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Maximum-likelihood exponent maps have been studied as a technique to increase the understanding and
improve the fit of power-law exponents to experimental and numerical simulation data, especially when they
exhibit both upper and lower cutoffs. The use of the technique is tested by analyzing seismological data, acoustic
emission data, and avalanches in numerical simulations of the three-dimensional random field Ising model. In
the different examples we discuss the nature of the deviations observed in the exponent maps and some relevant
conclusions are drawn for the physics behind each phenomenon.
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I. INTRODUCTION

For the last few decades the study of critical phenomena
has received a great deal of attention in many different areas
of physics [1]. Criticality is often identified by the presence of
statistical scale-free distributions of different magnitudes when
a system evolves in time or when it is driven by an external
force. The physical nature of the measured response can be
very different: energy, displacement, magnetization, volume,
polarization, resistivity, etc. In all cases, when the sudden
changes (often called avalanches) of such magnitudes exhibit a
statistical distribution compatible with a power-law probability
density function g(x) dx ∼ x−α dx one gains confidence about
the existence of criticality. In some cases criticality has
also been referred to as “crackling noise” [2]. At criticality
the response of the system is characterized solely by the
critical exponents α. The theoretical understanding provided
by the use of renormalization group techniques [3] states,
in many cases, that critical exponents show a certain degree
of universality. Thus, it has become extremely important to
determine the values of α to a high degree of accuracy and
confidence.

Within this framework, it is important to develop tools
to test the power-law behavior of data samples and to fit
critical exponents. The development of these statistical tools
cannot be done without taking into account the limitations
inherent to data acquisition. Typically in physics, data come
from experiment or computer simulation and in both cases
one has boundaries to the proposed scale-free behavior. These
boundaries are not necessarily sharp or well defined. In
experiments one finds unavoidable noise deforming the power-
law distribution in the small-event region and different kinds
of instrument saturation in the large-event region. One should
take into account the fact that it is difficult to find instruments
(amplifiers, voltmeters, etc.) that allow measurements with
a range of more than five decades. In simulations one also
finds unavoidable limitations: for instance, one has a minimum
lattice parameter or particle size that alters the small-event
distribution and finite-size effects deforming the large events.
Since simulations with more than 105 particles are scarce,

*jordibaro@ecm.ub.es
†eduard@ecm.ub.es

it is also difficult to find power-law distributions extending
many decades in numerical works. In addition, the existence
of deformations in the region of small events is understood
not only because of the reasons discussed above with a
physical origin but also because of a mathematical constraint:
a pure power-law probability density with α > 1 cannot be
normalized without a theoretical lower limit xmin.

It is easy to understand that a naked-eye analysis of standard
histograms can be easily fooled, not only by the lack of
statistics (insufficient data in the recorded sample) but also
by the anomalies in the large- and small-event regions. The
same may happen with traditional fitting methods such as the
least-squares method (both linear and nonlinear), which, for
instance, depends on the binning process that is performed in
order to plot the histograms.

Many years ago most of the community adopted the
maximum-likelihood (ML) estimation method [4–6] as the
safest way to treat data, although it is still frequent to see
papers using alternative, error-prone fitting methods. Within
this scenario, the work done by Newman and co-workers
should be pointed out [6]. Using ML methods they have nicely
illustrated how to test the power-law character of data and
how to obtain good estimations (and error bars) of critical
exponents. One of the proposed techniques consists of studying
how robust the ML exponent is when the analyzed data are
restricted to being higher than an imposed lower cutoff Xlow

that is varied by several decades. By this method one studies
the deformation of the fitted exponent due to undesired effects
in the region of small events.

In this paper we will study the extension of this technique
to the analysis of the ML exponent as a function of both an
imposed lower cutoff Xlow and an imposed higher cutoff Xhigh.
This will render so-called ML exponent maps [7]. Using this
method we expect to be able to improve exponent estimation
in the case in which experimental or simulation data present
distortions not only in the region of small events but also in
the large-event region.

In Sec. II we will revisit the ML method and define ML
exponent maps. We will include a discussion on numerical
methods, evaluation of error bars, and analysis of syn-
thetic data obtained by pseudo-random-number generation. In
Sec. III we will apply the proposed analysis technique to the
study of three seismological catalogs from Japan, the San
Andreas fault, and the very recent activity on the island of
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El Hierro (Canary Islands). In Sec. IV we will study three
experimental cases corresponding to the measurement of the
energy of acoustic emission events in different phenomena in
solids, from previous literature. The three sets of experiments
have been carried out with the same experimental setup but
with different experimental constraints (noise, amplification,
etc.). The three cases correspond to (i) the compression of a
porous material (Vycor) [8], (ii) a cubic-tetragonal structural
transition in FePd [9], and (iii) a cubic-monoclinic structural
transition in a CuZnAl shape memory alloy [10]. In Sec. V
we will illustrate how to apply the technique to the study of
numerical simulations of the three-dimensional (3D) random
field Ising model with metastable dynamics, which is one of
the prototypical frameworks for avalanche criticality [11,12].
Finally, in Sec. VI we will supply a summary and draw
conclusions.

II. MAXIMUM-LIKELIHOOD EXPONENT MAP

Let us consider a sample of measurements {Xi} (i =
1, . . . ,N ) that we assume to be statistically independent. We
will denote by capital letters Xmax and Xmin the smallest and
the largest values in the sample set. Our aim is to model this
set with a power-law probability density:

g(x) dx = x−γ

ζ (γ )
dx, xmin < x < xmax, (1)

where γ is the exponent that we wish to estimate and
ζ (γ ) denotes a normalization function. This normalization
function will depend on γ and the theoretical upper (xmax)
and lower (xmin) bounds, as will be discussed below. (The
case xmax → ∞ is a particular case of our analysis). Note
that these theoretical limits will not necessarily coincide with
the maximum Xmax and minimum Xmin values in the sample.
Nevertheless, given the power-law character of the probability
density we expect that Xmin will be much closer to xmin than
Xmax to xmax. Table I clarifies the generic definitions of the
limits and cutoffs that will be used within this section. The
likelihood function L is defined as the probability that the set
of measurements {Xi} can be obtained by the proposed model:

L(γ ) =
N∏

i=1

g(Xi). (2)

The maximum likelihood estimation method consists of
choosing the value of γ that maximizes the likelihood function,
i.e., the value that makes the sample that we have obtained the
most likely one to have occurred.

