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Existence and significance of communities in the World Trade Web
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The World Trade Web (WTW), which models the international transactions among countries, is a fundamental
tool for studying the economics of trade flows, their evolution over time, and their implications for a number of
phenomena, including the propagation of economic shocks among countries. In this respect, the possible existence
of communities is a key point, because it would imply that countries are organized in groups of preferential
partners. In this paper, we use four approaches to analyze communities in the WTW between 1962 and 2008,
based, respectively, on modularity optimization, cluster analysis, stability functions, and persistence probabilities.
Overall, the four methods agree in finding no evidence of significant partitions. A few weak communities emerge
from the analysis, but they do not represent secluded groups of countries, as intercommunity linkages are also
strong, supporting the view of a truly globalized trading system.
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I. INTRODUCTION

Among the many real-world networks studied in the
literature, the World Trade Web (WTW) has recently received
increasing attention because of a number of interesting fea-
tures. It is quite natural to represent international transactions
among countries as a network, where countries are the nodes
and the connecting edges are the international trade flows
between them, giving rise to an intricate system of exchanges
affecting all the countries. The specific economic motivations
driving international trade flows shape this network, which
consequently displays characteristics that are relevant for their
economic implications, as well as for the network analysis in
itself.

The main topological properties observed in the WTW
indicate that this network is disassortative, with a high
clustering coefficient and a number of small-world properties
[1–4]. Its evolution over time is slow, showing an increasing
connectivity among nodes [5].

In what follows, we use the term “globalization” according
to the definition given by Deardorff [6], “The increasing world-
wide integration of markets for goods, services and capital,”
or by Robertson [7], “Globalization refers to the compression
of the world and the intensification of consciousness of the
world as a whole.” (We note that many other definitions of
globalization exist, not always in full agreement: also, in his
glossary, Deardorff [6] quotes alternative definitions.) Both
definitions stress the idea that globalization is affecting the
world as a whole, and here we stress the economic aspects
of globalization as economic integration between countries.
A number of indicators show its rapid increase over time
(see, e.g., Williamson [8] or Baldwin and Martin [9]), but the
patterns of this integration can be quite different: for example,
economic integration can increase at the regional level rather
than “globally,” and this has important consequences for
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many issues, such as the way in which economic shocks are
transmitted among countries and the extent of competition
between countries in the international market. This is also true
using network analysis to measure the economic integration
in the WTW, as the overall high degree of connectivity in the
network might, nonetheless, imply quite different underlying
network structures.

The aim of this paper is to study the possible existence
of communities within the WTW to better understand the
characteristics of economic integration. In general terms,
a significant network community is a set of nodes with
strong internal connections, much stronger than those with
the remaining nodes of the network. Applying community
analysis to the WTW should reveal groups of countries with
privileged relationships, originating by geographical vicinity,
trade agreements, common language or religion, traditional
partnerships, etc. What defines a community, therefore, is
strong commercial ties (compared to the rest of the world)
rather than common individual characteristics of the nodes,
such as economic size, level of development, and even the
number or strength of their links.

So far, very few studies have analyzed communities, or
clustering, within the WTW [10–13], possibly because of
the many open issues still existing in the methodologies for
community analysis [14]. It is indeed problematic to interpret
the results of these studies. Reyes et al. [11], looking for
communities in the WTW, use as a benchmark the groups
of countries that signed regional trade agreements, and they
find that, over time, the formation of communities follows
an irregular pattern. Instead, He and Deem [13] move from
a peculiar definition of distance and clusters within the
network to find that clustering declined over time, making the
world increasingly “global.” Barigozzi et al. [12] examine the
WTW considering sectoral trade flows, finding no clear time
trend in community formation. They observe heterogeneous
community structures in different sectors, even though it
is impossible to compare the significance of the different
communities. The above-mentioned studies define and detect
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communities in the WTW in distinct ways, but in all cases it
is quite difficult to assess the significance of the partitions that
emerge.

In this paper, we look for communities in the WTW in
the period between 1962 and 2008, and we compare different
methodologies to search for communities in networks, in order
to verify the robustness of the results that we obtain. All the
methods applied here base the search for a community on the
identification of a group of countries sharing a disproportionate
amount of trade among them compared with the trade they have
with the rest of the world. From the economic point of view,
the existence of communities would imply that countries trade
especially with a group of preferential partners and trade tends
to be “regionalized,” especially if communities coincide with
groups of geographically close countries [15]. Instead, in a
globalized world defined as a whole, as we recalled above, we
do not expect communities to be significant, as countries can
be connected through trade to nearly any country in the world
with similar ease.

Our analyses shed many doubts on the existence of
communities in the WTW, as the results show that the network
is not significantly split between different groups. Some
“weak” communities emerge, but these groups of countries
are not more connected with each other than with the rest
of the world to the extent of forming truly privileged or
exclusive relationships, supporting the view of a globalized
trading system.

II. THE WORLD TRADE WEB

Data for our analysis come from the Direction of Trade
Statistics published by the International Monetary Fund (IMF)
and from the NBER-UN Trade Data data set made available
by the Center for International Data at the University of
California, Davis, which is an elaboration from United Nations
trade data by Feenstra et al. [18]. We use annual bilateral
imports for the years 1962, 1965, 1970, 1975, 1980, 1985,
1990, 1995, 2000, 2005, and 2008. More precisely, we use
IMF data for the 1985–2008 period and NBER-UN data for
the previous years, which are not covered in the IMF database.
We note that the two sources are strongly consistent in the
years for which they are both available (1985–2000) [19].

