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Fragmentation transitions in multistate voter models
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Adaptive models of opinion formation among humans can display a fragmentation transition, where a social
network breaks into disconnected components. Here we investigate this transition in a class of models with
arbitrary number of opinions. In contrast to previous work we do not assume that opinions are equidistant
or arranged on a one-dimensional conceptual axis. Our investigation reveals detailed analytical results on
fragmentations in a three-opinion model, which are confirmed by agent-based simulations. Furthermore, we
show that in certain models the number of opinions can be reduced without affecting the fragmentation points.
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I. INTRODUCTION

In many different fields networks have been used to de-
scribe and analyze complex systems consisting of interacting
subunits. The applications of networks range from biological
systems to technical devices and social communities [1–4].
Accordingly, the building blocks of a network, the network
nodes, can correspond to different entities, such as genes,
neurons, computers, websites, or individuals. The interactions
among them, the links between the nodes, represent, e.g.,
chemical reactions, physical connections, or social bonds. In
the applications the temporal evolution of a network is often
governed by two different types of dynamics: the dynamics on

the network, describing the evolution of the internal degrees
of freedom, and the dynamics of the network, capturing the
evolution of the network topology.

Adaptive networks are characterized by an interplay of the
dynamics on the network and the dynamics of the network,
where neither of both types of dynamics can be neglected
[5,6]. It has been shown that this interplay gives rise to
the emergence of complex topologies and dynamics [7],
spontaneous appearance of different classes of nodes from
an initially homogeneous population [8,9], and robust self-
organization to critical states associated with phase transitions
[10,11]. The self-organization of adaptive networks is believed
to be of importance in the evolution of cooperation, opinion
formation processes, epidemic dynamics, neural networks, and
gene regulation [12].

In the adaptive-networks literature, opinion dynamics has
recently attracted particular attention [13–19]. Typically, in
these models a society is described as a network, where
nodes correspond to individuals and links correspond to
social relationships. The internal states of the individuals
indicate their position regarding some issue, such as political
opinion, religious affiliation, or musical taste. The individuals
change their states by adopting opinions from their topological
neighbors. The network topology, i.e., the specific pattern of
nodes and links, changes as individuals break up relationships

*gesa@pks.mpg.de

with dissenting neighbors and/or establish new relationships
to those holding similar opinions.

The simplest adaptive-network model for opinion forma-
tion is the adaptive voter model [13,20–22]. In this model
and in many of its variants [14,18,23–25] the relative rate of
change of the topology compared to the change of node states
is controlled by a single parameter p, the rewiring rate. De-
pending on this parameter, the network reaches either a global
homogeneous state, where all nodes hold the same opinion, or
a fragmented state, consisting of two disconnected components
which are internally homogeneous. The transition separating
these two regimes is called a fragmentation transition.

While most of the voterlike models only consider a binary
choice of opinions, many real world situations offer a larger
number of choices. In the physics literature some models for
opinion formation, which consider arbitrary-many opinions,
have been studied [14,18,24]. In these models all opinions are
“equidistant” in the sense that all interactions between any
given pair of (different) opinions follow the same dynamical
rules. Models recognizing that the outcome of interactions
may depend on a measure of similarity (or distance) between
opinions are often considering an uncountable set of opinions
and are therefore hard to treat analytically [15,26]. For instance
in Ref. [26] opinions are placed on a one-dimensional axis,
resembling, e.g., the political spectrum.

Here we consider a natural extension of the original adap-
tive voter model, where we allow for an arbitrary countable
set of opinions. In the proposed model the rewiring rate that
governs the interaction of conflicting agents is assumed to
depend on the specific pairing of opinions held by the agents.
The model can thus account for heterogeneous “distances”
between opinions. A large distance, characterized by a high
rewiring rate, indicates a controversial pairing, whereas a small
distance, and correspondingly low rewiring rate, indicates that
the respective opinions are almost in agreement.

The proposed model is described in detail in Sec. II. We then
calculate the fragmentation diagram of a three-state model in
Sec. III and derive the corresponding fragmentation thresholds
for systems with an arbitrary number of states in Sec. IV.
Finally, in Sec. V, we show that in certain systems a reduction
is possible such that the dynamics can be captured by a system
with a lower number of opinions.
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II. MULTISTATE VOTER MODEL

We consider a network of N nodes, corresponding to
individuals, and L links, corresponding to social contacts.
Each node α holds a state sα , indicating the opinion held
by the corresponding individual. The network is initialized as
a random graph with mean degree 〈k〉 = 2L/N . The initial
node states are drawn randomly and with equal probability
from the set of all states � = {g1,g2,g3, . . . ,gG}, where the
total number of states is |�| = G � N .

The system is then updated as follows: In each update step
a random link (α,β) is chosen. If sα = sβ , then the link is
said to be inert and nothing happens. If sα �= sβ , then the
link is said to be active and an update occurs on the link. A
given update is either a rewiring event or an opinion adoption
event, decided randomly depending on the similarity of the
respective opinions. For individuals α, β with opinions sα = gi

and sβ = gj , the update is a rewiring event with probability pij

and an opinion adoption event otherwise (probability 1 − pij ).
In the following the parameters pij are called rewiring rates.