In order to evaluate the deviations of data with respect to the
proposed model, in this work we will perform ML estimations
by restricting the original data within the imposed lower cutoff

TABLE I. Terminology used in this work to define the generic
bounds and cutoffs used for the theoretical analysis in this section

Symbols Meaning

xmin, xmax sharp bounds of the density g(x)
Xmin, Xmax extreme values in the sample {Xi}
Xlow, Xhigh cutoffs imposed on the sample for the analysis

Xlow and the imposed higher cutoff Xhigh, different from the
theoretical limits xmin and xmax, which are generally unknown.
We will use the symbol γ̂ to distinguish the exponent estimated
within a restricted interval from the exponent estimated from
the whole available sample. We will use n (n < N) to
denote the number of data points of the restricted set. The
normalization factor of the probability density with imposed
cutoffs is

ζ (γ̂ ) =
∫ Xhigh

Xlow

x−γ̂ dx = X
1−γ̂

low − X
1−γ̂

high

γ̂ − 1
. (3)

The best estimation of γ̂ is consequently found by maximizing
the likelihood function:

0 = ∂ lnL(γ̂ )

∂γ̂
= −

n∑
{Xlow<Xi<Xhigh}

ln(Xi) − n
ζ ′(γ̂ )

ζ (γ̂ )
, (4)

where

ζ ′(γ̂ )

ζ (γ̂ )
= 1

1 − γ̂
− X

1−γ̂

high ln Xhigh − X
1−γ̂

low ln Xlow

X
1−γ̂

high − X
1−γ̂

low

. (5)

We should mention that for the case in which the data are
discrete (for instance, in many simulations of lattice models)
the above treatment should be slightly modified. In this case,
the data consist of the frequencies of occurrence f (k) of a
discrete set of values {k} (which we will assume to be integers).
We would like to fit it with a power-law probability function
(called a Zeta or Zipf function) [4]:

p(k) = k−γ

ζ (γ )
, kmin � k � kmax. (6)

By following the same procedure as above, when we restrict
ourselves to data within imposed cutoffs Klow and Khigh, the
normalization function is

ζ (γ̂ ) =
Khigh∑

k=Klow

k−γ̂ (7)

and the derivative of the likelihood function will read

∂ lnL
∂γ̂

= −
Khigh∑

k=Klow

f (k) ln(k) + N

∑Khigh

Klow
k−γ̂ ln(k)∑Khigh

Klow
k−γ̂

. (8)

As opposed to what happens in the case in which one
considers only a lower cutoff, Eqs. (5) and (8) cannot be solved
analytically. Thus, in this work, we will use the false position
method in order to find roots [13]. This method generates a
sequence of recursively smaller intervals that always include
the root of the equation. The monotonicity of the derivative
of lnL [14] ensures that the false position method always
converges to the root. We have chosen arbitrary starting values
of γ̂1 = 1 and γ̂2 = 3.5, and we have iterated the algorithm M

times until an interval (γ̂M−1,γ̂M ) is reached with a distance
smaller than 0.005.

By changing the Xlow and Xhigh cutoffs we can plot the
values of the ML estimations of γ̃ using a color scale and
thus obtain the exponent map. Examples are shown in Fig. 1
and throughout the paper. Contour lines (in white) will also be
shown separating exponent values in steps of 0.1. The maps
exhibit a triangular shape since they are obviously limited by
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FIG. 1. (Color online) Exponent maps obtained from synthetic
data. The data sets correspond to a theoretical probability density
function with exponent γ = 1.55 and bounds xmin = 1 and xmax =
108. The label N indicates the size of the sample set. The two curved
lines indicate the limits above which the standard deviation becomes
greater than 0.05: The red dashed curved line (above) corresponds to
the estimation using Eq. (11) and the black continuous curved line
(below) to Eq. (10). The vertical straight line marks the highest value
in the sample Xmax.

the condition Xhigh > Xlow. The main goal of the map is to
check the existence of a flat plateau (with a homogeneous
color which is free of contour lines) in which the exponent
is independent of the cutoffs and thus confirm the scale-free
behavior of the data. The map also allows anomalies to be
identified that can have different origins, as will be discussed
in the following sections by the use of examples.

One of the advantages of using the false position method for
root finding is that we straightforwardly obtain an estimation
of the second derivative of lnL at the maximum:

∂2 lnL
∂γ̂ 2

∣∣∣∣
max

∼
∂ lnL
∂γ̂

∣∣
M

− ∂ lnL
∂γ̂

∣∣
M−1

γ̂M − γ̂M−1
. (9)

By assuming Gaussian behavior of the likelihood function
(which is ensured by the central limit theorem when n is large
enough) and under very general conditions [15], the second
derivative provides us with an approximation to the standard
deviation of the estimated exponent,

σγ̂ =
[
−∂2 lnL

∂γ̂ 2

∣∣∣∣
max

]−1/2

. (10)

It is easy to check that this expression, when xmax → ∞,
reduces to the equation proposed in Ref. [6]:

σγ̂ = γ̂ − 1√
n

. (11)

As a first test of the usefulness of the ML exponent maps, we
studied synthetic data [6] generated according to a power-law

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

100 101 102 103 104 105 106 107 108

γ

Xlow

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

γ

101102103104105106107108

Xlow

N=103

N=105

N=104

N=106

Xhigh= Xmax

Xhigh= 108

Xhigh= ∞

FIG. 2. (Color online) Comparison of the behavior of the expo-
nent fitted to synthetic data as a function of the lower cutoff Xlow when
Xhigh is fixed. Squares (red) correspond to Xhigh = xmax = 108 (the
theoretical limit of the synthetic data), circles (green) to Xhigh = Xmax

(the maximum value found in the sample), and triangles (blue) to
Xhigh = ∞.

probability density with theoretical limits xmin � x < xmax:

g(x) dx = (γ − 1)
x−γ

x
1−γ
min − x

1−γ
max

dx, (12)

with γ = 1.55, xmin = 1, and xmax = 108. The synthetic data
samples were obtained using the RANECU generator [16] for
uniform random numbers in the [0,1) interval and transformed
using the method based on the inverse cumulative distribution
function F−1(z). For the proposed probability density (12)
the transformation function that converts uniform random
numbers z into the desired ones is given by

x = F−1(z) = [
x1−γ

max − z
(
x1−γ

max − x1−γ
min

)] 1
1−γ . (13)

Figure 1 shows the resulting maps corresponding to four
samples of increasing size N as indicated by the legends. The
first observation is that the size N of the sample is crucial in
order to obtain a clean plateau corresponding to the correct
exponent. Only when N � 104 does the plateau extend for
several “square” decades.

