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Community identification in networks with unbalanced structure
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Community (module) structure is a common and important property of many types of networks, such as social
networks and biological networks. Several classes of algorithms have been proposed for community structure
detection and identification, including clustering techniques, modularity optimization, and other methods. Among
these methods, the modularity optimization method has attracted a great deal of attention and much related
research has been published. However, the existing modularity optimization method does not perform well
in the presence of unbalanced community structures. In this paper, we introduce a metric to characterize the
community structure better than other metrics in this situation, and we propose a method to infer the number
of communities, which may solve the resolution limit problem. We then develop an algorithm for community
structure identification based on eigendecompositions, and we give both simulated and real data examples to
illustrate the better performance of our approach.
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I. INTRODUCTION

Network study has attracted a considerable amount of
attention in recent years from researchers in different fields,
including physics, computer science, statistics, and others.
A network can be seen as a synonym for a mathematical
graph. It is composed of vertices (nodes) and edges. The
vertices represent the members in the network, while the edges
represent the pair relations of the vertices. Many complex
interaction systems can be described as networks, including
biological systems, social systems, and the worldwide web.

Community (module) structure is a common feature of
many networks. Since the seminal paper of Girvan and
Newman [1], many related papers have been published on
network community analysis [2–11]. Intuitively, a community
is a subset of a network. The vertices in the same subnetwork
are more likely to be connected with each other than those
in different subnetworks. In general, members in the same
community share some common properties or play similar
roles. In a gene coexpression network, the vertices (which
correspond to genes) in the same community may belong to
the same functional category, such as lipid metabolism and
acute-phase response, or they may be involved in the same
pathway, such as a metabolic pathway or a ribosome [12,13].
In a collaboration network, the vertices (which correspond
to researchers) in the same community likely share some
common research interests [8].

There has been a concerted effort in recent years to
develop mathematical tools and computer algorithms to iden-
tify and quantify community structure in networks [3–9,14].
Several recent review papers provide details of community
identification methods [5,8,14]. Reference [14] compares the
performance of several existing methods for both computation
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time and output. Reference [5] is a thorough, more recent
discussion. Reference [8] contrasts different perspectives of
the methods and sheds light on some important similarities
of several methods. These community identification papers
are mostly written by computer scientists, statisticians, and
physicists, with physicists making the most contributions.

Earlier methods for community identification mainly arose
from computer science. The communities are identified using
graph partitioning methods or cluster-based methods. Graph
partitioning methods require the sizes of the subgraphs as the
input for network partitions, but little is known on the sizes in
practice [15–18]. Cluster-based methods include hierarchical
clustering, partitional clustering, and spectral partitioning. Hi-
erarchical clustering has been shown to be effective since some
networks do possess a hierarchical structure and the number of
communities can be determined during the clustering process
[3]. Partitional clustering is popular in data mining, but it
may not be appropriate for community identification since the
community structure describes the topological relations of the
vertices, which may not be measured by Euclidean distance,
correlations, and other distances usually used in partitional
clustering. Spectral clustering can be applied to community
identification [19], but this method tends to isolate some very
small communities from the network instead of dividing the
network into reasonably large subnetworks.

Two recent papers by statisticians considered the theoretical
aspects of the community identification problem for dense
networks [20,21]. In [20], the authors proposed a new
modularity definition and provided sufficient conditions so
that some modularity can give a consistent estimation of the
community structure. Although the proposed modularity was
shown to outperform other methods, it is time consuming
to solve the optimization problem under this definition. In
[21], the authors developed an algorithm for extracting the
communities sequentially from a network when some vertices
do not fit in with any of the communities. One limitation of
the theoretical developments in these two papers is that they
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both assume the network is dense. Although such networks do
exist in reality, the networks encountered in many contexts are
more likely to be sparse.

Most recent community identification methods arose from
the physics field, with the divisive algorithms being one type
of them [5]. The most popular algorithm within this class
was proposed by Girvan and Newman [1,22], who introduced
the community identification problem to physicists. In the
divisive algorithm, the importance of each edge is estimated
with betweenness. The edge with the largest betweenness
is first removed and the betweenness for all the remaining
vertices is recalculated. The algorithm is implemented itera-
tively until the expected number of communities is reached.
Another important class of community identification methods
arising from physics are the modularity-based optimization
methods. Modularity, which is by far the best known and
most commonly used method for community identification
[6,7,20,23], measures the connectivities of vertices in the
network. By maximizing the modularity, reasonable results
for tested networks can be obtained. This method is also easily
implementable.