In a rewiring event the focal link (α,β) is severed, and
a new link is created either from α to a randomly chosen
node γ with sγ = sα , or from β to a randomly chosen node γ

with sγ = sβ . The choice between the two outcomes is made
randomly with equal probability. In an opinion update, either
node α changes its state to sβ or node β changes its state to
sα , where the choice between both outcomes is again made
randomly with equal probability. In the following we assume
symmetric interactions, which implies pij = pji such that the
specific model is characterized by a set {pij } of G(G − 1)/2
parameters.

The model proposed above preserves the symmetry of the
direct interaction of two opinions postulated in the adaptive
voter model; i.e., in direct comparison no opinion is stronger
than the other. However, it breaks the symmetry between
different pairings of opinions such that rewiring is more likely
in certain pairings than in others.

From the adaptive voter model [13,20] it is known that the
fragmentation transition separates a so-called active regime
from a fragmented regime. In the active regime a finite
density of active links persists in the long-term dynamics
such that there is ongoing dynamics until fluctuations drive
the system eventually to an absorbing consensus state. In the
fragmented regime, disconnected components emerge, which
are internally in consensus.

Because the G-state model contains several different types
of active links (corresponding to all possible pairings in �),
regimes can occur where active links of a certain type vanish
while others prevail. This can lead to configurations where
a certain subset of the states only appears in one component
of the network in which no state not belonging to this subset
is present. In the following we call this situation a partially
fragmented state.

In contrast to the fully fragmented state where every
component is internally in consensus, the dynamics in the
partially fragmented state can continue in some components
while others may be frozen in internal consensus. The
partial fragmentation cannot be undone, so that achieving
global consensus is impossible after partial fragmentation
has occurred. However, the ongoing dynamics in the active

components will eventually lead to an absorbing state in
every component. The absorbing state which is ultimately
reached after a partial fragmentation therefore in general
consists of 1 < γ < G major components, holding the γ

surviving opinions, respectively. For γ = G we recover full
fragmentation and the case where γ = 1 we denote as the fully
active regime where all types of active links prevail. Only in
the latter case (due to finite-size effects) can global consensus
be reached eventually.

III. FRAGMENTATION TRANSITIONS IN A
THREE-STATE VOTER MODEL

In the following we focus on deterministic fragmentations
of the network, which in large networks occur on a much faster
time scale than fluctuation-driven transitions to absorbing
states.

We start our exploration of the proposed multistate voter
model by considering the case G = 3, which is the simplest
case which is not trivial (G = 1) or extensively studied (G =
2) [16,20]. Let us consider the set of opinions � = {A,B,C},
giving rise to three different rewiring rates {pAB,pAC,pBC}
which we denote as {p1,p2,p3} according to the state network
depicted in Fig. 1.

Let us emphasize the difference between the state network
and the network of individuals. The state network is a
complete, weighted graph with G nodes which represents
the relationships between different states, such that states
connected by small rewiring rates are similar to each other,
whereas states which are connected by large rewiring rates
differ significantly from each other. The network of individ-
uals, in contrast, is an unweighted graph with N nodes and
mean degree 〈k〉, which represents the interactions between
individuals.

In principle, in the limit of large N a three-state system
can reach five different final states: a fully active regime, full

A

B

C

p1

p2

p3

FIG. 1. State network of a three-state voter model. The nodes
in this network are the three opinions A, B, and C. The rewiring
rates p1,p2, or p3, encode the degree of controversy between agents
holding the respective pairings of opinions AB, BC, or CA. The
ellipse and dashed lines illustrate the example described in the text:
partial fragmentation with respect to A, i.e., the fragmentation of
the corresponding networks of agents in a component where all
individuals hold opinion A and a second component where the
individuals hold opinions B and C. The ongoing dynamics in the
latter component may later lead to the disappearance of either opinion
B or C.

066117-2



FRAGMENTATION TRANSITIONS IN MULTISTATE VOTER . . . PHYSICAL REVIEW E 85, 066117 (2012)

fragmentation, and partial fragmentation with respect to A,
B, or C. Here, partial fragmentation with respect to a certain
state refers to a situation where a component of nodes in that
particular state fragments from an active component (a mixed
component of nodes in the other states).

For the calculation of the fragmentation threshold, i.e.,
the transition from a fully active to a fragmented regime,
we follow the approach given in Ref. [16]. We determine
the evolution equations for active motifs (network motifs
containing active links) starting from a situation close to the
fragmentation threshold. For simplicity, the present article uses
only the simpler of two different active motif bases proposed
in Ref. [16]. We emphasize that all calculations below can
also be carried out using more elaborate motif bases, but at the
price of having to deal with considerably larger matrices.

Following Ref. [16], we define q-fans as a bundle of q

active links of one type, say, AB-links, connected to a single
A- or B-node. We do not account for the number of inert
links connecting to this focal node. For the sake of simplicity
we also do not consider mixed active motifs containing all
three states. We confirmed that effects of mixed motifs can be
suitably captured by the procedure described below.

We start by calculating the condition for partial fragmen-
tation with respect to A (see Fig. 1). The A-cluster fragments
from the rest of the network when all AB-motifs and all
AC-motifs vanish. Because in general p1 �= p2, we have to
treat AB- and AC-motifs separately. We start by considering a
network with two almost disconnected clusters, one of which is
composed purely of A-nodes and the other of B- and C-nodes
and then ask whether the fragmented state is stable, such that
fragmentation is reached, or unstable, such that the system
avoids fragmentation.