We have indicated the position of the maximum value Xmax

obtained in the sample by a vertical black line. The variations
of the fitted exponent observed from this line to the right are
simply a consequence of changing the imposed upper cutoff
Xhigh in a region without available data due to the lack of
statistics. This lack of data between Xmax and Xhigh is relevant
for the fitting method and, a priori, should be taken into
account. Furthermore, the imposed cutoff Xhigh can be moved
above the theoretical limit xmax or set to be ∞. This will then
be equivalent to fitting the synthetic data (generated with a
theoretical upper limit) with a model without such a limit.
In the maps in Fig. 1 we have kept the imposed cutoff Xhigh

below the theoretical cutoff xmax, but note that for real data
(e.g., in the following examples) this theoretical cutoff will be
unknown.

Figure 2 shows the behavior of the fitted exponent γ̂ as a
function of the lower cutoff Xlow for the same synthetic data

066121-3
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samples as in Fig. 1. We have compared three different ML
estimations corresponding to three choices of Xhigh:

(1) Green circles correspond to the ML estimation of
the exponent obtained by fixing Xhigh = xmax = 108, the
theoretical upper limit. This is nothing more than the profile
of the ML exponent map along the vertical right border at 108

in Fig. 1. This would be the correct way to perform the ML
estimation if one could have a priori knowledge of the true
upper cutoff.

(2) Blue triangles (higher symbols) correspond to the ML
estimation obtained by neglecting the existence of an upper
limit in the power-law distribution, i.e., fixing Xhigh = ∞.
This would precisely correspond to the method proposed by
Ref. [6].

(3) Red squares (lower symbols) correspond to the ML
estimation obtained by fixing the higher cutoff of the data
to the maximum value found in the sample Xhigh = Xmax. It
corresponds to the profile of the map along the vertical black
lines in Fig. 1.

For small N Method 3 underestimates the exponent because
it neglects the fact that no data have been observed between
Xmax and xmax. However, for N � 104, one can see that Method
3 renders exponents that are very similar to the correct ones
(Method 1). For N = 106 Method 3 is clearly better than
Method 2, which neglects the existence of an upper boundary
to the distribution: it can be seen that the two coinciding esti-
mation methods (red squares and green circles) exhibit a larger
plateau (by more than one decade) than the blue triangles.

It is also interesting to discuss the strong fluctuations of the
ML exponent close to the diagonal of the maps, which can be
observed in Fig. 1. These are due to the small size n of the re-
stricted sample set that increases the statistical fluctuations. We
can locate the region where the standard deviation of the ML
estimate is lower than ±0.05 [17] by using the formulas (10) or
(11). These low-error regions correspond to the areas below the
continuous (black) and dashed (red) curved lines, respectively.
As can be seen, both estimations of the error differ, even in the
region of small events. The estimation that takes into account
the existence of both a low and a high cutoff obtained from
Eq. (10) gives a better separation between the regions with
meandering contour levels and the smooth, flat plateau.

To conclude this section, let us summarize what we have
learned from the analysis of synthetic data: it does not make
much sense to increase the higher cutoff Xhigh above the
maximum value in the data sample Xmax unless we have inde-
pendent information of the theoretical limit xmax. Therefore, in
the maps presented in the following sections we will scan the
higher and lower cutoffs only within Xmin and Xmax. Thus, the
vertical right border of the maps will coincide with the vertical
black line plotted in Fig. 1. In addition, we will use the error es-
timation proposed by Eq. (10) and plot, on the maps, the curved
line separating the region with error bars greater than ±0.05
(above the line) from the region with lower error bars (below).

III. SEISMOLOGICAL CATALOG ANALYSIS

The Gutenberg-Richter law [18,19] describing the sta-
tistical distribution of earthquake magnitudes is one of
the most famous examples of a scale-free phenomenon
already discussed using ML methods in previous works [20].

Theoretical studies have proposed different physical models
(e.g., Burridge-Knopoff [21], Olami-Feder-Christensen [22],
and damage rheology [23]) and framework theories such as the
so-called self-organized criticality [24–26] have explained, to
a certain extent, the reasons behind this critical behavior. It is
not our purpose to gain any understanding of seismology, but
only to use some of the available earthquake catalogs in order
to test the behavior of ML exponent maps.

Earthquakes are historically characterized by a quantity
called magnitude M , which aims to be a logarithmic measure
of the “size” or “energy released” during the earthquake.
The Gutenberg-Richter law [18] refers to the number of
earthquakes N>(M) with a magnitude larger than a certain
value M . As a function of magnitude, the Gutenberg-Richter
law can be written as

N>(M) ∝ −bM, (14)

with b ∼ 1.0. The measurement of earthquake magnitudes and
energies is still a challenging issue for seismology. As the
medium is too large to collect a significant amount of radiated
energy, seismologists must rely on measurements of the sparse
network of seismic stations in order to locate and estimate the
“size” of an earthquake. Because of this, many different criteria
are used, depending on the region, earthquake energy range,
available instruments, etc. The catalogs usually contain mixed
data corresponding to different definitions of the magnitude
M . These definitions are not fully equivalent, especially for
small earthquakes [19,27]. There are also different definitions
of the “energy” associated with an earthquake (all of them
being approximately linearly related): seismic moment, strain
energy drop, radiated energy, etc. In this work we will use
a broadly accepted formula [28] that allows an approximate
conversion of the different “magnitudes” M to the minimum
strain energy drop E as

log10 E = 1.5M + 4.8, (15)

where E is the energy in joules. Using the Gutenberg-Richter
law (14) and Eq. (15), one can write the probability density
for earthquakes with energies between E and E + dE as

p(E) dE ∼ E−ε dE, (16)

where ε = 1 + (b/1.5) � 1.67 is the expected exponent char-
acterizing the power-law distribution of earthquake energies.

