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Nonperturbative model for wrinkling in highly bendable sheets
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The wrinkled geometry of thin films is known to vary appreciably as the applied stresses exceed their buckling
threshold. Here we derive and analyze a minimal, nonperturbative set of equations that captures the continuous
evolution of radial wrinkles in the simplest axisymmetric geometry from threshold to the far-from-threshold
limit, where the compressive stress collapses. This description of the growth of wrinkles is different from the
traditional post-buckling approach and is expected to be valid for highly bendable sheets. Numerical analysis of
our model predicts two surprising results. First, the number of wrinkles scales anomalously with the thickness
of the sheet and the exerted load, in apparent contradiction with previous predictions. Second, there exists an
invariant quantity that characterizes the mutual variation of the amplitude and number of wrinkles from threshold
to the far-from-threshold regime.
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I. INTRODUCTION

The wrinkling and buckling of elastic sheets are generally
understood as perturbative phenomena. Near threshold (NT),
where the compression along some direction is just enough
to initiate buckling, traditional methods describe the shape
by a perturbation of the Föppl–von Kármán (FvK) equations
around the unstable, compressed state [1]. In contrast, the
wrinkling state in very thin sheets, which support only
negligible compressive stress before buckling, is described
by a totally different perturbation theory. The basis of this
far-from-threshold (FFT) expansion, which is the subject of
tension field theory, is the singular “membrane limit” of
sheets that support tension but not compression [2–4]. Since
the critical loads diminish with thickness, the mechanics of
wrinkled sheets and their transition from NT to FFT conditions
are highly relevant for the study, control, miniaturization,
and applicability of micro- and nanothickness films to new
technologies.

The realization that wrinkling patterns are described by two
distinct perturbation theories of FvK equations raises imme-
diate problems. First, how does a wrinkling pattern transform
from NT to FFT behavior when the control parameters (e.g.,
the sheet’s thickness or the exerted loads) are smoothly varied?
Another basic question pertains to the singular nature of the
membrane limit, which may give rise to unphysical diver-
gences in the FFT expansion that invalidate the computation
of the wrinkle wavelength [5]. In this paper, we introduce a
nonperturbative wrinkling model that is motivated by these
problems and describes the transformation between the NT
and FFT limits. The model projects the full FvK equations
onto a set of nonlinear ordinary differential equations (ODEs).
Focusing on an elementary axisymmetric stretching setup
[Fig. 1(a)], we show that the model regularizes the FFT
expansion and enables a complete quantitative description of
wrinkling patterns.

The interest in the emerging sheet morphologies in axisym-
metric setups, where sheets of circular shape are subjected
to radial tensile loads, was triggered by a recent set of
experiments [6–8]. The innovative use of capillary forces
for stretching floating ultrathin sheets provided a natural

playground for creating axisymmetric setups [7,8] and enabled
an unprecedented precision in studying wrinkling phenomena.
For a theorist, there is an obvious advantage in studying
such setups. The radial stress is tensile, shear is negligible,
and for a range of loading conditions the hoop (azimuthal)
stress is compressive in some fraction of the sheet, hence the
consequent buckling instability gives rise to a pattern of radial
wrinkles. The simplest axisymmetric stretching setup is the
Lamé geometry, Fig. 1(a) [1]: an annular sheet (Rin � Rout)
under planar tensile loads (Tin,Tout, respectively). For the sake
of simplicity, we will focus the current analysis on the Lamé
setup. It is important to emphasize that the basic approach of
this manuscript should be directly applicable for the study
of wrinkles in other radial stretching geometries. Notable
examples of such wrinkling patterns are the “sheet-on-drop”
[9] and the “drop-on-sheet” [7,10] systems.

The high level of symmetry in this class of problems
enabled the identification of dimensionless parameters that
define the NT and FFT regimes: confinement, which depends
on the tensile loads and governs the macroscopic extent of the
compressive zone (or macrostructure), and bendability, which
is inversely proportional to the bending modulus B and governs
the wrinkle wavelength (or microstructure) [5]. For the Lamé
problem, these parameters take the following specific form:

confinement : τ = Tin

Tout
; bendability : ε−1 = ToutR

2
in

B
. (1)

A schematic phase diagram (spanned by ε−1 and τ ) of
wrinkling patterns in the Lamé setup is depicted in Fig. 1(b) [5].
It shows that for a given ε, buckling occurs if τ > τc(ε),
where the threshold curve τc(ε) → 2 in the limit ε → 0,
corresponding to highly bendable sheets. Close to (above)
the threshold curve, the sheet exhibits an NT wrinkling state
that is described as a perturbation around the compressed
axisymmetric state. The NT regime in the (ε−1,τ ) plane
narrows down for ε � 1, where the sheet is so thin that
it can support only a tiny compression. The FFT wrinkling
state that prevails in the high-bendability regime (ε � 1)
is analyzed through a markedly different expansion of FvK
equations, around the singular, compression-free membrane
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FIG. 1. (a) The Lamé set-up. (b) Left: The log-log phase diagram,
spanned by the bendability (ε−1) and confinement (τ ) parameters,
exhibits a flat region (white) that is bounded by the threshold τc(ε)
(solid curve), above which wrinkles are classified into NT (light gray),
FFT (dark gray), and NT-FFT crossover regions. Right panels: The
hoop stress at ε−1 = 104 and τ = 3, 10, 20 (solid lines). The dashed
lines are the axisymmetric (Lamé) hoop stress for these values of τ .

limit, ε → 0, of sheets with vanishing bending modulus. These
two analyses predict different scaling laws for the extent and
number of wrinkles. By combining them into a single model
we may unify the previous approaches for describing wrinkling
phenomena [11–14].

The paper is organized as follows. In Sec. II we briefly
review the distinct behaviors of wrinkles in the NT and FFT
limits. In Sec. III we describe the nonperturbative model and
show how it interpolates between the two limits and regularizes
an unphysical singularity that baffled the original derivation
of the FFT perturbation theory. In Sec. IV we describe our
numerical analysis of the model equations and focus on two
central findings: (1) an anomalous scaling of the number of
wrinkles in the FFT limit and (2) an invariant quantity that
characterizes the mutual variation of the amplitude and number
of wrinkles between the NT and FFT limits. In Sec. V we
conclude with some open questions and outlook. For the sake
of clarity, we provide in Sec. III only heuristic arguments
that explain the basic idea of the nonperturbative model and
postpone to the appendices the technical derivation of the
model from the complete FvK equations.