In the almost fragmented state the expected effect of
network updates on the active motifs is captured by a procedure
proposed in Ref. [16]. For the case of k = 3 we obtain the
transitions rules shown in Fig. 2. New active motifs are created
when an opinion update occurs. We approximate the degree of
the focal node k by the network mean degree 〈k〉. Because
of the clusters being almost separated the newly formed
active motif is a k − 1-fan [16]. This fan can subsequently lose
active links due to subsequent opinion updates and rewiring
events. We account for a finite density of active BC-links,
ρ3, in the active component by creating an AC-fan (AB-fan)
instead of an AB-fan (AC-fan) with probability ρ3 when a
new fan is created by a B-node (C-node) adopting opinion A.

If we start with equal distribution of states, the relation
ρ3 = [BC]/(k[B]) = [BC]/(k[C]) holds, where [B] and [C]
denote the numbers of B-nodes and C-nodes, respectively and
[BC] denotes the number of BC-links. Note that ρ3 differs
from the global BC-link density ρ

(G)
3 = [BC]/L.

The set of transitions for k = 3 (see Fig. 2) defines
a dynamical system, describing the time evolution of the
densities of active motifs close to the partial fragmentation
with respect to A. The stability of the partially fragmented
state in this system is then governed by the block-structured
Jacobian,

J(p1,p2,ρ3) =
(

Dp1 − Xp1 (ρ3) Xp1 (ρ3)

Xp2 (ρ3) Dp2 − Xp2 (ρ3)

)
, (1)

A B

1
2(1 − p1)

1
2(1 − p1)

(1 − ρ3) + ρ3

1
2(1 − p1)

1
2(1 − p1)

p1

+ (1 − ρ3) + ρ3

1
2(1 − p1)

1
2(1 − p1)

p1

+

A C

1
2(1 − p2)

1
2(1 − p2)

(1 − ρ3) + ρ3

1
2(1 − p2)

1
2(1 − p2)

p2

+ (1 − ρ3) + ρ3

1
2(1 − p2)

1
2(1 − p2)

p2

+

FIG. 2. Transitions of AB- and AC-fans for a degree-regular
network with k = 3 and equiprobable states for the scenario of
partial fragmentation with respect to A. Black, white, and gray nodes
correspond to agents holding opinion A, B, and C, respectively. The
active link densities ρ1 and ρ2 are assumed to vanish close to the
partial fragmentation point, whereas ρ3, the density of BC-links, can
be finite.

where

Dp =

⎛
⎜⎝

−1 1
2 (1 − p) 1

2 (1 − p)

1 1
2 (1 − p) − 1 0

1 0 1
2 (1 − p) − 1

⎞
⎟⎠ (2)

and

Xp(ρ) =

⎛
⎜⎝

0 1
2 (1 − p)ρ 0

0 1
2 (1 − p)ρ 0

0 0 0

⎞
⎟⎠ . (3)

The diagonal blocks in the Jacobian given in Eq. (1) can be
interpreted as “self-interaction” terms, capturing contributions
from the same motif type, and the off-diagonal terms as
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p1

p 2
p m

in
p c

pmin pc

ρ3 = 0

ρ3 = ρmax

fragmentation

active phase

I II III

FIG. 3. Schematic fragmentation diagram for a three-state system
in the thermodynamic limit. The region where fragmentation with
respect to A occurs depends on the BC-link density ρ3: If ρ3 = 0,
fragmentation with respect to A occurs only in region III. If ρ3 > 0,
fragmentation with respect to A can occur additionally in part
of the dashed region. For ρ3 = ρmax the maximal extension of
the fragmentation region (II + III) is realized. In region I, no
fragmentation with respect to A occurs. If p1 > p3 and p2 > p3,
then this fragmentation diagram characterizes the final state of the
whole system. In this case, region I is characterized by an active
equilibrium where deterministic fragmentation cannot occur (with
respect to none of the states) and full fragmentation is reached iff
p3 � pc, where pc is the fragmentation threshold for the adaptive
two-state voter model.

“exchange” terms, capturing contributions from different motif
types. The structure of this Jacobian remains unchanged for
any partial fragmentation of a three-state system, while the
matrices (2) and (3) change when the motif set is altered.
In particular, the dimension of these matrices increases with
increasing mean degree and/or number of motifs considered.

In a dynamical system a steady state is stable if all
eigenvalues of the corresponding Jacobian have negative
real parts [27]. For the present system this means that the
fragmented state is stable if all eigenvalues of the Jacobian J
are negative and the fragmentation transition occurs as at least
one of the eigenvalues acquires a positive real part. Therefore,
demanding λ(J) = 0, where λ(J) is the leading eigenvalue of J,
yields a condition for the fragmentation transition, depending
on the three parameters p1,p2, and ρ3. The phase diagram in
Fig. 3 is a projection of this fragmentation condition on the
p1-p2 plane for the extreme values of ρ3.