We have computed the ML exponent maps corresponding
to three earthquake catalogs:

(1) The subduction process taking place in the Japan Trench
makes it one of the most active seismological regions in the
world. The area is quite well documented because of the
vicinity of the Japanese islands. We studied the exponent map
corresponding to the energy distribution for all the seismo-
logical events registered as earthquakes in the ANSS [29]
catalog from 1 January 2000, 00:00:00 to 9 November 2011,
17:32:36 within the region enclosed between latitudes 28◦N
and 48◦N and longitudes 128◦E and 148◦E. The registered data
correspond to the N = 14 509 events above M = 2.7, where
the the Tōhoku earthquake of 11 March 2011 was the most
serious event with an estimated magnitude of M = 9.0.

(2) San Andreas fault system [30], beneath the region
occupied by the states of California and Nevada, is probably
the most frequently monitored seismic region in the world
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and the best documented in catalogs. We will therefore take it
as a precise example of a seismological strike-slip process.
The data analyzed here correspond to the seismic signals
registered as earthquakes in the ANSS [29] catalog with
its epicenter within the area of latitudes between 30◦N and
42◦N and longitudes between 114◦W and 126◦W during the
period between 1 January 2000, 00:00:00 and 9 November
2011, 17:43:00. In order to avoid the presence of a possible
noise background, we selected only those earthquakes with a
magnitude greater than M = 0.4. The strongest earthquake
was recorded on 15 June 2005 off the coast of Northern
California with a magnitude of M = 7.2. The data set has
N = 453 372 events.

(3) As a completely different seismological phenomenon
(very localized in space and time), we considered the recent
submarine volcanic eruption of La Restinga off the island of El
Hierro (Canary Islands), which started in the summer of 2011.
The volcanic activity triggered an earthquake swarm [31]
which is expected to have quite different behavior from typical
tectonic processes. We considered the data obtained from the
IGN [32] catalog from 8 June 2011, 00:52:00 until 7 February
2012, 12:00:00 in the region enclosed by latitudes from 26.8◦N
to 27.6◦N and longitudes from 17.85◦W to 18.2◦W. The data
set has N = 12 158 events

The three ML exponent maps are shown in Fig. 3. We have
kept the same scales in order to clearly reveal the different size
N of the statistical samples. Figure 4 shows the behavior of the
fitted exponent ε as a function of the lower cutoff Elow when
the higher cutoff Ehigh is fixed to the maximum value in the
sample set, i.e., the profile of the map along the vertical right
borders in Fig. 3.

The first observation is that there is an almost perfect plateau
exhibited by the San Andreas data (middle diagram) for a value
close to the expected theoretical value ε = 1.67. Despite some
deformation, indications of a plateau are also observed for
the other two sets, Japan (top diagram) and El Hierro (bottom
diagram). For the El Hierro data the coincidence is remarkable,
given the different physical origins of the earthquake sequence.

A second important observation is the deformation of the
plateau (toward low exponent values) for the Japan data
in the region of Elow < 1010J. A plausible explanation for
this deformation is that the statistics for small earthquakes
in the Japan catalog is incomplete. The same tendency can
be observed for the San Andreas data, but for much lower
minimum cutoffs, Elow < 108J, almost coinciding with the
lower border of the map in Fig. 3 (middle diagram). The
oscillation of the fitted exponent for the Japan data that can be
seen on the maps (as contour lines with a parabolic horizontal
shape starting from the right border) is surprising as well as
the existence of a maximum (about Elow ∼ 1011–1012J) on
the profile shown in Fig. 4. We are unable to provide an
explanation for this behavior, but it could be caused by the
different methods used to estimate magnitudes and/or energies
depending on the earthquake magnitude range.

IV. ACOUSTIC EMISSION DATA ANALYSIS

As a second set of experimental examples, we have focused
on much smaller energy scales. Different processes, which
have been classified as critical or crackling noise, take place in
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FIG. 3. (Color online) ML exponent map corresponding to the
earthquake data from Japan, the San Andreas fault, and El Hierro.
White contour lines are separated by 0.1 units. The region above the
black line corresponds to estimated statistical error bars greater than
±0.05.

solids, exhibiting a certain degree of disorder when driven
by an external force or by a temperature ramp. Examples
include superconductivity [33], capillary condensation [34],
acoustic emission in structural transitions [35–37], Barkhausen
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FIG. 4. (Color online) Behavior of the ML exponent as a function
of the lower cutoff Elow for a fixed higher cutoff equal to the maximum
value in the sample set. Only a few error bars are indicated. The
horizontal dashed lines show the theoretically expected value of 1.66
and an error bar of ±0.10.
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noise in magnetism [38,39], and fracture [40]. In many
cases, theoretical studies have provided general frameworks
to understand the origin of this criticality [2,41–45].

The following three experimental examples correspond to
data recorded using the acoustic emission (AE) technique [46].
Propagation of cracks or the sudden movement of internal
interfaces generate acoustic waves in the ultrasonic range
that propagate through the solid and that can be recorded
by appropriate transducers on the surface. The AE method
is equivalent to the method used to monitor earthquakes, but
on a much smaller scale. It is interesting to describe here
some details in order to understand the deviations that will be
observed in the maps.

The most common piezoelectric transducers, coupled to the
sample surface, generate a voltage signal V (t) proportional to
the speed of the incident elastic wave that is amplified. Using
a predefined threshold (above the unavoidable experimental
electrical and mechanical noise), it is possible to define
individual AE events [47]. The beginning of an event occurs at
a time t1 when the voltage exceeds the threshold. The end of the
event occurs when the signal falls below the threshold at t2 and
remains below the threshold for more than a certain predefined
time called the hit definition time (HDT), typically in the range
of 10–100 μs. The fast integration of the V 2(t) signal from t1 to
t2, normalized by a reference resistance, renders an estimation
of the energy recorded by the transducer, which is assumed to
be proportional to the energy released by the physical process
generating the elastic wave.

It is worth mentioning some experimental limitations of
most standard setups: (i) Acquisition systems, due to limited
memory, have an internal maximum limit on the duration of a
signal as well as a maximum limit on the voltage that saturates
the amplifier. In the case that such maxima are exceeded,
the signal is truncated both in voltage and/or duration. This
represents a deformation in the large-event region and a not
totally sharp cutoff in the measured energy since both voltage
and duration can be independently exceeded. (ii) A second
experimental problem that needs to be considered is due to the
attenuation of ultrasound inside the material and the distance
from the source of the AE event to the transducer. If the
studied samples are small (compared to typical length scales
for exponential attenuation or compared to typical transducer
sizes) we expect that data recorded by a single transducer
would not be very distorted by the distance to the source.
However, if samples become large, the quality of the overall
power-law distribution becomes poorer. One could then use
several transducers to locate the position of the source of the
event and correct for attenuation. This has been achieved in
some cases [48,49], though, in general, it is a complicated
procedure. The examples below correspond to the use of a
single transducer. (iii) A third problem is that counting of the
small signals is lower than expected for different reasons: an
important fraction of signals that happen to be very short in
time and/or amplitude cannot be detected by the acquisition
setup (because they are too short for the sampling frequency
or the amplitude is below the threshold value), or some of
the small signals may be overlapped by the tails of previous
signals due to dead-time HDT.