II. THE NEAR-THRESHOLD AND
FAR-FROM-THRESHOLD LIMITS

The NT analysis is a linear stability analysis around the
axisymmetric flat state, which is described by the classical

Lamé solution [1]. In the limit Rout � Rin and for τ > 2, the
Lamé solution has a compressive hoop stress (i.e., σθθ (r) < 0)
in a zone Rin < r < LNT = Rin

√
τ − 1. To this state, an

infinitesimal out-of-plane perturbation with a single wave
number m is applied:

ζ (r,θ ) = f (r) cos(mθ ). (2)

As τ → τc(ε), only a single critical mode mc(ε) lowers the
mechanical energy UM relative to the axisymmetric state.
UM is the sum of the stretching and bending energies of the
sheet, minus the external work done on the system due by
the constant-tension boundary conditions. Since wrinkling is
an infinitesimal perturbation, the extent of the wrinkled zone,
defined as the distance from the tip of the wrinkles to the center,
is approximated by LNT of the Lamé axisymmetric solution.

In contrast, the FFT analysis begins with solving for the
stress in the membrane limit by imposing σθθ = 0 in a region
Rin < r < L with finite-amplitude wrinkles and an arbitrary
L. Minimization of the dominant in-plane stretching energy
over L yields the wrinkle extent LFFT = Rinτ/2 > LNT. As
the dominant energy depends only on the mere existence of
the wrinkles and not on their number, the wrinkle number must
be found by minimizing a subdominant energy that consists of
bending and out-of-plane stretching. This subdominant energy
is naturally minimized by a single mode with a wave number
mFFT (see Appendix D), a result supported by experiments [7].
In Ref. [5] the ratio between the subdominant and dominant
energies was assumed to be O(ε1/2), an assumption which
implies the scaling mFFT ∼ ε−1/4. However, the singular nature
of the membrane limit complicates the calculation of mFFT. The
restriction that σθθ → 0 creates a “slaving” condition on the
wrinkle amplitude f (r):

1

4
f (r)2m2 = RinTout

Y
τ r ln

[
τRin

2r

]
, (3)

where Y is the two-dimensional Young’s modulus. The profile
specified by Eq. (3) contains a cusp at r = LFFT, which causes a
divergence in the subdominant out-of-plane stretching energy
[whose areal density is proportional to (df/dr)2]. A central
contribution of the current paper is a regularization of this
singularity.

III. THE MODEL

In the following we describe our nonperturbative model and
demonstrate that it captures the wrinkling behavior in both the
NT and FFT limits. This model assumes that the wrinkling
pattern is characterized by an out-of-plane deformation of the
form (2) and a corresponding strain field εij that is dominated
by its axisymmetric (θ -independent) sector [see Eqs. (4c)].
This assumption is motivated by its applicability to both NT
and FFT limits, but in the Appendices we demonstrate the self-
consistency of this model. In the NT regime, m will correspond
to the single unstable mode mc(ε), while in the FFT regime it
will be the most unstable (lowest energy) mode mFFT. Thus,
our model will track the variation of the most unstable mode
between the NT and FFT limits. Equation (2) distinguishes our
model from the traditional approach, which assumes that the
post-buckling state couples an increasing number of unstable
modes. In contrast to our model, which addresses the high
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bendability regime ε−1 � 1, the classical approach does not
account for the collapse of compression and the consequent
separation of energy scales; hence we expect it to be applicable
only for low bendability values.

Assuming Eq. (2) with some arbitrary m and the domination
of the stretching energy by the axisymmetric strain, the
nonlinear FvK equations reduce to a set of ODEs for the normal
and radial displacements, f (r) and ur (r), respectively. Force
balance in the radial direction gives

0 = 1

r
∂r (rσrr ) − σθθ/r, (4a)

where the stresses satisfy the linear (Hookean) response:

σrr = Y

1 − ν2
(εrr + νεθθ ); σθθ = Y

1 − ν2
(εθθ + νεrr ).

(4b)

and the strains are connected to the displacements through the
effective axisymmetric relation:

εrr = dur

dr
+ 1

4

(
df

dr

)2

; εθθ = ur

r
+ 1

4
m2 f 2

r2
(4c)

(and εrθ = 0). The normal force balance equation is

B∇4f = σrr

d2f

dr2
+ σθθ

(
1

r

d

dr
− m2

r2

)
f, (4d)

where ∇2 ≡ ( d2

dr2 + 1
r

d
dr

− m2

r2 ). In Appendices A and B, we
present a detailed derivation of Eqs. (4), and in Appendix C
we show that they conform to a variational system that satisfies
δUM = 0 and derive the boundary conditions.

Both NT and FFT results can be derived from analysis of
Eqs. (4). The NT analysis of these equations yields identical
results to the analogous buckling analysis of the full FvK
equations. Dropping the nonlinear terms in Eqs. (4c) decouples
the in-plane problem (4a)—(4c) from the out-of-plane problem
(4d). This in-plane problem yields the Lamé solution. Using
these stresses, the analysis of Eq. (4d) gives the standard
buckling analysis of thin plates [14].

The slaving condition (3) and other features of the FFT
regime can also be obtained from Eqs. (4a)–(4c). In the
FFT analysis of Ref. [5], the contribution 1

4 (df/dr)2 was
omitted from the radial strain εrr in Eq. (4c). This reflected
a pointwise matching between the compression-free wrinkled
zone of r > LFFT and the wrinkled zone, r < LFFT. Briefly, the
vanishing hoop stress gives σθθ = 0 = εθθ + νεrr = (ur/r +
f 2m2/4r2) + νdur/dr . We obtain Eq. (3) when the radial
stress σrr = TinRin/r is used to obtain ur from the uniaxial
relation σrr = Ydur/dr [compatible with a collapsed stress
and the radial force balance Eq. (4a)]. This calculation predicts
a cusp (|df/dr| → ∞) at r = LFFT. Our numerical results,
below, show that this spurious divergence is related to the
neglected term 1

4 (df/dr)2. This term becomes important at
the vicinity of the wrinkle tip, r = LFFT, and its inclusion is
shown to smooth out the cusp and hence regularize the energy
calculation.

IV. RESULTS

Since the set of nonlinear equations (4) describes wrinkling
in both NT and FFT limits, we propose its validity in the whole

high bendability regime ε−1 � 1. Specifically, we explore
wrinkling patterns by numerically solving Eqs. (4) for a
range of numbers m along vertical (fixed ε) and horizontal
(fixed τ ) trajectories in the parameter space (ε−1,τ ). Our
numerical analysis rapidly converges to the limit Rout → ∞
when the ratio Rout/Rin ≈ 102 or larger, so that we use a
safe value of Rout/Rin = 2 × 102. Additionally, since most
of the experiments on wrinkling have been made on polymer
membranes [7,8], we take the value ν = 1/3 in our numerics.