Let us first consider the case where ρ3 = 0, which is
encountered if p3 exceeds pc, the fragmentation threshold of
the adaptive two-state voter model. In this case, X becomes
zero and the set of eigenvalues of the Jacobian J is the
conjunction of the eigenvalues of the matrices Dp1 and Dp2 .
Thus, λ(J) is negative iff λ(Dp1 ) and λ(Dp2 ) are negative.
Indeed, matrices Dp1 and Dp2 are the Jacobians of the
two uncoupled two-state systems A − B and A − C. Thus

fragmentation of A requires that the two-state fragmentation
condition is met separately for the AB and AC subsystems.
In other words, if the links between B- and C-nodes vanish
(ρ3 = 0), fragmentation occurs when both p1 > pc and p2 >

pc (see Fig. 3, region III).
For studying the case ρ3 > 0 we first note that every

matrix-valued row of J sums to Dpi
, where i = 1,2. Following

Ref. [28], as will be discussed below, λ(J) is bounded by
λ(Dp1 ) and λ(Dp2 ). Therefore, fragmentation with respect to
A is guaranteed when p1 > pc and p2 > pc (region III) but
can already occur when only either p1 > pc or p2 > pc is
satisfied (region II).

The maximum extension of region II is observed when
p3 = 0, the corresponding maximal value of ρ3, ρmax, can
be determined to good approximation by a moment closure
approach (see Appendix), yielding

ρmax = k − 1

2k
. (4)

Solving the condition λ(J(p1,p2,ρmax)) = 0 numerically
yields the curve separating regions I and II in Fig. 3. Moreover,
from the diagram in Fig. 3 it is clear that this curve implies
the existence of a minimal rewiring rate pmin, such that for
p1 < pmin or p2 < pmin partial fragmentation with respect to
A becomes impossible in the thermodynamic limit.

Let us emphasize that calculations of fragmentation thresh-
olds for partial fragmentations build on the estimation of
the active link densities from given rewiring rates. As there
is no accurate analytical expression for ρ(p) in the whole
p-range [13], the final state of the three-state system can
only be predicted with certainty in regions I and III of the
fragmentation diagram.

In summary, evaluating the partial fragmentation condition
with respect to A, i.e., λ(J) = 0, leads to a phase diagram
as shown in Fig. 3, where three different regions can be
distinguished: In regions I and III partial fragmentation occurs
or is avoided regardless of p3, whereas in region II partial
fragmentation depends on ρ3 and consequently on the setting
of the related rewiring rate p3. We found that these results are
in very good agreement with data obtained from agent-based
simulation of large networks (Fig. 4). In order to extract
the transition between fragmentation and active phase from
simulations of a finite network, one has to consider a time
frame where the system is far from reaching a finite-size
induced absorbing state (see Fig. 5, upper left panel).

In the regions where the analytical theory predicts an
active state (region I and possibly parts of region II), the
active state is observed on intermediate time scales. In finite
systems this state can decay due to stochastic fluctuations
which lead to transitions to absorbing states. In the two-state
model the only such transition is the stochastic extinction
of one of the opinions [20]. In the three state model two
different scenarios are possible. First, if all rewiring rates
are smaller than pc then stochastic extinctions will eventually
lead to a consensus state, where only one opinion survives.
Second, if one of the rewiring rates (say, p1) is larger
than pc there is a considerable probability that state A is
driven to fragmentation due to finite-size fluctuations. The
long-term characteristics of a three-state system are shown
in Fig. 5.
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FIG. 4. Numerical phase diagram for the three-state model. Plotted is the density of links, connecting the A- and the BC-cluster (ρ1 + ρ2)
over the rewiring rates p1 and p2. Dark gray regions correspond to fragmentation with respect to A. The left panel shows the case ρ3 =
0 (p3 = 0.5). This corresponds to an uncoupled system: The critical rewiring rates for p1 and p2 are the same as for the two-state voter model,
pc = 0.46. We note that this result differs from Ref. [18], where a related model with different update rules was studied. In the right panel, ρ3

is maximal (p3 = 0). Here the active link density in the active cluster leads to an extension of the fragmentation region. Black lines represent
analytical results. Link densities were measured at t = 1000, i.e., much before the active phase decays due to finite-size effects (see Fig. 5,
upper left panel). N = 10 000, 〈k〉= 4, averaged over 20 realizations.

Until now, we studied partial fragmentation with respect to
one specific state (state A). In order to predict the final state
of the whole system, one has to analyze the corresponding
partial fragmentation diagrams for each of the three states.
Let us assume p1 � p2 � p3. Then, there are four cases to
distinguish (see Fig. 6):

(1) p3 > pc

(2) p3 < pc and p2 > pc

(3) p2 < pc and p1 > pc

(4) p1 < pc.
In case 1 full fragmentation is reached, because all points

P = (p2,p1), Q = (p3,p1), and R = (p2,p3) lie in the region
III of their respective diagrams. In case 2 P lies in III and
Q and R in I. Thus, partial fragmentation with respect to
A occurs, while B- and C-nodes form an active cluster and
in a finite system eventually reach consensus. In case 3 the
point P lies either in region I or II of the corresponding
fragmentation diagram for A, whereas Q is always in region
I, because p2 � p3 and ρ3 � ρ2. This means that in this case
either partial fragmentation with respect to A occurs or the
system reaches an active phase, depending on the specific
values of p1,p2,p3. In case 4, P , Q, and R lie in the region
I of their respective diagrams, implying that the active phase
is reached. Note that this shows that partial fragmentation
can only occur with respect to that state, which is connected
via the largest rewiring rates to the two other states in the
state network.