Although many papers related to community identification
have been published, this field has continued to attract a
great deal of attention. A large portion of the literature has
been focused on explaining the modularity and improving the
computational methods [24–28]. One important problem with
modularity optimization concerns the resolution limit [24].
Modularity optimization cannot resolve some communities
smaller than a certain size, which depends on the size of
the subnetworks to be divided and the interconnectedness
of the subcommunities. Another problem with modularity
optimization is its extreme degeneracies [25]. With the number
of communities K in a network increasing, the number of
distinct high-scoring solutions for maximizing modularity
increases exponentially, making it unlikely to find the global
maximum.

In the next section, we will first review the modularity
optimization method and discuss its limitation as illustrated in
our numerical tests. More specifically, when the communities
in a network have very different sizes, this method will not
perform as well as when the community structure is balanced.
We also offer a possible explanation for its poor performance.
We then introduce the metric in Sec. III to quantify the
communities in a network, and we propose a method to infer
the number of communities, which may solve the resolution
limit problem. An algorithm to compute this metric based on
eigendecompositions is presented in Sec. IV. The usefulness
of our approach is illustrated through several examples
with the computational complexity analysis in Sec. V, and
concluding remarks are given at the end of the paper.

II. MODULARITY OPTIMIZATION METHOD

We begin by reviewing the modularity optimization
method. Modularity measures the difference between the
number of edges falling within groups in the network and
the expected number of such edges in an equivalent network
where the edges are placed at random [22]. We consider a
network G with n vertices. The adjacency matrix is denoted
as A, where each entry is 0 or 1. The degree of vertex i is

defined as

di =
n∑

j=1

Aij , i = 1,2, . . . ,n.

For a particular partition of the network into two groups, we
let si = 1 if vertex i belongs to group 1 and si = −1 if it
belongs to group 2. Then 1

2 (sisj + 1) is equal to 1 if i,j are
in the same group and 0 otherwise. If all the edges in the
network are placed at random, the expected number of edges
between vertices i and j is Pij = didj /2m, where m is the
total number of edges in the network. Then modularity can be
mathematically defined as

Q = 1

4m

∑
ij

(Aij − Pij )sisj .

Let s be a column vector with entries being si , Bij = Aij −
Pij . In matrix form, it is

Q = 1

4m
sT Bs.

When there are more than two communities in the network,
we let S be an n × K matrix, where K is the number of
communities in the network. The value of each entry Sik in S

is 1 if vertex i belongs to the kth community and 0 otherwise.
Then

Q = 1

4m
Tr(ST BS).

By maximizing the modularity, we can infer the communities.
The earliest proposed method for solving this optimization
problem is based on the leading eigenvector of the matrix
B. At each step, all the entries with the same sign in the
leading eigenvector will be taken as belonging to the same
community. The method is implemented iteratively until all
the remaining communities are indivisible. This strategy can
be easily implemented and runs fast. Although it cannot
find the optimal solution in many cases, especially for the
large networks with many communities, it appears to find
divisions that are close to optimal. Refer to [6,22] for a detailed
explanation of modularity.

A. Limitation for unbalanced community structure

Although various groups have improved the original mod-
ularity optimization method from different aspects, there
is one limitation that has not been well addressed by the
existing methods. Namely, when the sizes of the communities
in a network are unbalanced, the modularity optimization
method does not work as well as when the communities
have comparable sizes. We give an example to illustrate this
problem. Figure 1 shows a network with 197 vertices and
481 edges. From our visual inspection of the figure, there
are two communities corresponding to the left and right
sections of the graph with two edges connecting them. The
modularity with this partition is 0.26. However, when we
use the modularity optimization method, the large community
is partitioned into two parts with one part linked with the
small community on the right to form the second community.
These two identified communities are represented by different
colors and shapes in this figure. The value of the modularity
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FIG. 1. (Color online) Example of an unbalanced community
structure. Different shapes and colors of the vertices show the two
communities identified with the modularity optimization method.

function is 0.32 for this partition, which is larger than that
with our visually correct partition of the network. To see why
the modularity optimization method does not work here, we
plot the matrix B and the leading eigenvector of B in Fig. 2.
In the figure on the left, different colors represent different
values of matrix B. It is easy to see the community structure
of the network in the figure. However, although we can see
some pattern from the leading eigenvector of B, we cannot
find a threshold to cut the eigenvector so that the network
can be divided into the two desired communities. From our
numerical analysis of many network examples, we found that
this is a frequent phenomenon when the ratio between the
sizes of two communities is less than a certain value, e.g., 0.25
depending on the inner structure of the communities.