A number of important events affected the patterns of
world trade in the period considered: the end of colonial
links, changes in the exchange rate regime, the removal of
many barriers to trade, and the increasing role of emerging
countries in the international markets. Our observation period
stops before the outbreak of the financial crisis began to affect
international trade, which was still growing, by 15% in value
in 2008, before the dramatic drop recorded in 2009.

We use directed flows received by an importing country
from any given exporting country, measuring the value in US
dollars at current prices of all merchandise imported by a
country from each partner country (import data are generally
more reliable and complete than export data). We prefer
directed data because the direction of trade is economically
important and there is no a priori reason to expect symmetry in
bilateral trade flows. However, in order to thoroughly validate
our community analysis, we also consider a symmetrized
version of the trade network (see Sec. III). Finally, we note

that here we are not concerned with the change in prices over
time, as we do not carry out any time series analysis, but we
consider the existence of communities in each year separately
(for other analyses of the WTW as a directed network, see [5]
and [12]).

The WTW is then modeled as a directed, weighted network
composed of N nodes corresponding to countries (N =
{1,2, . . . ,N} is the set of nodes) and L edges representing
the trade flows among countries. We denote by W = [wij ] the
N × N weight matrix, where wij � 0 is the trade flow from
country i to country j . The connectivity matrix A = [aij ] is the
N × N matrix, where aij = 1 if wij > 0, i.e., if there exists
the edge i → j , and aij = 0 otherwise.

The network being directed, for each node i we distinguish
between the in-degree kin

i = ∑
j aji , the out-degree kout

i =∑
j aij , and the total degree ki = kin

i + kout
i , and we denote

the average degree 〈k〉 = ∑
i ki/N . Analogously, we define

the in-, out-, and total strength of node i as s in
i = ∑

j wji ,
sout
i = ∑

j wij , and si = s in
i + sout

i , respectively, and the total
weight of the network edges as w = ∑

ij wij .
The network is strongly connected if, for every pair (i,j )

of distinct nodes, there exists an oriented path from i to j

(e.g., [23]). If the network is not connected, the set N of nodes
can be partitioned in components K1,K2, . . . ,Km having,
without loss of generality, N1 � N2 � · · · � Nm > 0 nodes,
respectively (

∑
i Ni = N ). Each component is a maximally

strongly connected subnetwork (i.e., it is strongly connected
and it is not part of a larger connected subnetwork). In our
study, we find that the largest component K1 is actually a giant
component, i.e., it has a dimension N1 which has the same
order of magnitude as N , and on the other hand, it is much
larger than all the other components. Network components
can be identified by means of standard algorithms of graph
analysis [24].

Not all the countries in our sample are connected in every
period. In fact, even if the cases in which a country does not
trade at all are really exceptional, in our database a country
can appear not connected in a given year for a number of
reasons. For example, some countries, such as the USSR and
East Germany, simply did not formally exist throughout the
entire period, whereas other countries did not report their data
in a given year. In 1962, the strongly connected component
includes 145 countries, and it keeps slowly increasing, to
reach 180–182 countries from 1995 on, including the new
countries born from the dismantling of the former Soviet bloc.
In the analysis in the following section we consider the giant
components only.

In our sample, the total value of world imports w = ∑
ij wij

increases from about 126 billion in 1962 to 15 760 billion in
2008 (all amounts in US dollars). The value of imports in
our data set represents approximately 95% of the total world
imports in 2008 and slightly lower amounts in the previous
years [25]. Not only the trade value but also the number of
edges L registers a remarkable increase, increasing from 7870
in 1962 to 21 123 in 2008. The average in-strength of each
node also increases significantly, but average values in this
network are not especially relevant, as nodes and edges (in
our case, countries and trade flows) are very heterogeneous.
For example, import flows in 2008 range from 160 million for
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Tonga to more than 2000 billion for the United States. These
huge differences reflect the large diversity in the economic
weight of countries across the world.

III. COMMUNITIES IN THE WTW

Consider now a directed, weighted, strongly connected
network (or, if not connected, its giant component). Roughly
speaking, a subset Ch ⊂ N is called a community if the
total weight of the edges internal to Ch is much larger
than that of the edges connecting Ch to the rest of the
network. The community analysis of a given network with
nodes N therefore consists in finding the “best” partition
C1,C2, . . . ,Cq (i.e.,

⋃
h Ch = N and Ch ∩ Ck = � for all

h,k), according to some criteria (for simplicity, we do not
consider possibly overlapping communities). Despite the huge
number of contributions [14], there is not a consensus on
formal criteria for defining communities and for testing their
significance. We use four approaches to analyze communities
in the WTW.

A. Modularity optimization

Finding the partition that maximizes a quality index called
modularity is by far the most popular method for finding
communities in a given network. Originally proposed by
Newman and coworkers [26,27], this approach has found
plenty of applications in diverse areas and has been extended
in many directions [14].

In the case of a directed and weighted network, the
modularity Q associated with the partition C1,C2, . . . ,Cq is
given by

Q = 1

w

q∑
h=1

∑
i,j∈Ch

[
wij − sout

i s in
j

w

]
, (1)

which is the fraction of the network weight internal to
communities minus the expected value of this fraction in a
random network that has in common the in- and out-strengths
with the original one [28].

Although the best partition (i.e., the one with Q = Qmax)
cannot be found by exhaustive search even in rather small net-
works, for computational reasons, many efficient algorithms
are available for obtaining a presumably “close-to-optimal”
solution [14]. We use the aggregative, hierarchical method
devised by Blondel et al. [29], which is considered very
effective both in terms of Qmax (i.e., in the capability of finding
a partition with a high modularity) and in computational
requirements [30,31].