As one moves away from threshold, τc(ε), the axisymmetric
state becomes unstable to a growing number of wrinkling
modes (each corresponds to a different m). Our calculation
shows that at each point (ε−1,τ ) the energy is minimized by a
single value of wrinkle number m∗ = m∗(ε,τ ).

Moving along fixed bendability lines [verticals in Fig. 1(b)],
we observe that the stress recovers the Lamé solution when
τ � τc(ε). As τ increases, the stress varies appreciably and
evolves into a shape that consists of a large region in which
the compressive (negative) hoop component almost vanishes
[Fig. 1(b)]. The distinctive collapse of the hoop stress signifies
the emergence of the FFT regime. As far as we know, our
model is the first one that captures the gradual transition of
wrinkling patterns from threshold to the FFT regime assumed
by tension field theory.

Since the FFT analysis predicts a wrinkle extent larger
than that of the NT analysis, we expect a variation between
these two limits with τ . Figure 2(a) shows the evolution of
the extent L∗ = L∗(ε,τ ) of the compressive region along the
vertical (fixed-ε) paths. As expected, L∗ is observed to increase
monotonically with τ , approaching the predicted value LNT(τ )
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FIG. 2. (a) The computed extent L∗(ε,τ ) of the compressive
region (where σθθ < 0), plotted here as a function of τ , for several
values of ε, increases with τ and appears to be bounded by the FFT
prediction (upper solid black line) and the NT (Lamé) prediction
(lower dashed line). (b) Computed wrinkle profiles m∗f (r) (gray
lines) for τ = 5 and several values of ε, compared with the prediction
of the FFT expansion, Eq. (3) (solid black line). (Inset) The amplitude
for several values of ε follows the fit suggested by Eq. (5). In the
figures L∗ and r are re-scaled by Rin, and the amplitudes are scaled
by

√
R2

inTout/Y . The bendability values ε−1 = 103, 104, 105, 106 are
indicated with increasing intensity of gray.
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FIG. 3. Log-log plot of the number of wrinkles m∗(ε,τ ) as a
function of ε−1. The upper gray solid line is the threshold value mc(ε),
and the solid black lines describe m∗(ε,τ ) for several confinement
values τ = 2.5,3,5. The slopes shown were predicted in Ref. [5] by
scaling arguments for the wrinkle number in the NT (upper dashed
line) and FFT (lower dashed line). The inset shows m∗(ε,τ ) as a
function of τ for different values of the bendability. The gray line
corresponds to mc(τ ) after inverting the relation τc(ε).

only for τ → τc(ε), and converging to the predicted LFFT(τ ),
away from τc(ε), when bendability is increased. Figure 2(b)
shows that above threshold and for ε � 1, the computed
wrinkle profile f (r) agrees with Eq. (3) in the “bulk” of
the wrinkled region, but exhibits a substantial deviation from
this prediction in a narrow layer between the wrinkled and
unwrinkled zones. The width of the matching zone decreases
as ε → 0. In this region, the large radial slope means that the
radial strain term (df/dr)2 in εrr is important and is balanced
by an appropriate variation of the in-plane component dur/dr

from its compression-free value. This term regularizes the
spurious divergence in the subdominant energy of the FFT
analysis, and as such it is essential to the selection of the FFT
pattern.

Figure 3 (inset) shows the variation of the wrinkle number
m∗(ε,τ ) along few vertical, fixed-ε paths. As the confinement τ
is increased from threshold, the wrinkle number is observed to
decrease from the threshold value mc(ε) = m∗[ε,τc(ε)]. This
effect is elucidated in Fig. 3, where we plot m∗(ε,τ ) along two
types of trajectories: the threshold curve [ε−1,τ = τc(ε)] and
a fixed confinement line (ε−1,τ = τ0). The scaling of mc(ε) as
ε → 0 is in excellent agreement with the predicted NT scaling
law [5,14]. For m∗(ε,τ ) we find the scaling m∗(ε,τ ) = k(τ )ε−β

with β ≈ 0.27 and k(τ ) a function of τ .
The surprise that comes with this finding stems from its

apparent contradiction with the force balance argument in
Refs. [5,12,13] that yields the scaling mFFT ∼ ε−1/4. (Note,
though, that our numerical analysis does not rule out the scaling
m∗ ∼ [ε log(1/ε)]−1/4.) Notably, Ref. [5] assumed that the
pattern is described by the compression-free profile, Eq. (3),
and ignored the unphysical energetic divergence implied by
this assumption [5]. The observation of the “anomalous”
exponent β > 1/4 indicates that part of the subdominant
energy becomes focused at the narrow matching zone, thus
modifying the proposed dimensional scaling β = 1/4.

Another unexpected result comes from the wrinkle ampli-
tude, defined here as A(ε,τ ) ≡ f (r = Rin). In the FFT regime,
it is determined by the slaving condition (3). In the NT regime,

the amplitude must be proportional to
√

τ − τc(ε), thanks
to the universal behavior of supercritical bifurcations [15].
Remarkably, we find that the amplitude is well approximated
in both regimes by

A(ε,τ ) ≈
√

R2
inTout

Y

√
2τ τc(ε)

m∗(ε,τ )

√
ln

τ

τc(ε)
. (5)

Note that this reduces to Eq. (3) for ε → 0, where τc(ε) ≈ 2,
and gives the expected square-root behavior for τ ≈ τc(ε).
As demonstrated in Fig. 2(b) (inset), this approximation is
good throughout the parameter space, and thus it reflects an
invariant property of the wrinkling pattern, valid in the NT and
FFT limits as well as the intermediate regime connecting them.

V. SUMMARY

We have studied here a simple, nonperturbative model
that captures the transition between the NT and FFT limits
of wrinkling patterns in highly bendable sheets (ε � 1).
Our model proposes that this transition occurs through a
single-mode pattern, Eq. (2), where the profile f (r) and the
number m of wrinkles vary smoothly between the two limits.
Numerical analysis of this model shows that it regularizes the
spurious singularity that hampered a former, crude version
of the FFT expansion that assumed a pointwise matching
between the wrinkled and unwrinkled parts of the sheet [5].
The single-mode assumption is supported by experimental
observations [6,7,9] and by heuristic arguments (Appendix D),
suggesting its validity under the free BCs assumed in this
paper. Under other BCs, such as clamping at the boundary
r = Rin, the single-mode assumption is expected to fail, giving
rise to a multimode cascade of wrinkles near the boundary.
Let us note that despite these plausible considerations we are
unaware of an analytic proof to the validity of the single-
mode assumption, and a recent work, based on variational
considerations, proposed that the actual energy minimizer
could be a multimode wrinkling cascade (even under free BCs)
[16]. A generalization of our model to multimode wrinkling
patterns [i.e., replacing Eq. (2) by ζ (r,θ ) = ∑

fm(r) cos(mθ )],
may help to address this question, as well as other problems
concerning the effect of various types of boundary conditions
on the emerging wrinkling pattern.