To understand why the modularity optimization method
does not work well in such unbalanced community networks,
we need to consider the construction of the matrix B, which
is defined as the difference between A and P . In matrix P ,
each entry Pij = didj

2m
describes the expected number of edges

between two vertices i and j and it is fully determined by their
degrees. Now consider a network with two communities C1

and C2. For any vertex i from C1 and j from C2, we have
Pij > 0, and if di and dj increase, Pij will become greater.
If the two communities have comparable size, the patterns
of the submatrices corresponding to the two communities are
likely to be similar. This pattern also holds for matrix B. The
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FIG. 2. (Color online) Pattern of matrix B for the network in
Fig. 1 (left) and the leading eigenvector of matrix B (right).

leading eigenvector of B captures the information for both
communities and may partition the network into communities
well. However, when the two communities have very different
sizes, the degrees of the vertices in the small community are
not as large as those in the large community. The range of
the values in the submatrix of B corresponding to the small
community will be quite different from that corresponding to
the large community. Then the leading eigenvector of matrix B

will mainly reflect the property of the large community instead
of both communities, whereas the part corresponding to the
small community will be close to zero, resulting in the poor
identification of communities. For networks with more than
two communities, this phenomenon also occurs. In addition,
a large community in a network may be divided into several
small groups instead of being kept together.

III. COMMUNITY IDENTIFICATION METHOD

To overcome the problem arising from unbalanced commu-
nity networks, we resort to the graph partition methods. In this
section, we introduce a metric to quantify the communities
in a network. We use the same notations as those used in
the preceding section. Given a network structure, we suggest
identifying the connected parts of the network first before
we identify the communities. This step can be accomplished
by standard spectral clustering, which can give the accurate
partition. In the following, we will consider connected net-
works. To identify the communities in a network, we let N (Vk)
denote the number of vertices in subnetwork Vk , L(Vk,Vk)
denote twice the total number of edges in subnetwork Vk , and
L(Vk,Vl) denote the total number of connections between the
subnetworks Vk and Vl , where k,l = 1,2, . . . ,K , and K is the
total number of subnetworks (communities). In the following,
we use Nk,Lkl to denote N (Vk),L(Vk,Vl) for simplicity. Now,
for any partition of the network P, we define our metric for
community identification �(P) as

�(P) = �1(P) − �2(P),

where

�1(P) =
K∑

k=1

Lkk

Nk

, �2(P) =
K∑

k=1

∑
l �=k

Lkl

Nk

.

In matrix form, if we let

Sik =
{

1 if vertex i ∈ Vk,

0 otherwise,
i = 1,2, . . . ,n,

then the value of �1(P) is
∑K

k=1
ST

.,kAS.,k

ST
.,kS.,k

, and the value of �2(P)

is
∑K

k=1

∑
l �=k

ST
.,kAS.,l

ST
.,kS.,k

. Thus the value of �(P) can be expressed

as a function of S:

�(S) = �1(S) − �2(S)

=
K∑

k=1

ST
.,kAS.,k

ST
.,kS.,k

−
K∑

k=1

∑
l �=k

ST
.,kAS.,l

ST
.,kS.,k

, (1)

where S.,k denotes the kth column of matrix S.
The function �1(P) defines the sum of the average degrees

in each subnetwork and �2(P) defines the sum of the average
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number of connections between one subnetwork and other
subnetworks. It is easy to see that for community identification,
our goal is to both maximize �1 and minimize �2. Although
these two metrics may seem to be achieving the same
overall objective detailed in (1), they may lead to inconsistent
results when applied separately. For example, in a network
constructed with a very small community and a very large
community with no edges connecting the two, the partition
which maximizes �1 tends to partition the network into two
communities, with one consisting of one section of the large
community and another consisting of the remaining section
of the large community and the small community because
this partition will maximize the sum of average degrees. In
very sparse networks, the partition which minimizes �2 will
tend to divide the network into some very small communities,
while the partition which maximizes �1 will try to keep some
communities together. In networks in which the community
structures are very clear and the sizes of the communities
are fairly balanced, maximizing �1 and minimizing �2 may
give the same partition of the network. This measure was
also introduced in [10]. By maximizing �(P), we expect
to achieve a good balance and make a correct inference on
the communities. Therefore, we formulate our community
identification problem as

max �(S)

subject to Si,j ∈ {0,1} for i,j = 1,2, . . . ,K,

K∑
k=1

S.,k = 1. (2)

Here 1 is a vector with all elements being 1.
Now we discuss the choice of K , the number of com-

munities, which is often unknown to researchers. We first
introduce some notations. Consider a subnetwork Vk of G; its
complementary subnetwork is denoted as V̄k . Then the degree
of the vertex i ∈ Vk can be written as

di = di(Vk) + di(V̄k),

where

di(Vk) =
∑
j∈Vk

Aij ,

di(V̄k) =
∑
j∈V̄k

Aij ,

where di(Vk) defines the connections that vertex i has in
the subnetwork Vk . More generally, we can define di(Vl) as
the total number of connections between vertex i and all the
vertices in subnetwork Vl .