Throughout this paper, the results of the application of
community analysis methods to the WTW are compared with
those obtained for two synthetically generated benchmark
networks, purposely built with a well-defined cluster structure.
We denote them Girvan-Newman (GN) and Lancichinetti-
Fortunato-Radicchi (LFR) networks, respectively. The former
is an undirected, unweighed network with N = 128 nodes,
often used in the last few years for testing community analysis
algorithms [14,33]. It is built by defining four blocks of 32
nodes each and by purposely (and randomly) inserting a large
number of intrablock edges but only a few interblock edges.
One of the possible parametrizations prescribes the average

degree 〈k〉 and the average internal degree 〈k〉int, i.e., the
number of neighbors each node has in its same block. We let
〈k〉 = 16 and 〈k〉int = 14, which yields a strongly clusterized
network. In fact, modularity optimization easily recognizes the
four-community planted partition, with Qmax = 0.604. LFR
networks are instead a more complex class of benchmarks
recently proposed by Lancichinetti et al. [34,35]. This class
explicitly takes into account two properties often found in
real networks, namely, the heterogeneity in the distributions
of node degrees and community sizes, which are both taken
as power laws. Furthermore, once the number and size
of communities are defined, a tunable “mixing parameter”
prescribes the fraction of edges that each node shares with
the nodes of the other communities. We built a directed,
weighted network with (we refer to [35] for the detailed
parameter definition) N = 171, 〈k〉 = 20, τ1 = −2, and τ2 =
−1 (exponents of the power-law degree and community size
distributions, respectively), β = 1.5 (coefficient of the degree-
weight relationship), and mixing parameter μ = 0.1. The
result is a strongly clusterized network with 10 communities.
Modularity optimization perfectly recognizes the planted
partition, with Qmax as large as 0.820.

The results of modularity optimization for all the years
of our WTW data set are reported in Table I [36]. In
1962 we obtain q = 4 communities with Qmax = 0.225. The
communities count 55, 44, and 22 countries, plus a very
small community formed by only 4 countries. The largest
communities essentially coincide with most of Europe and
Africa, America, and Asia plus Oceania, respectively. The
latter community also includes the United Kingdom and
Ireland, still strongly linked to Commonwealth countries.
From 1970 onward the results show q = 3, with a similar
grouping of countries (possibly with the exception of African
countries, that tend to become more scattered across commu-
nities) and with the United Kingdom and Ireland shifting to
the European community, following their membership in the
European Economic Community in 1973. The only exception
is in 1995, when data for the new countries formed by the
dismantling of the Soviet bloc start to be recorded, and indeed
one of the communities is formed essentially by this group.
Over time, the strong ties between these countries loosen up,
as they appear no longer as a separate group, but mostly in
the large Europe-based community. In 2008 the communities
contain 68, 66, and 47 countries, but the largest cluster is
now associated with Asia plus Oceania, confirming the rapidly
increasing role of Asia in international trade. This clustering
by continents is very much in line with the large body of
literature showing that geographical proximity still matters for
international trade (e.g., [5]). We also note that, in terms of
the number q of communities, our results are qualitatively
consistent with [12], where a value of q ranging from 2
to 4 is reported for the period 1992–2003 (no modularity
value is reported, however, in that paper). Finally, note that
slightly larger modularity values appear over time, reaching
Qmax = 0.296 in 2008. This increase can hardly be considered
significant, however, especially because it is known that the
maximum modularity (max-modularity) tends to grow with
the size of the graph (e.g., [14], p. 90).

A well-known peculiarity of the WTW is the large value
of the density d = L/(N (N − 1)) (i.e., the actual number
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of edges divided by their maximum allowable number) in
comparison to most real-world networks. In our data set, d

ranges from 0.37 in 1962 to 0.65 in 2008. Since the weights are
extremely diversified, a large number of edges convey a very
small import-export flow. It is reasonable to wonder whether
this could be an obstacle to our analysis, in the sense that the
actual communities could be concealed by the many scarcely
significant intercountry connections. To assess this, we applied
a filtering technique to the WTW to extract its “backbone,”
namely, a set of truly significant edges. Besides the trivial
threshold approach (which discards all weights below a fixed
level), a few filtering methods have recently been proposed
which are explicitly designed to deal with multiscale weight
distributions [37–39]. We apply the method proposed in [3,38],
where, in deriving the filtered network, only those edges are
preserved which significantly deviate from a null model which
assumes that the strength of each given node is uniformly
distributed among its incident edges. More precisely, once a
significance level 0 < α < 1 is set, an edge is preserved if the
probability that its weight complies with the null hypothesis
is less than α (a smaller α value is thus more selective).
Therefore the method acts locally by analyzing each single
node and by discarding edges which do not carry a significant
fraction of the node strength. Since the selection is done on
a node-by-node basis, none of the edges (and none of the
countries) is a priori discarded, which is instead the effect of
trivially fixing a threshold.

We apply the filtering method to the WTW from 1962
to 2008, and we present in Table I the results for α =
0.01. Consistent with [3], we find that this α level yields
a reasonable trade-off between the simplification of the
network (the number of edges is dramatically reduced, to
10% or less) and the integrity of its important features (about
80% of the total weight is preserved, and practically all
nodes remain connected). If the community analysis is then
performed, however, the results obtained with the original
and filtered networks are not very different. As expected, the
max-modularity is larger for filtered networks, but the dramatic
decrease in the density does not give rise to a similar increase in
Qmax or to a structural redesign of the communities. In fact, we
note that the newly appeared communities turn out to be very
small, and although geographically meaningful (e.g., Kenya,
Rwanda, and Uganda in 1990), they have scarce economical
importance. We conclude that, while filtering is an essential
tool for unveiling important network properties, it seems
not to be crucial in community analysis because different
weight scales are naturally treated within the definition of
modularity, (1).