The Lamé setup that is the focus of this paper provides the
simplest extension of the classical Euler buckling instability
from one-dimensional to an axisymmetric, two-dimensional
configuration in which a planar, radial tensile load gives
rise to a pattern of radial wrinkles. We expect that similar
nonperturbative models could be developed and analyzed
for studying wrinkling patterns in more complicated radial
stretching setups by following the methodology introduced
in this paper. These setups include, in particular, the sheet-on-
drop [9] and drop-on-sheet [7] experiments. These experiments
exhibit fascinating patterns of wrinkles which may undergo
a transition to crumpled shapes. A nonperturbative model,
similar to the one introduced here, may be useful to study
some properties of such transitions.

In addition to its generalizability to multimode wrinkling
patterns and other radial stretching problems, our results
open up new interesting problems: How can one characterize
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the transition between the low bendability regime, where a
regular perturbation theory around the compressed state should
be applicable, to the high-bendability wrinkling behavior
described in this paper? Are wrinkling patterns in generic
two-dimensional setups characterized by anomalous scaling
relations? We hope that the nonperturbative wrinkling model
reported here and the interesting questions that it raises will
inspire future studies to explore these and other questions.
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APPENDIX A: THE SINGLE-MODE SOLUTION
TO THE FvK EQUATIONS

The aim of this Appendix is to show how the large deflec-
tion, small slopes assumption implies the existence of a single
mode solution to Föppl–von Kármán (FvK) equations for the
axisymmetric stretching of an annular sheet. Specifically, we
show that for every wrinkle number m, the FvK equations
reduce to a set of four nonlinear, coupled ODEs, whose
solution gives the profile (out-of-plane deformation) f (r) and
the associated in-plane deformation field. In Appendix B we
will show that in the high bendability regime (ε � 1) the set
of four ODEs can be reduced to only two ODEs [Eqs. (4)].

The sheet is stretched by constant stresses Ti and To

(abbreviation for Tin and Tout) at its inner and outer boundaries
Ri and Ro (abbreviations for Rin and Rout), respectively. We
assume a deformation of the form of Eq. (2):

ζ (r,θ ) = f (r) cos mθ. (A1)

We observe that the source of nonlinearity in the FvK equations
is the quadratic terms in the strains. Deriving the strain
tensor associated with the ansatz ζ (r,θ ), we find a radial
part (referred to here as “axisymmetric”) and an oscillating
(“nonaxisymmetric”) part. For example,

εrr = ∂ur

∂r
+ 1

2

(
∂ζ

∂r

)2

= ∂ur

∂r
+ 1

4

(
df

dr

)2

(1 + cos 2mθ ).

All other strain components and the associated components
of the stress tensor and the displacement vector have similar
axisymmetric and nonaxisymmetric parts. We derive below
the explicit expressions.

1. Föppl–von Kármán equations

The complete set of equations that we need to solve are
[3,17]

0 = 1

r

∂(rσrr )

∂r
− σθθ

r
+ 1

r

∂σrθ

∂θ
, (A2a)

0 = 1

r

∂(rσrθ )

∂r
+ σrθ

r
+ 1

r

∂σθθ

∂θ
, (A2b)

B∇4ζ = σrr

∂2ζ

∂r2
+ 2σrθ

∂

∂r

(
1

r

∂ζ

∂θ

)

+ σθθ

(
1

r

∂ζ

∂r
+ 1

r2

∂2ζ

∂θ2

)
. (A2c)

These equations, as well as the stress-strain relations,
Eqs. (A3), and the strain-displacement relations (A4) assume
that the deflection is characterized by small slopes everywhere
(|∇f | � 1) and that the strains in the sheet are small.

The stress and strain tensors are related through the
Hookean relations:

εrr = (σrr − νσθθ )/Y, (A3a)

εθθ = (σθθ − νσrr )/Y, (A3b)

εrθ = (1 + ν)σrθ/Y, (A3c)

where Y is the two-dimensional Young’s modulus. Finally, the
relations between strains and displacements are

εrr = ∂ur

∂r
+ 1

2

(
∂ζ

∂r

)2

, (A4a)

εθθ = ur

r
+ 1

r

∂uθ

∂θ
+ 1

2r2

(
∂ζ

∂θ

)2

, (A4b)

εrθ = 1

2r

∂ur

∂θ
+ 1

2

∂uθ

∂r
− uθ

2r
+ 1

2r

∂ζ

∂θ

∂ζ

∂r
. (A4c)

2. Boundary conditions

We study the case of an annular membrane of radii Ri and
Ro that is stretched by the forces (per unit length) Ti and To

[see Fig. 1(a)] under free boundary conditions (BCs):

σrr |r=Ri
= Ti σrr |r=Ro

= To σrθ |r=Ri,Ro
= 0, (A5a)

B

[
r∇2ζ − (1 − ν)

(
∂ζ

∂r
+ 1

r

∂2ζ

∂θ2

)]
r=Ri,Ro

= 0, (A5b)

B

[
r

∂

∂r
∇2ζ + (1 − ν)

∂2

∂θ∂r

(
1

r

∂ζ

∂θ

)]
r=Ri,Ro

− σrrr
∂ζ

∂r

∣∣∣∣
r=Ri,Ro

= 0. (A5c)

Notice that the meaning of “free BCs” here is the absence
of any forces in direction normal to the sheet (thus ruling out,
e.g., clamping of the boundaries). The part that depends on
the radial stress in Eq. (A5c) is usually not included in classic
textbooks of elasticity [3,17]. In Ref. [18], Timoshenko points
out that BCs with free edges and in-plane applied loads must
include that term (see p. 372).

In Appendix C, we show that this set of BCs can be derived
from a variational analysis of the energy functional. This is
similar to the way by which free BCs are obtained in Ref. [17].