In the cases analyzed in the following three sections,
the same experimental setup for the acquisition of AE has

been used: a PCI2 system from the MISTRAS Group, which
consists of an 18-bit A/D converter working at a base sampling
rate of 40 MHz. The transducers are also the same in the three
examples (micro80). This makes the ML exponent maps easy
to compare. The amplification factor, the threshold, and the
number of recorded signals used in each case are different,
given the different noise conditions and differing nature of
the studied phenomenon and driving force. Although the
acquisition card is only 18 bits (∼5 decades), the measured
energies by the fast integration algorithm may theoretically
extend many more decades. In order to compare the different
studies, we will keep the same scales: from 10−17 to 10−9 J for
energy and from 1.0 to 2.5 for the fitted exponent ε.

A. Mesoporous SiO2 under compression

The study of noise in porous materials under compression
is important for the prediction of accidents in mining. In
this first example [8] two samples of a porous material SiO2

(Vycor) with two parallel faces are compressed between two
plates with a lineally increasing load in time. The AE sensor
is attached to one of the plates. There are two sets of data
studied corresponding to the AE events recorded at two loading
rates: 0.2 and 1.6 kPa/s. The study of the influence of the
driving rate is important because, in some cases, it affects
the fitted exponents due to the overlap of large and small
avalanches [50,51]. The material cracks under compression
and the recorded AE signals show a power-law distribution
of energies. In this case a preamplifier of 60 dB was used
and the threshold was selected to be 26 dB. The number of
recorded signals was N = 11 022 and N = 28 652 for the first
and second set, respectively.

Figure 5 shows the ML exponent maps obtained with the
two driving rates. It is clear that, in both cases, there is a vast
region of the map with a constant plateau corresponding to
a common value of the exponent close to 1.4. This means
that the exponent is robust against changes in the cutoffs by
several decades. The small colored spots observed close to the
diagonal of the map as well as the large peak in the upper right-
hand corner correspond to expected statistical fluctuations,
above the black line indicating when the statistical error bar
becomes larger than ±0.05. The black region in the bottom
left-hand corner corresponds to the fact that the exponent
decreases when only an important fraction of very low signals
is included in the analysis, which gives an erroneous estimation
for the reasons explained above. Basically, no other deviations
are observed in this example.

Figure 6 shows the analysis of the profiles of the map
along the right vertical border (Ehigh = Emax) compared to the
analysis proposed in Ref. [6] by assuming no upper limit for the
power-law distribution (Ehigh = ∞). As can be observed, the
two profiles are similar but are not identical. They show a clean
plateau at 1.39 ± 0.02 for three decades (10−15–10−12). The
profile obtained by fixing the highest cutoff to the maximum
value in the sample (i.e., along the right-hand border of the
ML exponent map in Fig. 5) shows flatter behavior along, at
least, one more decade.

Therefore, one can conclude that this example shows a
very robust power-law behavior, comparable to that observed
for seismological data.
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FIG. 5. (Color online) ML exponent maps corresponding to the
AE recorded during the compression of Vycor samples at two
different rates, 1.6 kPa/s (above) and 0.2 kPa/s (below). White lines
correspond to the exponent contour levels with a separation of 0.1.
The region above the black line indicates an estimated error bar
greater than ±0.05.

B. Structural transition in FePd

In this second case we present an analysis of the AE
recorded during a martensitic transition in Fe-Pd [9]. This
alloy has received a lot of theoretical interest due to the simple
symmetry relation between the high-temperature phase (cubic)
and the low-temperature phase (tetragonal). The transition can
be induced by applying an external stress or by changing
temperature. Two samples were considered in the study: a
single crystal and a polycrystal with the same composition
Fe68.8Pd31.2. The transition was induced by changing the tem-
perature at different driving rates between 0.1 and 10 K/min.
Apart from the critical distribution of energies during the
events, the AE study revealed other interesting features (which
were not found by other techniques). The transition, on
cooling, started at the same temperature Ms = 246 ± 2K for
the two samples. As soon as the transition started, the formation
of new tetragonal domains or the advance of interfaces
separating previously nucleated domains generated AE events.
Due to the thermoelastic behavior [52] of the transition the AE
extended for many degrees (∼35K) until the sample was fully
transformed. On heating, the reverse process occurred with
low thermal hysteresis (∼1 K).

In this case AE was amplified 60 dB and the threshold was
chosen to be 22 dB. The four sets of data that we will analyze
here correspond to a driving rate of 1 K/min for both the
single crystal and the polycrystal and for cooling and heating
runs. In order to increase statistics, data were accumulated over
20 ramps. This accumulation technique would correspond to a
real increase of the statistics only if the data recorded on each
ramp are independent of the previous data. This assumption
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FIG. 6. (Color online) Profiles along the right vertical border
of the exponent maps corresponding to the Vycor experiments,
compared to the profiles proposed in Ref. [6]. Some typical estimated
error bars are shown. The horizontal line indicates the value ε = 1.39
proposed in Ref. [8].

is doubtful in the case of structural transitions since it has
been demonstrated that samples exhibit a learning process that
increases the correlation of the signals between consecutive
ramps [53]. In this case the ramps corresponding to the same
driving rate were not strictly consecutive since other driving
rates were added in between, and thus the independence of the
recorded data is not clear.

The total number of recorded signals was N = 171 056
(single crystal, cooling), N = 111 840 (single crystal, heat-
ing), N = 192 596 (polycrystal, cooling), and N = 58 501
(polycrystal, heating). Typically, the number of AE events is
not symmetric during heating and cooling ramps and there is
a lack of understanding of this phenomenon [35].

