root of the inverse
Hessian matrix (changed by sign) of log-likelihood (4).
Therefore we reject the hypothesis αq,j = 0 with confidence
β (or with a p value9 1 − β) if tq,j � �(β), where �(·) is the
inverse of the cumulative distribution function of a Gaussian
variable with mean zero and unit standard deviation.

Model selection is achieved through AIC criterion. We fix
the value of D to 5000 bp,10 and we select the total number M

of windows (as a consequence the window width is fixed by
W = D/M) that minimizes the AIC function:

A(M) = 2 [N × (N × M + 1)] − 2
N∑

q=1

l̂q , (8)

where l̂q is the log-likelihood of process q computed in the
optimal point (μ̂q,α̂q,1, . . . , α̂q,N×M ). Figure 2 plots the value
of A(M) as a function of M . From this plot it is quite clear
that the optimal trade-off between the value of the maximized
likelihood, and the number of model parameters to employ

9The p value is the probability to observe a value of the statistic
defined in Eq. (7) at least as extreme as the one we observe in the data,
having assumed the null hypothesis of no correlations. The smaller
this probability, the higher the statistical significance of the results.
In what follows we will show that we can find p values as small
as 10−6.
10We do not find very informative to include larger correlations.

Increasing D has as a main effect slowing down convergence.

is reached at M = 25, according to the AIC criterion. This
will be our final choice leading to a total number of 5 ×
(5 × 25 + 1) = 630 parameters for our system.

An approach similar to that presented in this section is pro-
posed by Ref. [33]; however, here a linear model is adopted. We
believe that a log-linear approach is preferred because naturally
incorporates exciting as well as inhibitory connections without
any call to constrained maximization procedures. The second
main difference between model (2) and the model proposed by
Ref. [33] lies in the parametrization of the infectious functions.
As explained, we adopt a decomposition in simple functions
(as suggested in Ref. [14]), that, in our view, is preferred to
the B splines adopted by Ref. [33] for three main reasons:
(1) it avoids spurious smoothing of the kernel functions,
(2) it provides simpler interpretations to each parameters of
the model, and (3) in the B splines approach the total number
of parameters that enter in the model are selected by the
AIC criterion, as in our case; nevertheless the choice of the
degree of the polynomial of the B splines remains a little bit
arbitrary.

V. MAXIMUM LIKELIHOOD ESTIMATES

In this section after a brief description of the dataset, we
discuss the estimation of the proposed model. We refer to
Sec. VII for the interpretation of our results.

Our dataset is composed by the double strand of the
complete genome of E. coli K12 plus the positions of all
the genes, as provided by GenBank. The position of each
gene is identified with the position of its first coding base.
We find 4490 occurrences of genes, 19 120 occurrences of the
palindrome GATC, 1036 occurrences of the gene promoter
TATAAT, 1057 occurrences of the gene promoter TTGACA,
and 1008 occurrences of the CHI motif GCTGGTGG.

The estimated baseline activities exp(μ̂q) are reported in
Table I. The t statistics for these parameters are very large
(�98) and therefore are omitted. The last column of Table I
reports the expected probability of the corresponding event
under the uniform model M00 (for more details about models
of word occurrences see Ref. [37]). This model computes the
probability of finding a particular word of length m as (1/4)m,
i.e., attributes to each single nucleotide the same probability
and does not take into consideration corrections of higher

TABLE I. The maximum likelihood estimates (middle column)
of the baseline probability for each process in the system; recall that
dt = 1 so that exp(μ̂q ) coincides with the baseline probability of
having a motif q somewhere in the genome. The third column shows
the probability of finding a word of the corresponding motif length
under the model M00 (see text for details).