3. Projection along the axisymmetric sector

A solution of the form (A1) implies

1

2

(
∂ζ

∂r

)2

= 1

4

(
df

dr

)2

(1 + cos 2mθ ).
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Substituting this in the strain-displacement relations (A4), we
find

εrr = ∂ur

∂r
+ 1

4

(
df

dr

)2

(1 + cos 2mθ ), (A6a)

εθθ = ur

r
+ 1

r

∂uθ

∂θ
+ m2

4
f 2(1 − cos 2mθ ), (A6b)

εrθ = 1

2r

∂ur

∂θ
+ 1

2

∂uθ

∂r
− uθ

2r
− m

4r
f

df

dr
sin 2mθ, (A6c)

where the in-plane displacements ur,uθ are considered general
functions of r and θ . Requiring that the whole displacement
vector field solves the FvK equations (A2) implies the
structure:

ur (r,θ ) = u(0)
r (r) + u(2m)

r (r) cos 2mθ, (A7a)

uθ (r,θ ) = u
(0)
θ (r) + u

(2m)
θ (r) sin 2mθ. (A7b)

The linearity of the stress-strain relations in Eqs. (A3) and
the linearity of the equations of equilibrium for the stresses,
Eqs. (A2), show that a separation of the displacement field
into axisymmetric and nonaxisymmetric components induces
a similar separation for the stresses and the strains. Using
Eqs. (A3), (A6), and (A7), we obtain the following structure
of the stress components:

σrr (r,θ ) = σ (0)
rr (r) + σ (2m)

rr (r) cos 2mθ, (A8a)

σθθ (r,θ ) = σ
(0)
θθ (r) + σ

(2m)
θθ (r) cos 2mθ, (A8b)

σrθ (r,θ ) = σ
(0)
rθ (r) + σ

(2m)
rθ (r) sin 2mθ. (A8c)

The shear term can be proven to be zero. Fourier integrating∫ 2π

0 dθ (·) the two sides of Eq. (A2b), and using Eqs. (A3) and
(A4), we find

0 = 1

r

d(rσ (0)
rθ )

dr
+ σ

(0)
rθ

r
, σ

(0)
rθ = Y

1 + ν

(
1

2

du
(0)
θ

dr
− u

(0)
θ

2r

)
.

The solution of the first equation gives σ
(0)
rθ (r) = A/r2. The

boundary condition of zero shear at r = Ri,Ro implies that
σ

(0)
rθ (r) = 0. Similarly, the second equation gives u

(0)
θ (r) = Br ,

a rigid rotation of the system that can be fixed to zero. We
conclude that u

(0)
θ (r) = 0.

4. ODEs for the displacement field

Now we are at a position to reduce the FvK Eqs. (A2)
into a set of four ODEs for the displacement functions f (r),
u(0)

r (r), u(2m)
r (r), and u

(2m)
θ (r). Substituting the ansatz (A1) and

expressions (A8) into the normal force balance, Eq. (A2c), we
obtain, after Fourier integrating both sides

∫ 2π

0 dθ cos(mθ ) (·):

B

(
d2

dr2
+ 1

r

d

dr
− m2

r2

)2

f

=
[
σ (0)

rr (r) + 1

2
σ (2m)

rr (r)

]
d2f

dr2
− mσ

(2m)
rθ (r)

d

dr

(
f

r

)

+
[
σ

(0)
θθ (r) + 1

2
σ

(2m)
θθ (r)

](
1

r

d

dr
− m2

r2

)
f. (A9a)

From the two other equilibrium Eqs. (A2a) and (A2b)
we obtain, after Fourier integration

∫ 2π

0 dθ (·) and

∫ 2π

0 dθ sin(2mθ ) (·):

0 = 1

r

d(rσ (0)
rr )

dr
− σ

(0)
θθ

r
, (A9b)

0 = 1

r

d
(
rσ (2m)

rr

)
dr

− σ
(2m)
θθ

r
+ 2m

r
σ

(2m)
rθ , (A9c)

0 = 1

r

d
(
rσ

(2m)
rθ

)
dr

+ σ
(2m)
rθ

r
− 2m

r
σ

(2m)
θθ . (A9d)

The four equations (A9) can be expressed in terms of the four
functions f (r), u(0)

r (r), u(2m)
r (r), and u

(2m)
θ (r), by employing

the stress-strain relations:

ε(0)
rr = (

σ (0)
rr − νσ

(0)
θθ

)
/Y, (A10a)

ε
(0)
θθ = (

σ
(0)
θθ − νσ (0)

rr

)
/Y, (A10b)

ε(2m)
rr = (

σ (2m)
rr − νσ

(2m)
θθ

)
/Y, (A10c)

ε
(2m)
θθ = (

σ
(2m)
θθ − νσ (2m)

rr

)
/Y, (A10d)

ε
(2m)
rθ = (1 + ν)σ (2m)

rθ /Y, (A10e)

and the strain-displacement relations:

ε(0)
rr = du(0)

r

dr
+ 1

4

(
df

dr

)2

, (A10f)

ε
(0)
θθ = u(0)

r

r
+ m2

4r2
f 2, (A10g)

ε(2m)
rr = du(2m)

r

dr
+ 1

4

(
df

dr

)2

, (A10h)

ε
(2m)
θθ = u(2m)

r

r
+ 2m

r
u

(2m)
θ − m2

4r2
f 2, (A10i)

ε
(2m)
rθ = −m

r
u(2m)

r + 1

2

du
(2m)
θ

dr
− u

(2m)
θ

2r
− m

4r
f

df

dr
. (A10j)

With the aid of Eqs. (A10), Eqs. (A9) constitute a set of
four equations for the four unknown functions {f (r), u(0)

r (r),
u(2m)

r (r), u
(2m)
θ (r)}, so that the system of equations is well

posed [19].

APPENDIX B: REDUCING THE FvK EQUATIONS
INTO THE NONPERTURBATIVE MODEL

Equations (A9) involve both the axisymmetric (σ (0)) and
nonaxisymmetric (σ (2m)) modes of the stress. Note that these
modes appear together only in (A9a). In this Appendix, we will
show that the contribution of the σ (2m) terms to Eq. (A9a) is
negligible in the high bendability regime (ε � 1). This means
that the four equations (A9) may be reduced to two equations
for the functions f (r) and u(0)

r (r).
Rearranging terms, the right-hand side of (A9) may be

rewritten as

σ (0)
rr

d2f

dr2
+ σ

(0)
θθ

(
1

r

d

dr
− m2

r2

)
f + 1

2
σ (2m)

rr

d2f

dr2

−mσ
(2m)
rθ

d

dr

(
f

r

)
+ 1

2
σ

(2m)
θθ

(
1

r

d

dr
− m2

r2

)
f. (B1)

The relative size of the components of the 2m stress fields
may be estimated from the stress balances of Eqs. (A9c) and
(A9d). Approximating 1/r ∼ d/dr ∼ 1/Ri , the latter implies
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that σ
(2m)
rθ ∼ m σ

(2m)
θθ . Assuming that m � 1, Eq. (A9c) means

that

σ (2m)
rr ∼ m σ

(2m)
rθ ∼ m2 σ

(2m)
θθ .

In turn, this means that all of the 2m terms in Eq. (A9a) will
be of the same order [20]. Thus, to be able to ignore them, we
need only prove that σ (2m)

rr /σ (0)
rr � 1.