In summary, we showed that in the three-state voter model
either consensus, partial fragmentation, or full fragmentation
occurs. Full fragmentation is only reached when all rewiring
rates exceed pc. Analyzing the phase diagram with respect
to the state which is connected via the largest rewiring rates
to the other states suffices for the prediction of the final state
of the whole system. For quantitative predictions in region II
of the diagram the active link density corresponding to the
lowest rewiring rate has to be known. Qualitatively, one can say
that whenever partial fragmentation occurs, it is with respect
to the “most different” state.

IV. FRAGMENTATION TRANSITIONS IN A G-STATE
VOTER MODEL

Let us now consider a general system of G states. In
contrast to the previous system partial fragmentations can also
occur with respect to a group of states. A general multistate
network can thus fragment into several active components.
Let us therefore calculate the condition for a system to
fragment into two components containing s and G − s states,
respectively (see Fig. 7). This is in principle no restriction,
as a fragmentation into more than two components can be
treated as a fragmentation into two components where the
active components in their turn fragment.

For clarity we only use one level of indices from now on:
We write Dij and Xij instead of Dpij

and Xpij
. Furthermore,

in order to distinguish indices which refer to one component
from those referring to the other component we use indices
i ∈ {1, . . . ,s} for the component with s states and indices
i ∈ {1, . . . ,s} for the component with s = G − s states. For
example, the intercomponent rewiring rates are then denoted
as pii and intracomponent active link densities as ρij and ρij ,
respectively.

In analogy to the treatment of the three-state model,
we consider a situation where the two clusters are almost
fragmented. We then determine the evolution equations for
a set of active motifs connecting the two components. In
the three-state case these were of two types, AB- and AC-
fans, which led to a Jacobian of 2 × 2 matrix-valued entries
and a fragmentation condition which was a function of the
rewiring rates p1 and p2 and the active link density ρ3. In
the general case the Jacobian contains ss × ss matrix-valued
entries, according to the number of intercomponent links
in the state network (see Fig. 7) and the fragmentation
condition is a function of all intercomponent rewiring rates
{pii} and all intracomponent active link densities {ρij } and
{ρij }.

Following the same procedure as for the three-state system,
one finds that the general Jacobian exhibits a block-structure
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FIG. 5. Numerical exploration of fragmentation in the long-term
limit. In the upper left panel the time to the first fragmentation or
extinction is plotted. The time profile resembles the corresponding
fragmentation diagram in Fig. 4, demonstrating that (partial) frag-
mentation occurs significantly earlier than the decay of the active
phase to an absorbing state. In the upper right panel the size of
the largest cluster (as fraction of the total number of nodes) in
the final state is shown. One can clearly distinguish three domains,
corresponding to three types of long-term behavior. Analyzing the
size distributions of the largest cluster at the points (a), (b), and
(c) (lower panel) reveals that (a) for p1 < pc and p2 < pc always
consensus is reached, (b) for p1 > pc or p2 > pc either consensus
or fragmentation is reached, and (c) for parameter settings within
the estimated deterministic fragmentation region (compare Fig. 4)
fragmentation is always reached. The histograms were obtained from
100 independent network simulations for each parameter setting, in
the upper panels we averaged over 20 realizations. In all panels:
p3 = 0, N = 10 000, 〈k〉= 4.

of s × s submatrices,

J(pii,ρij ,ρij )

=

⎛
⎜⎜⎜⎜⎜⎝

�1(ρij ,ρ1j ) ξ1(ρ12) · · · ξ1(ρ1s)

ξ2(ρ21) �2(ρij ,ρ2j )
. . .

...
...

. . .
. . . ξ(s−1)(ρ(s−1)s)

ξs(ρs1) · · · ξs(ρs(s−1)) �s(ρij ,ρsj )

⎞
⎟⎟⎟⎟⎟⎠,

(5)

where �i and ξi are matrices of s × s matrix-valued entries,

�i(ρij ,ρij )

=

⎛
⎜⎜⎜⎜⎜⎜⎝

D̂i1(ρ1j ,ρij ) Xi1(ρ12) · · · Xi1(ρ1s)

Xi2(ρ21) D̂i2(ρ2j ,ρij )
. . .

...

...
. . .

. . . Xis−1(ρ(s−1)s)

Xis(ρs1) · · · Xis−1(ρs(s−1)) D̂is(ρsj ,ρij )

⎞
⎟⎟⎟⎟⎟⎟⎠
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FIG. 6. Fragmentation diagrams for partial fragmentation with
respect to state A, C, or B for p1 � p2 � p3 in the limit of
infinite network size. There are four different cases, according to the
conditions given on the left-hand side of the chart. The positions of
the points P = (p2,p1),Q = (p3,p1),R = (p2,p3) indicate for each
case whether partial fragmentation is reached for the respective state.
The final state of the whole system can be deduced from the outcomes
for all three states and is given on the right-hand side of the chart.
For the first, second, and fourth case the final state can be predicted
without ambiguity. In the third case, either partial fragmentation with
respect to A or an active equilibrium can be reached, depending on
the specific parameter setting (the two possibilities are indicated by
two different symbols ◦ and × in the first diagram and a solid and a
dashed line in the second diagram of the third row). It can be seen
that partial fragmentation is only possible with respect to the state
with the largest rewiring rates (here A).

and

ξi(ρij ) =

⎛
⎜⎜⎜⎜⎜⎝

X′
i1(ρij ) 0 · · · 0

0 X′
i2(ρij )

. . .
...