Baseline probability

Event exp(μ̂q ) M00

Gene 9.68 × 10−4 −
GATC 41.34 × 10−4 (1/4)4 = 39.06 × 10−4

TATAAT 2.23 × 10−4 (1/4)6 = 2.4414 × 10−4

TTGACA 2.28 × 10−4 (1/4)6 = 2.4414 × 10−4

CHI 2.17 × 10−4 (1/4)8 = 1.5259 × 10−5
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FIG. 3. (Color online) Estimated infectious function Kq,n (τ ) (dark points) for the system composed by all genes and the motifs GATC,
TATAAT, TTGACA, and CHI. The labels on the top horizontal axis indicate trigger events [i.e., the index n in Kq,n (τ )], and the ones on the
vertical axis indicate target events [i.e., the index q in Kq,n (τ )]. The abscissa reports the distance τ between events in kilo base pairs. Blue
crosses indicate p values less than 10−5, and magenta squares mark parameters with a p value less than 10−6.

order11 (for example, the abundance of C-G nucleotides, which
varies widely both across taxa and within genome regions).

Maximum likelihood estimates α̂q,n,k of parameters of
model (2) are reported in Fig. 3. The label on the top horizontal
axis indicates the trigger event [process labeled as n in Eq. (2)],
and the label on the left vertical axis indicates the target
event (process labeled as q in Eq. (2)]. We distinguish two
levels of significance: parameters with a p value less then
10−5 are marked with a blue cross, and parameters with a p

value less then 10−6 are marked with a magenta square. A
goodness-of-fit test is achieved through residual analysis and
is reported in Sec. VI. Similarly to what we have done in
our preliminary analysis (see Fig. 1) we report in Fig. 4 the
interevent interval (normalized and in percentage) distribution.
More precisely the histogram in subfigure positioned in the qth

11Note that for the case of genes’ occurrences this probability varies
from gene to gene, each of them having a different length.

row and nth column of Fig. 4 is the distribution of the distance
between event n and q, conditioned on having observed
event q (target) after event n (trigger). As in Fig. 3 diagonal
subfigures correspond to self-interactions. Each distribution is
a normalized histogram with a bin of 1 bp. In each subfigure
we report vertical magenta lines initiated and terminated by a
triangle in correspondence of a negative model parameter with
p value less than 10−6. Similarly, we report vertical red lines
initiated and terminated by a circle in correspondence of a
positive model parameter with p value less than 10−6. Vertical
lines highlight thus particular values in the interevent interval
distribution that have a statistical significance according to
log-linear model (2).

VI. GOODNESS-OF-FIT AND HYPOTHESIS TESTING

Let μ̂q,α̂q,n,k be the maximum likelihood estimates of
the model parameters defined in Eq. (3). The model-implied
intensities functions λ̂q(t |Ht ), with q = 1, . . . N , are easily
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FIG. 4. (Color online) Interevent distances distribution (in percentage) for the system composed of all genes and the motifs GATC, TATAAT,
TTGACA, and CHI. The labels on the top horizontal axis indicate trigger events, and the ones on the vertical axis indicate target events (see
caption of Fig. 3 for more explanation). Vertical magenta lines initiated and terminated by a triangle highlight event distances that correspond
to negative parameters of model (2) with a p value less than 10−6, and vertical red lines initiated and terminated by a circle highlight event
distances that correspond to positive parameters of model (2) with a p value less than 10−6. The spatial coordinate on the abscissa of each
subplot is expressed in kilo base pairs, and the bin width is set to a single base pair.

computed as

λ̂q(t |Ht ) = exp

[
μ̂q +

N∑
n=1

M∑
k=1

α̂q,n,k dNn([tk−1,tk])

]
. (9)

Note that since dt = 1 the previous quantity approximates the
probability to have an event q (gene or motif) at position t along
the genome. As shown in Ref. [38] if u

q

k , with k = 0, . . . Tq ,
where Tq is the total number of events for the qth element
of the ensemble, is a realization of a counting process with
conditional intensity λ̂q (t,Ht ), then the variables

z
q

k = 1 − exp

(∫ u
q

k

u
q

k−1

λ̂q(s,Hs) ds

)
, k = 1, . . . Tq (10)

are uniformly distributed in [0,1]. The order statistics of
Eq. (10) can be compared with the one of a uniformly

distributed variable, i.e., U
q

k = k− 1
2

Tq
. The rationale is that if

the model-implied intensity (9) is a correct description of the
observed counting process, the points

ξ
q

k = (
U

q

k ,z
q

k

)
,

{
q = 1, . . . N

k = 1, . . . Tq

(11)

should lie on a 45◦ line. Figure 5 reports (in the thick
lines) the observed ξ

q

k for each element of the ensemble
considered. The red dotted lines in each plot represent the 99%
confidence bands. The model provides a reliable description
of the observed counting processes, with the only exception
of TATAAT. Nevertheless we have checked the TATAAT fit
is quite improved if we use as a promoter TATA instead of
TATAAT.