In order to estimate this ratio, we notice that the axisymmet-
ric stress is induced by the stretching forces at the boundaries,
and we estimate σ (0)

rr ∼ Ti . Note that the corresponding
axisymmetric strain ε(0)

rr ∼ σ (0)
rr /Y is dominated by the in-plane

component du(0)
r /dr [see Eq. (A10f)], which remains finite

even when the out-of-plane contribution (df/dr)2 = 0 (i.e.,
below threshold). In contrast, the nonaxisymmetric stress σ (2m)

rr

is not induced directly by the boundary forces (obviously,
as σ (2m)

rr = 0 below threshold). By Eq. (A10h), the in-plane
contribution to the nonaxisymmetric strain du(2m)

r /dr must
scale with the out-of-plane contribution (df/dr)2. Thus, we
may estimate the nonaxisummetric radial stress by σ (2m)

rr ∼
Yε(2m)

rr ∼ Yf 2/R2
i . The condition for the negligibility of the

second-order stress in Eq. (A9a) reduces to

m � 1 and
Yf 2

TiR
2
i

� 1. (B2)

From the “slaving” condition (3), we have Yf 2/TiR
2
i ∼

m−2 � 1 when m � 1. From force balance, we expect m ∼
ε−1/4 [5] (and find numerically that m ∼ ε−0.27), so in the
high bendability limit, ignoring the contribution from the
second-order stress is a valid assumption [21].

1. The reduced model

The above argument shows that we may reduce Eqs. (A9)
to two equations that involve only f (r) and u(0)

r (r) (the super-
index is henceforth dropped)

B

(
d2

dr2
+ 1

r

d

dr
− m2

r2

)2

f = σrr

d2f

dr2
+ σθθ

(
1

r

d

dr
− m2

r2

)
f,

(B3a)

0 = 1

r

d(rσrr )

dr
− σθθ

r
, (B3b)

that must be solved with the stress-strain relations

εrr = (σrr − νσθθ )/Y, (B3c)

εθθ = (σθθ − νσrr )/Y, (B3d)

and the strain-displacement relations

εrr = dur

dr
+ 1

4

(
df

dr

)2

, (B3e)

εθθ = ur

r
+ m2

4r2
f 2. (B3f)

Equations (B3) constitute the model used in our work.

2. BCs for the model

Since the BCs (A5) for the Lamé problem are linear, it is
straightforward to obtain

σrr |r=Ri
= Ti σrr |r=Ro

= To, (B4a)

B

[
r

(
∇2

r − m2

r2

)
f − (1 − ν)

(
df

dr
− m2 f

r

)]
r=Ri, Ro

= 0,

(B4b)[
B

{
− r

d

dr

[(
∇2

r − m2

r2

)
f

]
+ (1 − ν)m2 d

dr

(
f

r

)}

+2πσrrr
df

dr

]
r=Ri, Ro

= 0. (B4c)

This gives us a self-contained system describing a single-mode
solution (with m wrinkles) for the out-of-plane displacement.
This system can be solved for any m; the optimal value will
be found by minimizing the mechanical energy of the system.
This energy functional is derived in Appendix C.

APPENDIX C: VARIATIONAL ANALYSIS
AND THE MECHANICAL ENERGY

The aim of this Appendix is to provide a variational
principle for the Eqs. (B3) [or Eqs. (4)] and BCs (B4). We
will show that there exists a functional that corresponds to
the mechanical energy of the system. The mechanical energy
is of fundamental importance in our framework since energy
minimization provides a mechanism to select the number of
wrinkles.

1. Bending energy

The bending energy in the small deflection approximation
is [17]

UB = B

2

∫
A

dA {(∇2ζ )2 − (1 − ν)[ζ,ζ ]}. (C1)

Here,

∇2ζ =
(

∇2
r + 1

r2

∂2

∂θ2

)
ζ,

[ζ,ζ ] = 2
∂2ζ

∂r2

(
1

r

∂ζ

∂r
+ 1

r2

∂2ζ

∂θ2

)
− 2

(
1

r

∂2ζ

∂r∂θ
− 1

r2

∂ζ

∂θ

)2

,

where we have defined ∇2
r ≡ 1

r
∂
∂r

(r ∂
∂r

). In the small deflection
limit, ∇2ζ is the mean curvature and [ζ,ζ ] is twice the Gaussian
curvature.

Using the ansatz (A1), we obtain

∇2ζ = cos2 mθ

(
∇2

r − m2

r2

)
f,

[ζ,ζ ] = cos2 mθ × 2
d2f

dr2

(
1

r

df

dr
− m2

r2
f

)

− sin2 mθ × 2m2

(
1

r

df

dr
− 1

r2
f

)2

.

Substituting these relations into the energy and integrating
gives the bending energy

UB = 2π

2

B

2

∫ Ro

Ri

rdr

[(
∇2

r − m2

r2

)
f

]2

− 2π

2
B(1 − ν)κ|Ro

Ri
,
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where the factor 2π/2 in front of the integral reflects the
angular integration. The function

κ(r) ≡ 1

2

[(
df

dr

)2

− m2 d

dr

(
f 2

r

)]
is simply the area integral of the Gaussian curvature [22].

2. Stretching energy

The in-plane elastic energy is [3,17]

US = Y

2(1 − ν2)

∫
A

dA
[
ε2
rr + ε2

θθ + 2νεrrεθθ + 2(1 − ν)ε2
rθ

]
.

(C2)

Here we use the displacement relations (A7) to the lowest
order to obtain the strains and evaluate the energy

εrr = du(0)
r

dr
+ 1

4

(
df

dr

)2

, (C3a)

εθθ = u(0)
r

r
+ m2

4
f 2, (C3b)

εrθ = 1

2

du
(0)
θ

dr
− u

(0)
θ

2r
. (C3c)

3. External work and mechanical energy

When forces Ti and To are applied to the boundaries,
external work is done on the system. This work can be

computed as

We =
∫
C
dl n̂iσijuj = 2πToRour (Ro) − 2πTiRiur (Ri).

Here C is the contour line marking the boundary of the annular
membrane. The deformation of the membrane due to these
constant forces is obtained by minimizing the mechanical
energy

UM = UB + US − We

for free variations of the displacement.

4. First variation

Enforcing δUM = 0 for free variations of u(0)
r , u(2m)

r , u
(0)
θ ,

u
(2m)
θ , and f gives, after a straightforward but lengthy calcula-

tion [23], the system Eqs. (A9). Here we show that considering
only variations in u(0)

r , u
(0)
θ , and f leads consistently to the

reduced model (B3).

a. Bending energy

We apply manipulations, similarly to Ref. [17]. The
variation of the first term is

δ
1

2

∫ Ro

Ri

rdr

[(
∇2

r − m2

r2

)
f

]2

=
∫ Ro

Ri

rdr

[(
∇2

r − m2

r2

)
f

][(
d2

dr2
+ 1

r

d

dr
− m2

r2

)
δf

]
.