The application of the max-modularity criterion to directed
networks has been criticized in a few works (e.g., [40,41])
because it can yield distorted results on some specific
topologies. We decided therefore to extend our analysis to
the symmetrized network, namely, to the undirected WTW
obtained by replacing the two (directed) trade flows between
each pair of countries with their sum (e.g., [1,4,42]). This
obviously implies a loss of information, which can be signifi-
cant for some topological or economical issues. However, it is
presumably not as crucial in community analysis, where one
is interested in the “strength” of the relationship between two
countries as a measure of their partnership. The symmetric
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WTW is described by the weight matrix W sym = [wsym
ij ], with

w
sym
ij = w

sym
ji = wij + wji , and the expression of modularity

becomes [14]

Q = 1

2wsym

q∑
h=1

∑
i,j∈Ch

[
w

sym
ij − s

sym
i s

sym
j

2wsym

]
, (2)

where s
sym
i = ∑

j w
sym
ij = ∑

i w
sym
ji and wsym = ∑

ij w
sym
ij /2.

The results are reported in Table I, and they are very similar
to the results obtained for the original directed network. We
conclude, therefore, that the network directionality is not an
obstacle to community analysis.

The problem we face now is the significance of the obtained
network partitions. Maximizing the modularity obviously
yields some “best” partition, but this does not imply that the
network is actually structured in significant clusters. Although
a large value of Qmax per se should reveal that the network has
a modular organization (as it measures a kind of “dissimilarity”
between the network and its randomizations), it is well known
that a large value of Qmax can even be obtained in random
(i.e., Erdös-Rényi) networks, which instead are expected to
have no community structure by construction [43]. In addition,
the values of Qmax we obtain can hardly be considered to
be large (remember that the GN and LFR benchmarks have
Qmax = 0.604 and 0.820, respectively).

In other words, finding the partition that maximizes Q by
no means concludes the community analysis of the network
[14]. For undirected, unweighted networks, some methods
have been proposed for complementing the max-modularity
approach with a test of statistical significance. In the simplest
approach, one can consider the ensemble of networks having
the same degree sequence k1,k2, . . . ,kN as the original one,
extract a large number of random networks from this ensemble,
and compute the max-modularity Qi for each one of them.
Then a large value of the z score, z = (Qmax − μ(Qi))/σ (Qi),
indicates that the max-modularity obtained for the original
network is likely to be significantly high. Karrer et al. [44],
however, showed, by analyzing a pool of real networks, that
the z score can fail in some cases. They proposed a robustness
analysis based on perturbing the original network by randomly
rewiring a given fraction of edges, recomputing the best
partition by max-modularity, and measuring to what extent
the partitions of the original and perturbed networks overlap.
The rationale is that, if communities are not significant, even
a small perturbation of the network topology should induce a
large reorganization of the clusters. Hu et al. [45] generalized
this perturbational approach by defining a suitable “universal
index” R for measuring the significance of communities,
which they proved to be fairly effective by a series of tests
on both artificial and real networks.

All the above methods, however, have some features that
make their use problematic in our case. First, the significance
analysis is based on the modularity optimization of many
instances of a random model or of a perturbed network, thus
potentially it suffers from the same criticalities that affect
the computation of Qmax (and of the associated partition) in
the original network. Second, no straightforward extensions
exist in the case of weighted, directed networks, for which the
definition of randomized models and of suitable perturbation

schemes is absolutely not trivial. The situation is especially
problematic in our case, since the link weights of the
WTW span many orders of magnitude and make whatever
discretization scheme (such as those proposed in [46,47])
absolutely critical, as well as any technique based on fixed
percentage perturbations [48] or on weight extraction from
some postulated probability distribution [49].

Instead of randomizing the network, we can assess whether
our results are robust by randomizing the assignment of nodes
to communities. Starting from the optimal partition (i.e.,
the one with Q = Qmax), imagine selecting and relabeling
a fraction 0 < α < 1 of nodes, namely, assigning them to a
(randomly selected) different community. As α increases, we
obtain partitions more and more distant from the optimal one,
and we can quantify this distance by the (normalized) variation
of information V [50], a measure which is 0 if and only if the
two partitions are identical and 1 when they are “maximally
different” (i.e., one partition has N clusters and the other has
only one). It is natural to expect that, as V increases while
departing from the optimal partition, the modularity Q(V ) of
the associated partition decreases accordingly. And indeed this
is the case, but the form of the function Q(V )—which a priori
depends on which nodes are relabeled—can disclose important
properties.

The function Q(V ) is displayed in Fig. 1 for the WTW
in 3 years and for the GN and LFR benchmark networks
introduced above. In all cases, two functions are depicted:
one is the result of the random selection of the fraction α of
nodes to be relabeled, and the other is obtained by relabeling
the least connected nodes (i.e., the nodes with the smallest total

FIG. 1. (Color online) The (normalized) modularity Q(V ) of the
perturbed partitions obtained, from the optimal one [Q(0) = Qmax],
by relabeling 10% to 50% of the nodes, i.e., by assigning them
to a different community. V is the variation of information of the
perturbed partitions. The (blue) curve with filled circles was obtained
by relabeling randomly selected nodes (each point is the average of
100 realizations); the (red) curve with filled triangles is obtained by
relabeling the least connected nodes (lowest strength or degree).
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strength or degree). If the communities are significant, moving
even the least connected nodes should in any case produce
an important effect on the modularity values, because those
nodes also crucially affect the community structure. Indeed,
this is what happens in the GN and LFR cases, where the
two curves are qualitatively similar and quantitatively close.
On the contrary, the three WTW panels strikingly put into
evidence the scarce significance of the optimal partition. As a
matter of fact, we can randomly relabel as many as 50% of the
nodes (inducing a large variation of information), yielding just
a slight decrease in the modularity Q(V ). This means that the
positioning of a large number of countries, actually the least
important ones from an economic point of view, is more or less
irrelevant and that modularity is only determined by the links
with the largest weights. In other words, the landscape of the
modularity Q is extremely insensitive, since a large number
of partitions (even very distant one from the other) have very
close modularity values. Overall, this suggests that the results
of the modularity analysis should be taken with great caution,
as they denote an extremely scarce robustness of the obtained
communities: indeed, a large number of very distant partitions
are qualified as nearly equally “optimal.”