While the goodness-of-fit test witnesses a general agree-
ment of the data with the model, each single hypothesis
introduced in Sec. III can be tested. As mentioned above we
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FIG. 5. (Color online) Reports (as thick black line) the points ξ
q

k = (Uq

k ,z
q

k ) defined in Eq. (11), where k indexes the events of the qth
element of the ensemble composed by Gene, GATC, TATAAT, TTGACA, and CHI occurrences. Each subplot corresponds to a different element
of the ensemble as reported in the corresponding title. Red dotted lines represent 99% confidence bands, and the thin black line represents the
45◦ line.

have postponed for further studies the analysis of a noncausal model, and thus hypothesis 3 remains just a consequence of the
chemical reading sense of the genome. Nevertheless, hypothesis 1 can be written as

|δPq[t |g(t)]/δNn(s)|
Pq[t |g(t)]

� 1,

which directly implies that

|Kq,n(τ )| ≡
∣∣∣∣E

[
δPq[0|g(0)]/δNn(τ )

Pq[0|g(0)]

∣∣∣∣{q,0}
]∣∣∣∣ < E

[∣∣∣∣δPq[0|g(0)]/δNn(τ )

Pq[0|g(0)]

∣∣∣∣
∣∣∣∣{q,0}

]
� 1;
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FIG. 6. K-fold cross-validation of the interevent interval distribution (empirical densities here are not in percentage for practical reasons,
and the bin width is the same of Fig. 1) for the system composed by all genes and the motifs GATC, TATAAT, TTGACA, and CHI. The black
lines plot the distribution computed with the complete sequence of events. The gray shaded area is the area between 5%−95% confidence
bands computed with 100 random slicings of the sequence of events in five nonoverlapping and nonconsecutive slices of 1000 events. The
spatial coordinate on the abscissa of each subplot is expressed in kilo base pairs.

i.e., the absolute value of the infectious function should be
a small quantity, or at least less than one. Apart from the
short-range Gene→Gene and CHI→TATAAT interactions,
the estimated values of Fig. 3 reveal that the interaction is weak
and thus that hypothesis 1 is valid.12 Translational invariance
of the interaction (hypothesis 2) is confirmed by Fig. 6, where
a K-fold cross-validation of the empirical densities of Fig. 1
(extended to all the pairs of genomic features) is shown. The
K-fold cross-validation validation is obtained by slicing the
entire sequence of events in nonoverlapping slices of 1000
events each, and then producing the histograms of Fig. 1 under
the random selection of five of these slices. A statistics of these
histograms have been obtained over 100 repetitions. Under this
condition, if the interaction is translationally invariant, then the

12Note that strong inhibitory Gene→Gene short-range interactions
are expected simply because genes occupy a non-negligible length
and cannot overlap.

resulting confidence bands should embrace the distribution
obtained using the whole genomic sequence. This is actually
what we obtain in Fig. 6 (see caption for more details), in
particular for features with a higher populated statistics (Gene
and GATC).

VII. DISCUSSION

The estimates reported in Table I suggest that, apart from
the CHI case, the baseline probability of a motif event is in line
with that of the random model M00. The CHI case presents,
on the contrary, a level approximately one order of magnitude
larger than what could be expected from a uniformly random
draw.

An inspection of the estimated infectious function in Fig. 3
confirms the intuition suggested by Fig. 1. The CHI motif has a
negative (and highly significant) correlation on the probability
of a gene event (first row and last column of Fig. 3). Thus
the empty zone in the CHI→Gene distribution (first row and
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last column of Fig. 4) is explained by this repulsive effect. A
similar evidence is found for the GATC motif, which presents
a negative correlation with gene occurrences for distances
approximately less than 0.4 kbps and a positive correlation
nearly at 2.2 kbps. The esamers TATAAT and TTGACA
show, as it should be for gene promoters, a positive short-
run correlation with gene occurrences, and this explains the
peak positioned around small distances in the distribution of
TATAAT→Gene and TTGACA→Gene interval distributions
(first row and third and fourth columns of Fig. 4).