Successive integrations by parts give the expression

δ
1

2

∫ Ro

Ri

rdr

[(
∇2

r − m2

r2

)
f

]2

=
∫ Ro

Ri

rdr

[(
∇2

r − m2

r2

)2

f

]
δf + r

[(
∇2

r − m2

r2

)
f

]
dδf

dr

∣∣∣∣Ro

Ri

− r
d

dr

[(
∇2

r − m2

r2

)
f

]
δf

∣∣∣∣Ro

Ri

.

For the second term, which is a boundary term, we obtain

δκ = δ
1

2

[(
df

dr

)2

− m2 d

dr

(
f 2

r

)]
=

[
df

dr
− m2 f

r

]
dδf

dr
− m2 d

dr

(
f

r

)
δf.

Therefore, the variation of the bending energy is

δUB = 2π

2
B

∫ Ro

Ri

rdr

[(
∇2

r − m2

r2

)2

f

]
δf + 2π

2
B

{
r

[(
∇2

r − m2

r2

)
f

]
− (1 − ν)

(
df

dr
− m2 f

r

)}
dδf

dr

∣∣∣∣Ro

Ri

+ 2π

2
B

{
− r

d

dr

[(
∇2

r − m2

r2

)
f

]
+ (1 − ν)m2 d

dr

(
f

r

)}
δf

∣∣∣∣Ro

Ri

. (C4)
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b. Stretching energy

The first variation of the stretching energy gives the simple expression [after using the stress-strain relations and Eqs. (C3)]

δUS = 2π

∫ Ro

Ri

rdr (σrr δεrr + σθθ δεθθ + 2σrθ δεrθ ),

where we have included only the axisymmetric part of the strains (the super-index is henceforth dropped). The variations of the
strains are

δεrr = dδur

dr
+ 1

2

df

dr

dδf

dr
, δεθθ = δur

r
+ m2

2r2
f δf δεrθ = 1

2

dδuθ

dr
− δuθ

2r
.

Substituting the variations of the strains into the energy, we obtain after an integration by parts

δUS = 2π

∫ Ro

Ri

dr

{[
σθθ − d

dr
(rσrr )

]
δur −

[
d(rσrθ )

dr
+ σrθ

]
δuθ +

[
σθθ

m2

2r
f − d

dr

(
σrr

r

2

df

dr

)]
δf

}

+ 2πσrrrδur |Ro

Ri
+ 2πσrθ rδuθ |Ro

Ri
+ 2πσrr

r

2

df

dr
δf

∣∣∣∣Ro

Ri

. (C5)

c. External work and mechanical energy

It is straightforward to obtain the variation of the external
work as

δWe = 2πToRoδur (Ro) − 2πTiRiδur (Ri). (C6)

Thus, we now have an explicit expression for the variation of
the mechanical energy:

δUM = δUB + δUS − δWe, (C7)

where the individual terms are given by Eqs. (C4)–(C6).

5. Equations and boundary conditions

Since the variations δf , δur , and δuθ are independent, the
variation of the mechanical energy is zero when the following
terms in Eq. (C7) are zero:

σθθ − d

dr
(rσrr ) = 0,

1

r

d(rσrθ )

dr
+ σrθ

r
= 0,

B

[(
∇2

r − m2

r2

)2

f

]
+

[
σθθ

m2

r2
f − 1

r

d

dr

(
σrr r

df

dr

)]
= 0.

Using the first equation to simplify the third equation, we
obtain

0 = 1

r

d(rσrθ )

dr
+ σrθ

r
, (C8a)

0 = 1

r

d(rσrr )

dr
− σθθ

r
, (C8b)

B

(
∇2

r − m2

r2

)2

f = σrr

d2f

dr2
+ σθθ

(
1

r

d

dr
− m2

r2

)
f.

(C8c)

Thus, we have reobtained Eqs. (B3a) and (B3b) of Appendix B,
showing that the minimization of the mechanical energy UM

yields these equations.
For the first variation of the mechanical energy to be zero,

the boundary terms must also vanish. This requirement gives
the boundary conditions necessary to solve the equations. In
order for the boundaries to be subjected to constant stresses,
the edge must be free and the values of δf , dδf/dr , δur , and

δuθ cannot be fixed there. That the boundary terms vanish
yields the boundary conditions:

σrθ |Ro
= 0, σrθ |Ri

= 0, (C9a)

σrr |Ro
= To, σrr |Ri

= Ti, (C9b){
r

[(
∇2

r − m2

r2

)
f

]
− (1 − ν)

(
df

dr
− m2 f

r

)}∣∣∣∣
Ri,Ro

= 0,

(C9c){
B

[
− r

d

dr

[(
∇2

r − m2

r2

)
f

]
+ (1 − ν)m2 d

dr

(
f

r

)]

+ rσrr

df

dr

}∣∣∣∣
Ri,Ro

= 0. (C9d)

Equations (C9) correspond to the BCs (B4) derived in
Appendix B. As before, the solution of the equilibrium
equation (C8a) with the boundary condition (C9a) shows
that σrθ = 0.

APPENDIX D: THE SINGLE MODE AS A MINIMIZER
OF THE ENERGY

Near the wrinkling threshold τc(ε), there exists a single
unstable mode with mc(ε) wrinkles, and hence the pattern is
exactly characterized by this single mode. However, as the
system moves farther from threshold, more and more modes
will become unstable. One might expect that the shape of the
sheet takes the form

ζ (r,θ ) =
∑

fm(r) cos(mθ ), (D1)

where the sum is over all unstable modes m. Here we present
a heuristic argument for why this is not the case. Instead, the
system, absent any adverse boundary conditions, will exhibit
a single-mode shape in the FFT limit as well.

In the FFT limit, the energy can be written as the sum of two
parts: a dominant energy U dom that depends only on the exter-
nal tensions and remains finite as ε → 0, and a subdominant
energy U sub that depends on the shape ζ and vanishes with
ε [5]. The subdominant energy gets contributions both from
the bending energy and from stretching terms associated with
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out-of-plane deformations. The bending energy is quadratic
in ζ (C1). The largest subdominant stretching terms come
from the in-plane stress times the out-of-plane contributions
to the strain (C2). These strain terms are also quadratic in ζ

(C3), so the leading term in the subdominant energy will be
proportional to ζ 2.