...
. . .

. . . 0

0 · · · 0 X′
is(ρij )

⎞
⎟⎟⎟⎟⎟⎠ .

Here we introduced the abbreviation

D̂ii(ρij ,ρij ) = Dii −
s∑

j=1,j �=i

Xii(ρij ) −
s∑

j=1,j �=i

X′
ii(ρij ).

The matrices D and X for k = 3 were already given in Eqs. (2)
and (3), and the matrix X′ for k = 3 is

X′
ii(ρij ) =

⎛
⎜⎝

0 0 1
2 (1 − pii)ρij

0 0 0

0 0 1
2 (1 − pii)ρij

⎞
⎟⎠ . (6)

The latter matrix appears for fragmentations where both of the
fragmenting components are active, i.e., for 1 < s < G − 1.
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{ρij} {ρij}{pii}

G − s statess states

FIG. 7. Schematic representation of a state network with G states.
Ellipses illustrate a fragmentation into two (possibly) active clusters
of s and G − s states. Dashed lines correspond to intercluster links
with rewiring rates {pii}, connecting every state in one cluster with
every state in the other cluster. The number of intercluster links,
s(G − s), determines the dimension of the (matrix-valued) Jacobian.
Solid lines correspond to intracluster links within both clusters with
active link densities {ρij } and {ρij }, respectively.

Note that every matrix-valued row of the Jacobian sums
to Dii and refers to one specific type of intercomponent link
with rewiring rate pii in the state network. One such row
thus represents the transitions for one motif type. Entries D̂
on the diagonal capture the creation of motifs of the same
type, while off-diagonal entries X and X′ denote transitions
to different motif types, which arise from the intracomponent
link densities ρij and ρij , respectively. For example, the entries
in one row describing the transitions of g1g2-fans depend on
the rewiring rate between the states g1 and g2, which is p12,
the active link densities between g1, and all other states in the
first component, ρ1x , with x ∈ {2, . . . ,s}, and the active link
densities between g2 and all remaining states in the second
component, ρ2y , with y ∈ {1,3, . . . ,s}.

In analogy to the three-state model the active link densities
ρij entering in the Jacobian relate to the global active link
density ρ

(G)
ij as

ρij = [gigj ]

k[gi]
= G

2

[gigj ]

L
= G

2
ρ

(G)
ij , (7)

for equally distributed states. This holds analogously for ρij .
Stability analysis of the general Jacobian in Eq. (5) is

in principle possible, but leads to a fragmentation condition
which depends directly or indirectly (through the active link
densities) on all G(G − 1)/2 different rewiring rates. In
contrast to the estimation of the active link density in a two-
state system, in a multistate system the active link density of a
certain link type does not only depend on the rewiring rate of
that specific link type, but also on the rewiring rates and active
link densities of the neighboring links in the state network.
Inferring the link densities analytically from the rewiring
rates is presently an unsolved challenge. So, even for given
rewiring rates it is in general not possible to make quantitative
predictions about fragmentation thresholds. Nevertheless, the
structure of the Jacobian allows for qualitative predictions,
which will be shown in the next section.

V. REDUCTION PRINCIPLES FOR SPECIAL
STATE-NETWORK TOPOLOGIES

In this section we use theorems about upper and lower
bounds of the largest eigenvalue λ(M) of a non-negative
irreducible matrix M. The well-known Frobenius inequality
states

min
k

Sk � λ(M) � max
k

Sk,

where Si is the row sum of the ith row of M. A generalization of
the above inequality for a partitioned non-negative irreducible
square matrix M is given in Ref. [28]. Let us assume that M
can be partitioned into square submatrices Mij , such that

M =

⎛
⎜⎜⎜⎜⎝

M11 M12 · · · M1N

M21 M22 · · · M2N

...
...

. . .
...

MN1 MN2 · · · MNN

⎞
⎟⎟⎟⎟⎠ .

We define

Sk =
N∑

j=1

Mkj , k = 1, . . . N

as generalized, matrix-valued row sums of M. Then the
following inequality holds [28]:

λ(min
k

Sk) � λ(M) � λ
(

max
k

Sk

)
. (8)

The expressions mink and maxk have to be understood
element-wise, i.e., the matrix mink Sk is the matrix which is
obtained when we take element-wise the minimum over all Sk

and analogously for the maximum.
In the following we apply the theorem quoted above to the

Jacobian given in Eq. (5). This is possible because J can be
written as J = T − 1, where T is a nonnegative irreducible
matrix and 1 is the identity matrix of appropriate dimension.
We will consider two different partitions.

First, let us consider a partition (P1) of the Jacobian into ss

submatrices. Then, the matrix-valued row sums corresponding
to this partition yield

S(P1)
k = D̂ii(ρij ,ρij ) +

s∑
j=1,j �=i

Xii(ρij ) +
s∑

j=1,j �=i

X′
ii(ρij )

= Dii , k = 1, . . . ,ss.