Given the low robustness of the partitions found via
modularity optimization, in order to have a complete view of
the cluster structure of the WTW, in the next sections we move
to completely different approaches for testing the existence
and significance of communities in the WTW.

In general terms, the weak evidence of a clusterized
structure of the WTW, indicated both by the rather small
modularity values and by the above sensitivity test, should
not be surprising. Notice that interactions among countries
are measured by their absolute trade values. As such, a
strongly clusterized network would possibly be formed by
clearly distinct groups of countries with large intra- but small
intercommunity trades. But the largest edges (in terms of their
weight) basically involve the largest world economies (e.g.,
in 2008, on at least one side of the top 20 edges, we find the
United States, China, Canada, Mexico, Japan, Germany, the
Netherlands, France, Korea, the United Kingdom, Belgium,
and Italy). We can hardly expect these countries (or a subset of
them) to form a community as defined here, because the trade
flows among them are not strongly differentiated from their
trade with the remaining countries. At the same time, it can
also hardly be expected that the remaining countries form one
or more communities. In the next sections, in order to clearly
understand the possible clusterized structure of the WTW, we
not only consider different community analysis techniques,
but also move to analyzing relative trade values.

B. Cluster analysis

Standard data clustering is aimed at organizing objects into
“homogeneous groups,” trying to maximize, at the same time,
the intragroup similarity and the intergroup dissimilarity. This
requires defining a suitable distance among data. When we
move to graph clustering, i.e., grouping the nodes of a network,
which distance should be used is by no means obvious.

We adopt a notion of distance among nodes which is
based on random walks. An N -state Markov chain can
straightforwardly be associated with the N -node network by

row-normalizing the weight matrix W , i.e., by letting the
transition probability from i to j equal

pij = wij∑
j wij

= wij

sout
i

. (3)

The resulting transition matrix P = [pij ] is a stochastic (or
Markov) matrix, i.e., 0 � pij � 1 for all i,j , and

∑
j pij = 1

for all i. The study of many problems in network science
benefits from some sort of Markov chain approach (e.g.,
epidemic spreading, navigation, etc. [23,51]). Community
analysis is one of them, and several contributions in this vein
have been published; we recall [40] and [52–55] among others
(see, again, [14] for a comparative survey).

It is important to note that modeling the WTW by Eq. (3)
corresponds to moving from absolute to relative trade values,
since the flow from i to j is now normalized by the
total export flow from country i. The consequence is that
communities, if any, will not necessarily be composed of
groups of countries related by large trading but, instead, of
countries with privileged partnership, namely, whose trading
is important in relative terms. This can originate from, e.g.,
geographical vicinity, trade agreements, common language
or religion, and traditional partnerships. Since we naturally
expect such communities to be composed of a mixture of large
and small economies, the use of relative trade values appears
to be more appropriate, as absolute measures would a priori
obscure the position of medium-small countries.

In defining a distance among nodes, we essentially adopt the
approach of [54], where a T -step random walk is performed,
in a Monte Carlo fashion, from each of the N network nodes.
If the two nodes (i,j ) are visited along the same walk, the
similarity counter σij is increased by 1. At the end, a similarity
matrix � = [σij ] is obtained which is used as a basis for
agglomerative, hierarchical clustering. The rationale for the
method is the following: if the number T of steps is limited,
the random walker starting from i will more likely visit nodes
strongly connected to i, i.e., within the same community.
The choice of T is thus quite critical: if T is too large, the
probability of visiting a given state becomes independent of
the starting state (as it tends to the stationary Markov chain
state probability distribution π = πP ), whereas if T is too
small, the information gathered is possibly insufficient. We
return to this point later.

We partially modify the above method in that we do
not explicitly perform random walks. In fact, consider M

repetitions of a random walk started from i. For each repetition,
the probability that the walker is in j after t steps is [P t ]ij .
Thus, if M random walks of length T are performed from
i, the expected number of visits of j in any time instant in
1 � t � T is M

∑T
t=1[P t ]ij . Note that this is conceptually

equivalent to the above explicit random walk approach [54],
but with an arbitrarily large number M of repetitions from
each starting node instead of only one. By averaging with
respect to M and T , and recalling that we are dealing
with directed networks (thus [P t ]ij 	= [P t ]ji), we propose a
similarity matrix � = [σij ] defined by

σij = σji = 1

T

T∑
t=1

([P t ]ij + [P t ]ji). (4)
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Finally, the distance dij = dji between nodes (i,j ) is defined
by complementing the similarity and normalizing the results
between 0 and 1:

dij = dji = 1 − σij − min σij

max σij − min σij

. (5)

At this point, a standard hierarchical, aggregative cluster anal-
ysis is used to explore the possible existence of communities
[56]. More precisely, a binary cluster tree (dendrogram) is
computed initially by defining N groups each containing a
single node and then by iteratively linking the two groups with
minimal distance [57].