The repulsive effect of CHI and GATC on gene occurrences
can be easily explained by their role in genome maintenance.
In particular, the CHI motif plays a role during DNA strand
breaking and repair. A coding sequence close to the motif has
an higher probability of being spoiled during the repair process,
therefore CHI motifs near genes are negatively selected.

It is interesting to note that the repulsive force of CHI
and GATC against a gene occurrence is associated to the
inhibition of the TATAAT and TTGACA promoters. In fact,
the occurrence of TATAAT is inhibited by both GATC and
CHI at short distances (third row and secondand fifth columns
of Figs. 3 and 4), while TTGACA is inhibited solely by
CHI (fourth row and fifth column of Figs. 3 and 4). This
interaction is roughly symmetric: an occurrence of TATAAT
and TTGACA reduces the probability of a GATC occurrence
(second row and third and fourth columns of Figs. 3 and 4).

Here we notice that the proposed model is capable to detect
both direct and indirect interactions; nevertheless, it cannot
discriminate among them.

Moving on to self-interactions, the correlation between two
gene occurrences is highly negative in the range from 0 to
1 kbps and thus becomes positive in the range 1.2–1.6 kbps.
This profile is mainly explained by the mean length of a
gene occurrence, which is approximately 1 kbps and therefore
prohibits a new gene event in this range. The remaining
self-interactions are significantly different from zero (and
positive) only for GATC and TATAAT. The GATC→GATC
infectious function reveals a positive feedback for GATC
occurrences at short distances and at approximately 1 kbps,
a result in line with the findings of Ref. [25]. Finally, the
TATAAT→TATAAT case shows a quite persistent and positive
self-interaction.

VIII. CONCLUSIONS

The analysis presented in this paper starts from a very
simple empirical evidence: The distance between a motif and
the gene start codon (i.e., the word ATG) depends strongly
on the motif. This fact suggests the presence of correlation of

different type between motifs and gene occurrences. We show
that such a dependence exists not only between a motif and
the start codon but also among different motifs regulating the
expression of the same gene. This empirical finding suggests
the adoption of a multivariate model apt to capture positive
as well as negative correlations among events in the genome
under study, where an event is defined as an occurrence of a
particular DNA motif.

In particular, we have shown that a multivariate Poisson
process with log-linear intensities is capable to catch these
features. This result confirms, together with previous studies
[2–13], the ductility of this class of processes in describing of
wide range of physical as well as biological phenomena.

The main objection that can be made against our model
hinges on causality. In fact, the model, as largely explained in
the introduction, is originally designed for photon counting,
cavities with feedback, neural interactions, earthquake after-
shocks, and other phenomena, and therefore is a causal model.
Nevertheless in model (2) the variable t is a position variable,
and therefore the model is not required to be causal, but rather
locally dependent. However, as mentioned in Sec. III, there
is a preferred direction along the genome coordinate, and the
introduction of a noncausal model could result in a reduction
of simplicity without any fundamental improvement. In this
paper for simplicity we assumed a causal sense 5′ → 3′ for the
genome dynamics. The extension to a noncausal framework
would be a feasible development, and it is postponed for future
research.

Our analysis confirms the role of TATAAT and TTGACA
as gene promoters. Most notably, we confirm the prominent
role in genome maintenance of the CHI and GATC motifs
of E. coli, which are well known to be involved in DNA
repair and replication [27]. In fact, we show that a negative
correlation exists between an occurrence of CHI or GATC and
the subsequent occurrence of a gene (and of a gene promoter),
a feature essential in preserving, during genome repair or
replication, the information contained in genes.

Finally, our analysis of the goodness of fit shows that the
proposed model is a good description of the process, and
it could be useful for more detailed studies of the existing
interactions between motifs and genomic features.
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