The study [9] concluded that in the four cases the energies
of the individual AE events were power-law distributed (∼4
decades for the single crystal and ∼3 decades for the polycrys-
tal). The exponents were fitted using the ML method and were
almost independent of the heating or cooling rate. The values
of the cutoffs were selected in the region where the statistics
were sufficiently high. For the single crystal both cooling
and heating ramps exhibited an exponent compatible with a
value of 1.64 ± 0.10. For the polycrystal a clear deviation
of the exponent was found between heating (2.0 ± 0.1) and
cooling (1.59 ± 0.10). So far, we have no explanation for this
deviation.

Figures 7 and 8 show the ML exponent maps corresponding
to the four cases. The graphs above correspond to cooling data
and the graphs below to heating data. As can be observed the
colored spots attached to the diagonal, which correspond to
statistical fluctuations, are larger (in absolute terms) than in the
previous example. This suggests that, although the recorded
number of signals is ∼10 times larger, most probably data
corresponding to the different 20 runs were correlated and did
not effectively increase the statistics. Thus, the estimated error
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FIG. 7. (Color online) Exponent maps for AE in the FePd single
crystal corresponding to heating ramps (below) and cooling ramps
(above). The region above the black line corresponds to estimated
error bars greater than ±0.05, after correcting by a factor of

√
20 due

to the possible correlations between measurements (see text). The
contour lines (in white) are separated by 0.1 units.

bars were, most probably, underestimated by a factor of
√

20.
Therefore, in order to plot the curved black line on the map
separating the zone with large error bars, we have required
that

√
20σγ̂ = 0.05. It can be seen that, indeed, the curved line

separates the zone with fluctuating contour lines from the flat
region. By observing the map corresponding to the heating
runs (Fig. 8 bottom) for the polycrystalline sample one clearly
sees that the large fitted exponent ∼2.0 is doubtful and most
probably is a consequence of the lack of statistics. The region
with small enough error bars (below the black line) is very
small and it is difficult to identify any plateau. For the cooling
ramps (Fig. 8 top) the plateau is not very clear but at least the
separation of the contour lines is much wider.

Figure 9 shows the corresponding profiles along the right
vertical border of the map. Error bars have been increased by
a factor of

√
20 compared to the ones reported in the original

paper [9]. The dashed lines indicate the proposed exponent
1.64 ± 0.1. The hypothesis that this might be a common value
for the exponent corresponding to the four cases cannot be
ruled out due to the lack of statistics. More measurements for
the polycrystalline sample would be required to fully clarify
this point.

C. Structural transition in CuZnAl

This third example corresponds to a recent study of AE
during the martensitic transition in a CuZnAl shape-memory
alloy [10]. In this case the transition is also thermally induced
from a monoclinic multivariant structure at low temperatures
to a cubic structure at high temperatures. The purpose of
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FIG. 8. (Color online) Exponent maps for AE in the FePd
polycrystal corresponding to heating ramps (below) and cooling
ramps (above). The region above the black line corresponds to
estimated error bars above 0.05, after correcting by a factor of

√
20

due to the possible correlations between measurements (see text). The
contour lines (in white) are separated by 0.1 units.

the analysis performed in Ref. [10] was not to demonstrate
the power-law distribution of the AE events (which had been
shown previously in different studies [54,55]) but to compare
the observed exponent with the exponent corresponding to the
very large avalanches that can also be recorded by a sophis-
ticated calorimetric study. The sample studied was, therefore,
larger than those studied previously. This, as explained above,
may lead to distortion of the power law. Furthermore, a larger
sample typically requires a more powerful temperature control
setup, involving higher electric currents and thus involving
greater noise. Since the study was focused on large avalanches
and noise was high, the amplification was set to a much lower
factor, 40 dB, and the threshold was set to 45 dB. The data
set analyzed consists of N = 17 936 signals corresponding to
a unique heating ramp.
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FIG. 9. (Color online) Exponent values vs lower cutoff Elow for
AE in FePd. The horizontal lines show the value 1.64 ± 0.10 proposed
in Ref. [9]
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FIG. 10. (Color online) ML exponent map corresponding to the
martensitic transition in a CuZnAl sample during a heating ramp.

As can be seen in Fig. 10, the exponent map shows a
poorer quality without any clear plateau. The profile shown in
Fig. 11, corresponding to the right vertical border of the map,
suggests an incipient plateau around ε = 2 for slightly more
than one decade, but this is not fully conclusive. Thus, the
exponent map analysis in this case indicates that either the
number of signals is too small to draw conclusions about the
power-law behavior of the data or the distribution shows a
deformation probably because the sample was too large and
attenuation introduces a length scale. Note, however, that we
are not fully compromising the results pointed out Ref. [10].
The conclusions were based not only on AE signals but also on
the coincidence of the observed incipient plateau at ε = 2 with
the plateau observed by a different experimental technique.

V. SIMULATION DATA

As a last case we will analyze data corresponding to
numerical simulation of a lattice model. This is an interesting
illustrative case of the advantages of ML maps compared
to the previous proposed analysis assuming no upper limit.
This is because the distortions affecting the large avalanche
region are not due to measurement problems; rather, they are
intrinsic to the finite size of the model. The study corresponds
to the 3D Gaussian random field Ising model (3D-GRFIM)
driven by an external field H (t) with metastable dynamics
at zero temperature [11]. The model is based on the original
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FIG. 11. (Color online) ML fitted exponent as a function of the
lower cutoff Elow when considering a higher cutoff equal to the
maximum recorded signal in the data sample. The horizontal lines
indicate the value 2.15 ± 0.10.

Ising model with the addition of random internal fields hi

acting on each spin Si = ±1. The values hi are quenched
and distributed according to a Gaussian probability density

ρ(h) dh = 1√
2πR

e
−h2

2R2 dh with zero mean and variance R2. The
parameter R is usually referred to as the amount of disorder in
the system. The Hamiltonian of the system reads

H = −
∑
〈i,j〉

SiSj −
N∑
i

hiSi − H (t)
N∑
i

Si, (17)

where the Si spin variables are defined on a regular cubic
lattice and the first sum extends over all nearest-neighbor
pairs. The simulations of the model start from a saturated
configuration {Si} = −1 and H = −∞. The field is then
adiabatically increased and the spins flip according to the local
relaxation rule

Si = sign

(∑
j

Sj + hi + H (t)

)
, (18)

where the sum extends over all the z = 6 neighbors of the
spin Si . With this metastable dynamics the system evolves
following a sequence of magnetization jumps (avalanches)
occurring at certain fixed values of the external field separated
by periods of inactivity in which the field is increased without
producing any spin flip.