Cluster analysis yields a different dendrogram for each
time horizon T , whose choice is thus nontrivial. At the two
extremes, setting T = 1 restricts the pairs of nodes which
are candidate to nonzero similarity to neighboring pairs only,
whereas larger and larger values of T tend to make any node
equally similar to any other. We solve this indeterminacy by a
sort of optimization. For each network under scrutiny, we build
a dendrogram for each T from 1 to a sufficiently large value
Tmax (of the order of N ), and we take the one that maximizes the
cophenetic correlation coefficient C, which is defined as the
linear correlation between the distances dij and the cophenetic
distances cij [56]. The latter are a product of the hierarchical
cluster analysis: for any node pair (i,j ), the cophenetic distance
cij is the height of the link joining (directly or indirectly)
nodes (i,j ) in the dendrogram. Recall that, when nodes are
increasingly grouped together building the dendrogram, their
distances to the other nodes (or groups) is replaced by their
average. The effect is small if the nodes that are grouped
together are very close each other, namely, if they form a
cluster. If so, we expect similar values for the dij and the cij

values and, thus, a large value of C. Although this approach can
reveal criticalities in some specific applications [58], the value
of C is generally used to assess whether the adopted distance
dij induces an effective clusterization: by maximizing C, we
thus select the best possible clusterization with respect to T .

The dendrograms obtained for the WTW in 1962, 1980,
and 2008 (i.e., the two extremes of the time window of our
data set, plus an intermediate year) are displayed in the upper
three plots in Fig. 2 [36]. Each vertical line corresponds to a
node (country). Horizontal lines (“links”) connect two groups
of nodes, and the height of the link (as read on the y axis) is
the distance between the two groups. In the two lower plots in
Fig. 2, dendrograms of the GN and LFR benchmark networks
are displayed.

A clear, visual indication of a clusterized network structure
is, in the benchmark’s dendrograms, the existence of long
vertical segments or, equivalently, of links (i.e., horizontal
segments) whose height is largely different from the heights
of the links below them. In fact, this situation arises when
the distance between the two groups joined by the link is
much larger than the distance among the nodes forming the
two groups; this exactly means that there are clusters in the
network. This phenomenon is strikingly evident in the GN
dendrogram: whereas there is a “continuum” of distances
within a single community, the intergroup distance is large
and sharply divides the four planted communities. The same
happens in the LFR dendrogram.
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FIG. 2. (Color online) Dendrograms obtained by hierarchical
cluster analysis. From top to bottom: WTW in 1962, 1980, and 2008;
GN benchmark network; and LFR benchmark network. Colors (other
than black) denote groups of nodes whose distances are all not larger
than 0.7.

The situation appears to be markedly different for the WTW
dendrograms. Only a few distinct groups appear, and they are
mostly composed of few countries. Moreover, there seem to be
no significant structural differences through the years, possibly
with a diminishing visual distance between groups over time.
As specified above, we take the dendrogram for which the
cophenetic correlation coefficient C is the maximum value
attained by varying the time horizon T of the random walker
[see Eq. (4)]. Notably, such a value is attained for T = 12 and
T = 6 for the GN and LFR benchmarks, respectively, while
the maximum C is obtained at T = 1 for all the WTW cases.
This means that, in the latter case, the best clusterization (as
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measured by C) is obtained by assessing the node similarity
only among direct neighboring countries. This is an effect
of the anomalously high network density, for which direct
connections carry over most of the information to the random
walker.

In all years, some expected patterns can be observed.
The United States and Canada form one of the strongest
partnerships: their distance in the dendrogram stays constantly
very small from 1970 [in seven cases of nine, their distance is
actually 0, meaning that they are the closest pair consistent
with (5)]. France is strongly connected to some of its
former colonies, whereas Germany is close to other European
countries. Some of these links are very large both in absolute
and in relative terms (e.g., between the United States and
Canada); others are important in relative terms (e.g., about 80%
of the Guadeloupe export in 1995 is directed to France). Often
very small countries are connected to much larger ones, an
effect of the disassortativity already observed in the WTW [4].
These links tend to be small in absolute terms, given the small
economic size of the countries, but they are very important in
relative terms, as they show a strong preference for a given
partner.

The scenario is not modified if we analyze the filtered
and the symmetrized networks defined in Sec. III A [36]:
qualitatively, they display no difference with respect to those
of the original WTW.

As pointed out above, visual analysis of the dendrograms
leads us to claim that the WTW, through the years, does not
display a significant community structure. It is important to
point out that this result is specific neither to our particular
choice of node distance nor to the choice of considering relative
trade values. As a matter of fact, we repeated the hierarchical
cluster analysis by using the distance proposed by He and
Deem [13], both on the WTW and on the benchmark networks.
In [13] the node distance is defined as dij = wmax − wij ,
with wmax = maxij wij . Note that dij relates country i to
its direct neighbors through the absolute trade value wij .
Inspection of the corresponding dendrograms [36] leads to
exactly the same conclusion as above: the qualitative structure
of the dendrograms is markedly different passing from the
benchmarks to the WTW, denoting clusterization levels very
strong for the former but extremely mild for the latter.

In summary, the results of the cluster analysis, although
based on visual evidence only, seem to denote the absence of
the existence of a significant community structure in the WTW.
This emerges both from the use of relative trade measures, a
metric that appears to be more suited to a multiscale network
such as the WTW (it is actually consistent with the filtering
technique described in Sec. III A), and from the adoption of
a node distance based on absolute trade values. Together with
the small modularity level (Sec. III A), this is a further clue of
a mild community structure of the WTW.