The matrices Dii only depend on pii , and it can be seen
from Eq. (2) that all nonconstant entries in Dp increase with
decreasing p. Therefore, we get for the upper and lower bounds
of λ(J)

λ(Dpmax ) � λ(J) � λ(Dpmin ), (9)

where

pmax = max
i,i

pii , pmin = min
i,i

pii .

From Eq. (9) we deduce the following statements:
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FIG. 8. Numerical test of the reduction principle. We run simula-
tions for a five-state system assigning random values to the rewiring
rates ri (inset). Plotted is the density of intercluster links (dashed
links) for three different values of p. For each p value we run ten
independent simulations with randomly chosen ri and compare the
corresponding intercluster link density to the active link density of a
two-state model with the same rewiring rate and a ratio 2:3 for the
number of nodes in opposite states. It can be seen that the intercluster
density does not depend on ri and that the steady-state value equals the
corresponding intercluster density (active link density) in the original
two-state voter model. N = 10 000,〈k〉 = 4.

(1) When all intercluster rewiring rates pii are below the
threshold pc, no fragmentation occurs, because λ(Dpmax ) > 0.

(2) When all intercluster rewiring rates pii exceed the
threshold pc, fragmentation occurs, because λ(Dpmin ) < 0.

(3) If pmin = pmax, necessarily all intercluster rewiring rates
must be equal. In that case, the fragmentation condition is
the classical condition of the two-state voter model, λ(J) =
λ(Dp) = 0, which yields the critical rewiring rate pc.

The first two results represent an intuitive generalization of
our findings for the three-state case. The last result implies
that if all intercluster rewiring rates are equal, then the
value of these rewiring rates p is the only parameter on
which the fragmentation transition depends. In this case a
precise analytical estimation of the fragmentation point is
possible because the active link densities arising from the
intracluster links do not enter. Furthermore note that this result
is independent of the number of opinions. This implies that in
the special case of equal intercluster rewiring rates systems of
any size behave identically to a properly initialized adaptive
two-state voter model.

We test the latter result in a five-state system, considering a
fragmentation into two components of two and three states,
respectively (inset in Fig. 8). Simulations show that for
randomly chosen rewiring rates ri within the two clusters, the
intercluster link density reaches the same steady-state value
(Fig. 8). A further comparison shows, that the behavior of a
five-state model closely matches that of a two-state model.

Now we consider another partition, (P2), of the Jacobian,
which is a partition into s submatrices. Then, the corresponding

generalized row sums yield

S(P2)
i = �i(ρij ,ρ1j ) +

s∑
j=1,j �=i

ξi(ρij )

=

⎛
⎜⎜⎜⎜⎜⎜⎝

D̃i1(ρ1j ) Xi1(ρ12) · · · Xi1(ρ1s)

Xi2(ρ21) D̃i2(ρ2j )
. . .

...

...
. . .

. . . Xis−1(ρ(s−1)s)

Xis(ρs1) · · · Xis−1(ρs(s−1)) D̃is(ρsj )

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where

D̃ii(ρij ) = Dii −
s∑

j=1,j �=i

Xii(ρij ).

First, we observe that every matrix S(P2)
i corresponds to

a partial fragmentation in a system of s + 1 states. More
precisely, the set {S(P2)

i } describes a collection of s single-state
fragmentations where for every i a single state gi is taken
separately from the s cluster. This single state (i.e., now s = 1)
then forms the first component of the partial fragmentation,
while the second component is given by the whole s cluster.

Now, building the element-wise extrema of {S(P2)
i } means

to compare all the single-state fragmentations by comparing
every matrix entry of the corresponding generalized row sums.
Taking mini S(P2)

i (maxi S(P2)
i ) yields therefore in every matrix

entry the minimum (maximum) value, i.e., that one which
comprises the maximal (minimal) rewiring rate. The resulting
matrix corresponds to a partial fragmentation with respect to
a single state where the intercluster rewiring rates are chosen
extremal according to the described comparison. We will refer
to such a system as bounding system (see Fig. 9 for exemplary
bounding systems).

For a partition of type (P2) the leading eigenvalue of the
general Jacobian satisfies

λ
(
min

i
S(P2)

i

)
� λ(J) � λ

(
max

i
S(P2)

i

)
. (10)

The lower bound corresponds to the fragmentation of a system
where the largest intercluster rewiring rate of each state in the
second component is connected to a single state. The upper
bound corresponds to the fragmentation of a system where the
smallest intercluster rewiring rate of each state in the second
component is connected to a single state.

As in the Jacobian in Eq. (5) the matrices X and X′ can
be interchanged, one can consider a corresponding partition
where the second component is reduced to a single state, i.e.,
s = 1 and the first component remains as a whole. This leads to
a different set of bounding systems, as illustrated in Figs. 9(a)
and 9(b).

From Eq. (10) we can draw the following conclusions:
(1) If the lower bounding system does not fragment

[λ(mini S(P2)
i ) > 0], the original system does not fragment.