The model has been widely used as a prototype model for
the study of avalanche dynamics. It has been successful in
explaining different features of the magnetization process in
ferromagnets: the presence of rate-independent hysteresis, the
return point memory property, and the existence of Barkhausen
noise [11]. Extensions of the model have been also used for the
understanding of other athermal first-order phase transitions
[56,57].

Here we will focus our attention on the distribution D(s,R)
of the sizes s (number of flipped spins) of the avalanches
obtained along the magnetization process from H = −∞ to
H = +∞, i.e., the so-called integrated distribution. In the
thermodynamic limit and when the amount of disorder R is
tuned to the critical value Rc, this distribution is expected to be
a power law [11,58–60] characterized by a critical exponent
called τ ′ = τ + σβδ:

D(s,Rc) = s−τ ′∑∞
s=1 s−τ ′ . (19)

For values of disorder above Rc it is expected that the
distribution of avalanche sizes is exponentially damped and
thus, in the thermodynamic limit, the discontinuities in the
magnetization m = s/L3 vanish. Below Rc, it is expected
that the distribution of avalanches is also exponentially
damped, but there will exist a unique massive avalanche with a
size proportional to L3 that is responsible for a magnetization
discontinuity, as should occur given the first-order character
of the phase transition.

In the numerical simulations on a finite lattice (L × L × L)
with periodic boundary conditions, nevertheless, the distri-
bution of avalanche sizes D(s,R,L) behaves quite differ-
ently. Several effects deform the power-law character at the
“pseudo”-critical point: On the one hand, avalanche sizes
are limited from above by the finite size s < L3. The fact
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that, in all critical phenomena with an associated diverging
correlation length, distortions occur well below the limit L3

is well known. Among other reasons, close to the critical
point Rc, the avalanches are expected to be fractal [12,60] and
thus exceed the lattice side L when its size is much smaller
than L3. Such avalanches that expand the lattice side L in, at
least, one dimension, are the so-called spanning avalanches.
For a cubic lattice with periodic boundary conditions, they
can be easily classified as 1D-spanning, 2D-spanning, or
3D-spanning depending on whether they span the lattice side in
one, two, or three spatial dimensions. On the other hand, some
small avalanches (sometimes called lattice animals within per-
colation theory [61]) may occur for probabilistic reasons even
very far away from the critical point. For any value of R and H

it is possible to compute the probability that two neighboring
spins (surrounded by negative spins) flip simultaneously. The
same computation can be carried out for the probability of
a group of three, four, etc. neighboring spins with a certain
topological configuration to flip simultaneously. It is clear
that in such a computation the number of configurations in
which spin clusters (lattice animals) with a certain size s can
be constructed plays a fundamental role. Such a phenomenon
has (a priori) no connection with the critical point. The total
number of such noncritical avalanches is, nevertheless, very
large (it increases with L3) and renders a distribution of
small avalanches that has general, fast decreasing behavior
with s, but is nonmonotonic. At the critical point this effect
overlaps with the proposed power-law distribution and thus
shows a deformation in the small-size region of the distribution
D(s; R,L), which typically can be observed below s∼10. Our
goal here is to show how these distortions at large and small
sizes show up on the ML exponent map.

Before the discussion of our results, it is important to recall
that the exact values of Rc and τ ′ have not been definitely
established. The problems arise precisely because it is difficult
to deal with spanning avalanches in the simulations on a finite
lattice. There have been two main approaches:

(1) Dahmen and co-workers found Rc = 2.16 ± 0.03 and
τ ′ = 2.03 ± 0.03 by performing a scaling collapse of the
avalanche distribution, neglecting the fact that there should be
a dependence on L in the distribution. This was first done [58]
on very large systems (up to 10003) but averages over very
few realizations of disorder. The collapses clearly revealed
that corrections to scaling were needed. Later [62], similar
collapses were done, which included a unique system size
of 643. In both cases, the data were restricted to amounts of
disorder 2.25 < R < 6.0 well above Rc. By this method they
avoided most spanning avalanches in the simulations but paid
the price of working too far from the critical point and so they
had to extrapolate the value for the exponent.

(2) Furthermore, there have been studies precisely focused
on the behavior of spanning avalanches which analyze how
they concentrate close to the critical point [59,60]. Such studies
have performed finite-size scaling analysis of the number
of spanning avalanches and have obtained a higher value
of the critical amount of disorder Rc = 2.21. To do so, the
authors proposed a method (called method-2 in Ref. [60])
to separate the 3D-spanning avalanches that will correspond
to the massive avalanches that clearly disturb the power-law
distribution of avalanche sizes in the region of large events,

close to the critical point. Such 3D-spanning avalanches are
identified when they are the unique spanning avalanches in the
full-field excursion. This allows them to be filtered from the
statistical analysis. The reason behind the separation method
is that, when massive avalanches occur, they fill such a large
fraction of the system that they do not allow for any other
spanning avalanche to take place. It was shown that this
filtering method, although not perfect, gave more consistent
results in the finite-size scaling analysis than the method of
discarding all the spanning avalanches.

The differences between the two above approaches are even
more subtle and difficult to summarize here. Let us simply
remark that the two analysis use a slightly different scaling
variable to measure the distance to the critical point and that the
exponent τ ′ = 2.03 ± 0.03 proposed in Ref. [58] is interpreted
not as a true critical exponent but as an effective exponent
τ ′

eff in Ref. [59]. Instead, the authors of Ref. [59] propose
that close to the critical point the distribution of avalanche
sizes (neglecting the massive avalanches) will be dominated
by noncritical lattice animals (in the small-s region) and by the
so-called nonspanning critical avalanches (in the intermediate-
and large-s regions). Only the last kind of avalanches may
exhibit true power-law behavior with an exponent τnsc = 1.65
at Rc = 2.21.

We have performed numerical simulations with system
sizes ranging from L = 32 to L = 256 and values of R within
the range 2.15 < R < 2.24. For every size L and every R,
averages were taken over 2000 configurations of the random
fields for L � 128 and over 1400 for L = 256. We used the
RANECU random number generator and a Box-Muller-polar-
Marsaglia algorithm to generate the Gaussian random fields.
Simulations of the metastable dynamics were done with the
sorted list algorithm [63]. The typical sizes of the sample sets
of recorded avalanches (corresponding to each single value of
R) range from 106 for L = 32 to 109 for L = 256.