C. Stability of partitions

A different approach for exploiting random walks in study-
ing network communities has been devised by Delvenne et al.
[59], who introduced the concept of stability of a partition. As
above, the rationale is that, in a strongly clusterized network,
a random walker starting in a community is likely to remain

for quite a long time within that community, before leaving
it to enter another community. Imagine that the walker emits
a signal at each step, which has the same value as long as
it remains within a community and changes upon moving
to another community. Then studying the persistence of this
signal provides important information on the community
structure of the network.

The probability πi
t that the random walker is in state i at

time t evolves according to the Markov chain equation πt+1 =
πtP , and the vector πt = (π1

t π2
t . . . πN

t ), assuming ergodicity,
tends to the stationary state π = πP as t → ∞. Consider
now a network partition C1,C2, . . . ,Cq and assume that the
walker, at each step t , emits a signal st which takes value
c as long as it moves within Cc. Delvenne et al. [59] show
that the autocovariance of st can be usefully expressed as cov
[st ,st+τ ] = (1,2, . . . ,q)′Rτ (1,2, . . . ,q), where Rτ is the q × q

clustered autocovariance matrix,

Rt = H ′(diag(π )P t − π ′π )H, (6)

where H is a N × q binary matrix coding the partition, i.e.,
its entry hic is 1 if and only if node i belongs to community
c. Note that Rt depends on the network and on the partition
only. Equation (6) provides an interpretation of each entry
[Rt ]cd as the probability of starting in community c at time
0 and being in community d at time t , minus the probability,
evaluated at stationarity, that two independent walkers are in c

and d. If the partition coded by H is significant, one expects a
dominance of the diagonal terms [Rt ]cc over time. The stability
of the partition H is thus defined as the following function
of time:

rH
t = min

0�s�t
trace[Rs]. (7)

A good, significant partition will have stability rH
t which

remains large over a long time span, since the random walker
has a high likelihood of remaining within the same community
for long time. On the contrary, a rapidly decaying rH

t denotes
a scarcely significant partition, because the walker rapidly
abandons the starting community [60].

We compute the stability function rH
t for all the WTW cases

in our data set 1962–2008 and, for comparison, for the GN and
LFR benchmark networks. In all instances, we consider the
partition H obtained via modularity optimization (Sec. III A).
The results are depicted in the upper panel in Fig. 3 (for
readability, only the WTW curves for 1962, 1980, and 2008 are
plotted). These functions are, however, not easily compared,
essentially for two reasons. First, the curves start from different
values rH

1 [61]. Second, the decay velocities are hardly
comparable because of the different dimensions N of the
networks (recall that time t is the number of steps of the random
walker). For these reasons, we normalize the curves along both
axes and plot, in the lower part of Fig. 3, the normalized
stability rH

t /rH
1 with respect to the normalized time t/N .

In this way the curves are directly comparable and clearly
demonstrate the exponential behavior rH

t /rH
1 ∼ exp(−γ t/N).

Visual examination of Fig. 3 is probably sufficient to grasp the
much more rapid decay of the WTWs with respect to the
two benchmarks, but the computation (via linear fitting) of
the decay rate γ reinforces this impression: while the GN
and LFR networks have γ = 23.3 and 5.73, respectively, the
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FIG. 3. (Color online) Top: Stability functions rH
t of the GN and

LFR benchmark networks and those of the World Trade Web (WTW)
in 1962, 1980, and 2008. For each network, we consider the partition
H obtained via modularity optimization. Bottom: Same as above, but
the stability is normalized by the initial value rH

1 and the time axis is
normalized, separately for each curve, by the number N of network
nodes.

WTWs in 1962, 1980, and 2008 are characterized by the much
higher values 106.8, 100.3, and 97.6, respectively. Similar
figures (92.4 < γ < 109.4) are obtained for the other years
in the data set, with no clear trend with respect to time, as
well as for the symmetrized network (90.4 < γ < 107.4). A
slightly slower decay, although still significantly faster than
the benchmark networks, instead characterizes the filtered
networks (59.8 < γ < 72.5).

D. Persistence probabilities

We can complement the above analysis by extracting
other quantitative indicators, which we call the persistence
probabilities of the communities. Starting from the N -state
network, a given partition C1,C2, . . . ,Cq induces a q-state
metanetwork, where communities becomes metanodes. At
this scale, the random walker can be described by the q-state
lumped Markov chain [62] with the stochastic matrix

U = [diag(πH )]−1H ′diag(π )PH, (8)

which is actually obtained by row-normalizing the term
H ′diag(π )PH appearing in the first term in (6). In rigor-
ous terms, the q-state lumped Markov chain 	t+1 = 	tU

provides, in general, only an approximate description of the
dynamics of the random walker at the metanetwork level.

Nonetheless, it becomes exact under the assumption that
the Markov chain πt+1 = πtP is at stationarity, i.e., πt = π

[63,64]. Under this assumption, the entry ucd of U is the
probability that the random walker is at time (t + 1) in
any of the nodes of community Cd , provided it is at time
t in any of the nodes of community Cc. We define the
persistence probability of the community Cc as the diagonal
term ucc in U . Large values of ucc are expected for significant
communities. In fact, the expected escape time from Cc is
τc = (1 − ucc)−1: the walker will spend a long time within
the same community if the weights of the internal edges are
comparatively large with respect to those pointing outside.
The analysis of the persistence probabilities induced in a
network by a given partition has recently been proven to be
an effective tool for testing the existence and significance of
communities [55].