Though there is some r dependence in the energy, it is
not strong. Barring a boundary condition that breaks the r

symmetry, we expect that each mode should have roughly
the same r dependence. That is, we should be able to write
fm(r) = Amg(r) for some universal function g(r). Since the
subdominant energy is quadratic in ζ , we may write

Usub ≈
n∑

m=1

VmA2
m. (D2)

The angular integral of the subdominant energy density
causes the cross-terms between different modes to vanish. Our
numerical results suggest that g(r) is square integrable, so the
radial integral will be well defined and establish the Vm. (For
later ease of discussion, we consider only a finite number of
modes n. But n may be taken to be infinite without altering
the argument.) In this approximation, we can write σθθ = 0,
or equivalently, the slaving condition (3) schematically as

n∑
m=1

CmA2
m = C0. (D3)

We may use this expression to eliminate one amplitude from
Eq. (D2). We choose to eliminate A2

1 and rewrite the energy in
terms of the remaining modes:

Usub ≈ U1 +
n∑

m=2

ṼmA2
m. (D4)

Since U sub is linear in the A2
m, its minimization is an

instance of linear programming. To put it in more familiar
form, let x = (A2

2,A
2
3, . . . ,A2

n). Then the energy (D4) may be

written as

U sub − U1 ≈ ṼTx, (D5)

where Ṽ ≡ (Ṽ2, . . . ,Ṽn). Because A2
m � 0, we have:

x � 0, CTx � C0, (D6)

with C ≡ (C2, . . . ,Cn), where the latter comes from the con-
straint (D3) and A2

1 � 0. A basic result of linear programming
is that the minimum to (D5) will occur at one of the corners of
the domain defined by (D6) [24,25]. As x ∈ Rn−1, a corner of
this domain must lie on (n − 1) equalities of (D6). Since each
equality corresponds to one of the Am = 0, this means (n − 1)
of the n modes must vanish at the minimum energy, leaving a
shape consisting of only a single mode.

The argument relies on all the modes having the same r de-
pendence, so that the subdominant energy can be approximated
by the form (D2). The consistency of the computed profiles
(Fig. 3) suggests that it is not an unreasonable assumption.
Note that near the end of the wrinkles, the profiles have
different r dependencies. This indicates the failure of the
slaving condition due to a compressional boundary layer.
Whether this compressional layer leads to a failure of the
argument that suggests a single-mode energy minimizer is an
open question that has to be addressed in the future (see also
Ref. [16]). Near r = Ri , on the other hand, the agreement of the
profiles indicates that the free boundary conditions are nearly
compatible with the single mode solution. Other boundary
conditions may not be. For example, clamping [f (Ri) = 0]
induces compression and is obviously inconsistent with the
slaving condition. In such a case, it is natural to expect
the formation of modes with different dependencies on r .
Because the above argument will still be valid away from
the boundary, we expect a boundary layer in which multiple
modes transit to the single optimal mode. This boundary layer,
which occurs under strong radial tension, may develop to a
cascade structure [26].

[1] S. P. Timoshenko and J. N. Goodier, Theory of Elasticity
(McGraw Hill, New York, 1961).

[2] H. Wagner, Z. Flug. Motor. 20, 8 (1929).
[3] E. H. Mansfield, The Bending and Stretching of Plates (Cam-

bridge University Press, Cambridge, 1989).
[4] A. C. Pipkin, IMA J. App. Math. 36, 85 (1986).
[5] B. Davidovitch, R. D. Schroll, D. Vella, M. Adda-Bedia,

and E. Cerda, Proc. Nat. Acad. Sci. USA 108, 18227
(2011).

[6] J. C. Geminard, R. Bernal, and F. Melo, Eur. Phys. J. E 15, 117
(2004).

[7] J. Huang et al., Science 317, 650 (2007).
[8] D. P. Holmes and A. J. Crosby, Phys. Rev. Lett. 105, 038303

(2010).
[9] H. King, R. D. Schroll, B. Davidovitch, and N. Menon, Proc.

Nat. Acad. USA (to be published).
[10] D. Vella, M. Adda-Bedia, and E. Cerda, Soft Matter 6, 5778

(2010).

[11] M. Stein and J. M. Hedgepeth, NASA Technical Note D-813
(1961).

[12] E. Cerda, K. Ravi-Chandar, and L. Mahadevan, Nature (London)
419, 579 (2002).

[13] E. Cerda and L. Mahadevan, Phys. Rev. Lett. 90, 074302 (2003).
[14] C. P. Coman and A. P. Bassom, J. Mech. Phys. Solids 55, 1601

(2007).
[15] M. C. Cross and G. Greenside, Pattern Formation and Dynamics

in Nonequilibrium Systems (Cambridge University Press, Cam-
bridge, 2009).

[16] P. Bella and R. V. Kohn, arXiv:1202.3160.
[17] L. D. Landau and E. M. Lifshitz, Theory of Elasticity

(Butterworth-Heinemann, Oxford, 1998).
[18] S. P. Timoshenko and J. M. Gere, Theory of Elastic Stability

(McGraw Hill, New York, 1961).
[19] Notice that the Fourier integration

∫ 2π

0 dθ sin(3mθ )(·) of the
normal force balance, Eq. (A2c), yields a fifth equation, that
seems to overdetermine the set of equations (A9) for the four

066115-10

http://dx.doi.org/10.1093/imamat/36.1.85
http://dx.doi.org/10.1073/pnas.1108553108
http://dx.doi.org/10.1073/pnas.1108553108
http://dx.doi.org/10.1140/epje/i2004-10041-1
http://dx.doi.org/10.1140/epje/i2004-10041-1
http://dx.doi.org/10.1126/science.1144616
http://dx.doi.org/10.1103/PhysRevLett.105.038303
http://dx.doi.org/10.1103/PhysRevLett.105.038303
http://dx.doi.org/10.1039/c0sm00432d
http://dx.doi.org/10.1039/c0sm00432d
http://dx.doi.org/10.1038/419579b
http://dx.doi.org/10.1038/419579b
http://dx.doi.org/10.1103/PhysRevLett.90.074302
http://dx.doi.org/10.1016/j.jmps.2007.01.006
http://dx.doi.org/10.1016/j.jmps.2007.01.006
http://arXiv.org/abs/arXiv:1202.3160


NONPERTURBATIVE MODEL FOR WRINKLING IN HIGHLY . . . PHYSICAL REVIEW E 85, 066115 (2012)

functions. However, the mathematical procedure of Fourier
decomposition outlined in Appendix A is still well defined,
since there are higher modes in the stresses and strains that
also contribute to the Fourier integration

∫ 2π

0 dθ sin(3mθ )(·) and
have not been included in Eqs. (A8). Hence, the next equations
in the hierarchy determine these higher modes.
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