Figure 12 shows the exponent maps corresponding to R =
2.20 and increasing values of L. The first column corresponds
to the exponent obtained by considering all the avalanches
and the second column to the analysis after the suppression of
the massive avalanches, as explained in Ref. [60]. As can be
observed in the first column the maps display an approximately
triangular black region in the upper right-hand corner that also
extends along the right edge which is due to including of such
“massive” avalanches that they strongly distort the possible
power-law distribution. Massive avalanches overpopulate the
large-s region and thus decrease the value of the fitted
exponent. Such a deformation disappears when the data are
filtered, as can be seen in the right column in Fig. 12.

Close to the bottom horizontal boundary of the maps,
exponent oscillations (seen as a sequence of parallel horizontal
contour lines) can also be observed in all the graphs. These
oscillations are due to noncritical avalanches (lattice animals),
which are always present and difficult to subtract.

Besides these two observed deformation regions, it is not
clear that a clean plateau exists close to the bottom right-hand
corner, with an area increasing with L. The maps show a slow
decrease of the exponent from 2.1 toward 1.7 when increasing
the lower cutoff slow, and this effect does not seem to disappear
for large system sizes. Instead, a region with a value of the
exponent close to 1.6–1.7 seems to develop close to the upper
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FIG. 12. (Color online) ML exponent maps corresponding to the
3D-GRFIM for R = 2.20 and increasing system sizes from L = 64
(below) to L = 256 above. The left-hand column shows the maps that
were obtained by considering all the recorded avalanches, whereas in
the right-hand column the method proposed in Ref. [60] was used to
suppress the massive, large noncritical avalanches. The region above
the black line (very close to the diagonal of the map) corresponds to
an estimated error bar of ±0.05. Contour lines in white are separated
by 0.1 units

corner when the system size is increased up to L = 256. This
effect is clearer when the data have been filtered (right column)
and suggests that a true power law may only be observed when
small avalanches are not included in the analysis.

Figure 13 shows the profiles of the maps obtained by fixing
shigh = smax, for different values of R between 2.16 and 2.25
and L from 32 to 256. The column on the left corresponds to
the analysis of all the avalanches and the column on the right
to the analysis after filtering the massive avalanches. Again, it
is difficult to find any clear evidence of a plateau growing with
L. The only exception seems to be for R = 2.20–2.21 in the
region of intermediate and large cutoffs (104 < slow < 106),
where a plateau seems to form and become broader when L

increases. This plateau has a height approaching τ ′ � 1.7. It
can be observed not only on the filtered data (right column)
but also as an inflection when the avalanches are not filtered
(left column).

The profiles in Fig. 13 also allow the oscillations in the
small avalanche region (slow < 20) to be observed. The peaks
in the exponent correspond to even sizes. This indicates that
small avalanches with odd sizes occur with a higher frequency
than the frequency corresponding to a perfect power law.

Note also that, for the critical value Rc = 2.16 proposed in
Ref. [58], the possible plateau at a height τ ′ ∼ 2.03 does not
exhibit a clear tendency to increase with L: it is very much
distorted by odd-even fluctuations and, already for slow = 102,
has clearly decreased for all the studied system sizes.

In our opinion, a final understanding of the behavior of
these distributions can only be achieved after a full finite-size
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FIG. 13. (Color online) Profiles of the ML exponent maps along
the vertical right border for different values of R and L. Data in
the left column correspond to the full set of avalanches. On the right
column the data correspond to the same sets after filtering the massive
avalanches following the method proposed in Ref. [60].

scaling analysis of the distribution D(s; R,L) (involving the
three variables), which is beyond the scope of this paper. Nev-
ertheless, in view of the above observations it seems that the
distribution of avalanche sizes at the critical point shows two
contributions: (i) the actual power-law behavior corresponding
to the nonspanning critical avalanches with τ ′ � 1.7 that can
only be observed at intermediate and large avalanche sizes
and (ii) the contribution from noncritical avalanches (lattice
animals), in the small-s region, which distorts the exponent
toward the effective value τ ′

eff � 2.03. This scenario is not
incompatible with previous numerical studies.

VI. SUMMARY AND CONCLUSIONS

The aim of this paper has been to illustrate the usefulness of
ML exponent maps in order to study distortions of power-law
behavior to the critical distributions of events. Such distortions
are expected to occur for most experimental and numerical
simulation data for different reasons. Figure 14 shows a
schematic representation of the main conclusions of this paper.
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FIG. 14. (Color online) Schematic representation of ML expo-
nent maps for experimental data (left) and simulation data (right).
The lines indicate the regions where we can expect deformations of
the theoretical plateau. The dot indicates the best values of the cutoffs
for the estimation of the exponent.

On the left we show the ML exponent map that one can expect
for experimental data. When the sample set is small, a lack
of statistics creates deformations of the theoretical plateau
close to the diagonal axis of the map, which can be bounded
by a proper estimation of the statistical error bars. Noise
and undercounting of small-size events renders a deformation
region starting in the bottom left-hand corner and which
extends horizontally along the bottom border. Saturation of the
amplifiers and counters also deforms the plateau in the upper
right-hand corner and along the right edge. Between these
three boundaries there should be a region with a well-defined
plateau. The black dot indicates the best values of the high and
low cutoffs for the determination of the critical exponent. It

should be mentioned that, if the size of the sample set is too
small, such an ideal situation might not be achieved.

The right plot shows a similar scheme for numerical
simulations of lattice systems. The deformation regions are
similar to the previous ones. Along the bottom edge we find
the footprint of the lattice character of the model that deforms
the perfect power-law behavior. Along the vertical right edge
we find deformations associated with finite-size effects, which
in some cases can be partially corrected.

The examples analyzed in this work have included three
seismological catalogs corresponding to Japan, the San An-
dreas fault, and El Hierro volcanic activity, three sets of
acoustic emission data corresponding to the fracture of Vycor
under compression, a cubic-tetragonal structural transition in
FePd, and a cubic-monoclinic structural transition in CuZnAl,
and, finally, numerical simulations of the 3D random field Ising
model. These three case studies of the maps have allowed the
good quality of the data to be checked or a hypothesis for
the observed distortions to be proposed. The studies have also
been used to suggest improvements to measurements and/or
numerical simulations.
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[59] F. J. Pérez-Reche and E. Vives, Phys. Rev. B 67, 134421

(2003).
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