From (8) one can derive the explicit expression for ucc [55],

ucc =
∑
i∈Cc

π i

	c

∑
j∈Cc

wij

sout
i

, (9)

where πi is the stationary probability of node i, and 	c =∑
i∈Cc

π i . For the WTW, this means that ucc is a weighted
average (a convex combination) of the fractions of the export
flows that the countries of community Cc direct within the
community itself. For example, ucc = 0.5 denotes that, on
(weighted) average, the countries of Cc direct half of their
export flow to the countries in the same community and half
to the rest of the world: a very mild requirement for a baseline
level of significance. With this in mind, we compute the
persistence probabilities ucc, c = 1,2, . . . ,q, of the WTWs in
the 1962–2008 period and of the two benchmark networks, for
the partition corresponding to the max-modularity (Sec. III A).
The results are shown in Fig. 4, for the original, filtered, and
symmetrized WTWs. It is evident from Fig. 4 that, on average,
the ucc values of all the WTWs under scrutiny are much smaller
than those of the benchmarks (which, we recall, are purposely
built with a significant cluster structure). Actually, in almost
all instances the entire range of the ucc values of the WTWs is
below the corresponding range of the benchmarks. If we then
individually analyze each single community, we discover that
most of them turn out to be scarcely significant, as revealed by
the small persistence probability (note, for comparison, that
all the ucc values of the 10-community partition of the LFR
network are larger than 0.84, although the communities have
diversified sizes, ranging from 11 to 25 nodes). Specifically,
only in recent years (since 2005) are the ucc values of the
WTW all larger than 0.5, but two of three still remain below
0.6, meaning that, on average, these countries direct more than
40% of their export outside their community. In all years in the
sample, therefore, the communities dictated by the analyzed
partitions are by no means secluded from the rest of the world,
as their in- and out-community trade volumes have comparable
magnitude.

In this respect, the results are even worse for the filtered
networks. On one hand, removing several low-weight edges
slightly increases the highest persistence probabilities. But
on the other hand, the finer partition detected by the max-
modularity approach pops up some small, scarcely significant
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FIG. 4. Persistence probabilities of the World Trade Web (WTW;
1962–2008) and of the GN and LFR benchmark networks. The three
panels refer, respectively, to the original, filtered, and symmetrized
WTW, as defined in Sec. III A. For each network, we consider the
q-community partition obtained via modularity optimization: the q

horizontal dashes denote the values of the diagonal terms ucc of the
lumped Markov matrix U (vertical straight lines are for visual aid
only).

communities, as clearly highlighted by the larger number of
small ucc values in the middle panel in Fig. 4.

Nonetheless, some important information is revealed by
analysis of Fig. 4. Even if, in most instances, the partition of
the WTW is scarcely significant as a whole, we notice that,
since 1975, there is in each case (at least) one community
with a rather high persistence probability, both in absolute
terms and comparatively with respect to most of the other ucc

values. It turns out that it is a large community which always
includes the entire set of European countries, plus a number
of minor non-European partners (partially varying from year
to year), mainly from North Africa, the Near East, and the

Asian republics of the former USSR. Up to 1995, there is also
another large community with a high persistence probability,
which includes the entire North America and most of Central
and South America, plus China, Australia, and many others.
Since 2000, however, the community partition dictated by
the max-modularity suggests a different arrangement, with
North and South America in one community and China and
Australia in another. Notably, both these new communities
have definitely lower persistence probabilities than before,
denoting less exclusive intracommunity partnerships. The
evidence emerging from this analysis is very much in line
with what can be expected looking at the existence of
trade agreements between countries. European countries form
the oldest and deeper custom union in the world, and the
persistence of their ties is confirmed by the data, which also
suggest, though, that this is not a group of countries separated
from to the rest of the world (in 2008, over one-third of
European Union imports came from non–European Union
countries). The reported evidence also captures the new active
role of China, which became a major player in many areas of
the world, less dependent on the US market.

Overall, we can conclude that, as well as the other
methods above presented, the use of stability functions and
the evaluation of the persistence probabilities seem to confirm
the absence of a strong clusterized structure in the WTW,
when considered as a whole. However, the capability of the
persistence probabilities to assess the quality of each single
community, differently from the other tools of analysis, puts
forward the existence of some significant clusters of countries
with privileged intracommunity partnerships.

IV. CONCLUDING REMARKS

In this paper we have used four approaches to analyze
communities in the WTW. In the literature of community
analysis, these methods have been extensively tested on a
variety of networks having features such as directed edges,
multiscale weights, and heterogeneity in the distributions of
node degrees and/or community sizes. In the case of the WTW,
however, all four approaches led to similar conclusions: there is
no significant evidence of the existence of a strong community
structure in the WTW. The eligible communities found in the
data are reasonable, but, with very few exceptions, they are not
very significant according to any of the criteria adopted. Even
if there is not a single robust measure to identify communities
in the WTW, the convergence of results from all the approaches
strengthens the robustness of this conclusion.

The configuration of the WTW therefore supports the
view that the growth of international trade linkages did not
occur only involving specific groups of countries. Even if
the phenomenon of rapidly increasing economic integration
among countries clearly appears in a number of measures
computed for the WTW over time (such as the increase in
density or the sharp change in the nodes’ average strength), the
new links that have been forming have not changed the (weak)
cluster structure of the network, as they have not followed a
strong or exclusive preferential pattern. Countries do select
their trading partners—given that countries are on average
connected to “only” approximately half of the other existing
countries—but this selection is quite open. In this respect,
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economic integration involves the world as a whole, and in
this sense it indeed appears to be a “global” phenomenon.

While a nonpreferential structure in terms of aggregate
flows is quite plausible, much stronger community ties can

emerge considering trade in specific sectors [12]. Future
developments of this work could focus on trade flows between
countries in particular commodities, using these aggregate
results as a benchmark.
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