(2) If the upper bounding system fragments
[λ(maxi S(P2)

i ) < 0], the original system fragments.
(3) If upper and lower bounding systems are the same

(mini S(P2)
i = maxi S(P2)

i ), the fragmentation of the original
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FIG. 9. (Color online) Schematic representation of the general-
ized Frobenius inequalities using the example of a five-state system
and a specific partial fragmentation into a two-state and a three-state
cluster. The inequalities in (a) and (b) represent two different sets of
bounding systems obtained from a partition of type (P2), as described
in the text. In (a) the bounding systems are three-state systems,
obtained by reducing the three-cluster to a single state. The remaining
intercluster rewiring rates are the respective maximum (minimum)
values of the rewiring rates between each state in the two-cluster
and all states in the three-cluster. In (b) the bounding systems are
four-state systems, obtained by reducing the two-cluster to a single
state. The remaining intercluster rewiring rates are the maximum
(minimum) values of the rewiring rates between each state in the
three-cluster and all states in the two-cluster. In (c) a special case
is shown where the upper and lower three-state bounding systems
coincide. In this case the leading eigenvalue of the five-state system
equals the leading eigenvalue of the associated three-state system, and
the considered fragmentation of the original system is fully captured
by the lower-dimensional one.

system is exactly captured by the bounding system, i.e., the
full Jacobian J reduces to the Jacobian of the bounding system.

The latter case is realized if every state in one component
is connected via equal rewiring rates to every state in the other
component [see Fig. 9 (c)]. For state-network topologies which
display this property the dimension of the Jacobian reduces
significantly and thus the fragmentation condition becomes
much more tractable.

In summary, the results from the second partition show
that for the leading eigenvalue of a Jacobian, corresponding
to a partial fragmentation into two active clusters, upper and
lower bounds can be given, which correspond to single-state
fragmentations in (properly constructed) lower-dimensional
systems. In particular, the leading eigenvalue of the full
Jacobian can be exactly calculated as the leading eigenvalue
of a lower-dimensional Jacobian if special state-network

topologies are given. Otherwise, when such a reduction is not
possible, the bounding systems provide necessary conditions
for a partial fragmentation to occur. So, calculating fragmen-
tation conditions for the much simpler bounding systems in
some cases suffices to predict the occurrence or absence of
fragmentations in the full system.

VI. CONCLUSION

In the present paper we extended recent work on the
adaptive two-state voter models to a family of multistate
models. For the three-state model our analysis revealed a phase
diagram in which three distinct types of behavior are observed.
Depending on the parameters the system either approaches a
consensus state, a partially fragmented state ultimately leading
to two surviving opinions or a fully fragmented state in which
all three opinions survive.

In a general scenario with an arbitrary number of states
making precise predictions is more difficult. In particular, the
computation of fragmentation points generally requires the
estimation of active link densities inside the clusters between
which the fragmentation occurs. By exploiting the specific
structure of transition rates in the system, one can nevertheless
gain analytical insights into the fragmentation dynamics. For
example, we identified a class of special cases in which
adaptive multistate voter models exactly recover the behavior
of the adaptive two-state voter model.

While the ultimate goal of understanding opinion formation
in the human population is still far away, the present progress
shows that analytical understanding can be pushed to more
complex models. Recent studies have shown that already
today variants of the voter model can be tested in experiments
with swarming animals [19,29]. An important goal for the
future is to continue the refinement of models and analysis
techniques in order to describe real-world situations. We hope
that the approach presented here will make a contribution to
this ongoing process.

APPENDIX

We use a moment closure approach [30] for the calculation
of the maximal active link density in an active cluster of s states
in a G-state system. The evolution equation for the number of
active links of type xy is given by

˙[xy] = −[xy] + 1

2

( ∑
z �=x

[xzy] +
∑
z �=y

[xzy]

−
∑
z �=y

[xyz] −
∑
z �=x

[zxy]

)
,

assuming pij = 0 for all rewiring rates within the active cluster.
Then, using the pair-approximation, we get for the steady state,

[xy] = 1

2

( ∑
z �=x,y

2
[xz][zy]

[z]
+ 2

[xy][yy]

[y]
+ 2

[xx][xy]

[x]

−
∑
z �=y

[xy][yz]

[y]
−

∑
z �=x

[zx][xy]

[x]

)
. (A1)
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GESA A. BÖHME AND THILO GROSS PHYSICAL REVIEW E 85, 066117 (2012)

For equal distribution of states we can write [x] =
n/s ∀x,[xy] = ζ ∀(x,y) and [xx] = η ∀x, where n denotes the
number of nodes in the active component. The total number of
links l in the active component is then given by

l = sη + s(s − 1)

2
ζ,

and (A1) yields

ζ = ζ 2

n
s(s − 2) + 2

ζη

n
s − ζ 2

n
s(s − 1)

ζ 2

n
s(s − 2) + 2

ζ l

n
− 2

ζ 2

n
s(s − 1).

Using kn = 2l we get for the maximum active link density in
a cluster of s states:

ρmax = s(s − 1)ζ

2l
= (s − 1)(k − 1)

sk
,

which gives ρmax = (k − 1)/(2k) for s = 2, as provided in the
text.
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[17] G. Zschaler, G. A. Böhme, M. Seißinger, C. Huepe, and T. Gross,
Phys. Rev. E 85, 046107 (2012).

[18] J. L. Herrera, M. G. Cosenza, K. Tucci, and J. C. González-
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