Several methods have been proposed to determine the
community structure independently instead of embedding it in
the model and algorithm design. In [9], the authors gave two
definitions of a community based on the degrees. The subgraph
Vk of G is defined as a community in a strong sense if

di(Vk) > di(V̄k), ∀ i ∈ Vk,

and as a community in a weak sense if∑
i∈Vk

di(Vk) >
∑
i∈Vk

di(V̄k).
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FIG. 3. (Color online) A network constructed from six cliques.

It is easy to see that if a subgraph satisfies the condition in
the strong sense definition, it will satisfy the condition in
the weak sense definition. However, for some networks, both
definitions may not determine a community. Figure 3 shows
a network with 30 vertices constructed from six cliques,
with each having five vertices. One clique is connected to all
the other five cliques with a one-to-one vertex connection.
Although neither the strong nor the weak definition is satisfied
for the central clique, it is intuitive that it forms a community.

We modify the above method for determining a community
by considering the average degrees. Suppose a network is
well partitioned into distinct communities. We expect that the
average connectivity within a community is larger than that
between communities, i.e.,∑

i∈Vk
di(Vk)

Nk

>

∑
i∈Vk

di(Vl)

Nk

, l �= k. (3)

Alternatively, it can also be written as

Lkk > Lkl

if we multiply both sides with N (Vk). This criterion uses the
whole community structure of the network to determine all
communities.

To determine the number of communities in a network, we
compute the maximum value of �(P) for different numbers
of communities K . We select K where the inequality (3)
holds. If for any K > 1 the inequality (3) does not hold, the
network will have no subcommunities, and it is determined
as one community. With such a choice of K , the network is
divided into subnetworks satisfying the inequality (3). We hope
the resolution limit problem of the modularity optimization
method can be avoided as shown in the numerical results.

IV. NUMERICAL ALGORITHM FOR IDENTIFYING
THE COMMUNITIES

To find the best partition that maximizes �(S), the
computational complexity is exponential if we enumerate all
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the possible partitions for a network with size n. Therefore,
we propose to use an approximate method for solving the
optimization problem (2).

Let S̃.,k = S.,k

‖S.,k‖2
. The function �1(S) can be relaxed to a

new function that we denote as �̃1(S̃), which is defined as

�̃1(S̃) =
K∑

k=1

S̃T
.,kAS̃.,k = Tr(S̃T AS̃).

Similarly, the function �2(S) can be relaxed to a new function
�̃2(S̃), which is

�̃2(S̃) = Tr(S̃T LS̃).

Here, L is the so called Laplacian matrix, which is defined as

L = D − A,

where D is a diagonal matrix with each entry being the degree
of the corresponding vertex.

Now, �(S) can be approximated as Tr(S̃T AS̃) −
Tr(S̃T LS̃) = Tr[S̃T (2A − D)S̃], and we aim to solve the
optimization problem:

max �̃(S̃) = Tr[S̃T (2A − D)S̃] subject to S̃T S̃ = I.

The problem of maximizing �̃(S̃) is the standard form of
a trace optimization problem. Its solution can be obtained
from the Rayleigh-Ritz theorem. We list the eigenvectors
according to the eigenvalues in ascending order. The solution
can be approximated by the eigenvectors corresponding to
the last K (largest K) eigenvalues of the matrix 2A − D.
Notice that minimization of �2(S) is in fact the ratio-cut
problem [29]. Although it itself can be applied for community
identification, it often cuts a very small part from the network
as a community by the approximation method as noted in our
previous discussion.

To obtain a binary matrix S, which defines the partition
of the network, we apply the K eigenvectors to do the
k-means clustering for community assignments. By adding
maximization of the sum of the average degrees in each
subnetwork, the network can be divided into comparatively
large communities, which avoids the problem that occurs when
spectral clustering is applied alone. Overall, the algorithm is
summarized as follows:

Algorithm
Input: adjacency matrix An×n, and K , which is the number

of communities.
(1) Compute the matrix 2A − D.
(2) Compute the last K eigenvectors u1,u2, . . . ,uK of

matrix 2A − D.
(3) Construct a new matrix T ∈ Rn×K , with columns

u1,u2, . . . ,uK .
(4) Cluster the points constructed from each row of matrix

T with k-means clustering into communities C1,C2, . . . ,CK .
Output: Index of vertices in each community.
To illustrate our method, we show the second eigenvector

of the matrix L, which corresponds to the spectral clustering
method, and the leading eigenvector of 2A − D, which
corresponds to our proposed method in Fig. 4 for the network
shown in Fig. 1. Compared to the leading eigenvector of matrix
B, it is easy to see that our method performs better in this case.
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FIG. 4. (Color online) The second eigenvector of the matrix L

(left) in the example in Sec. II and the leading eigenvector of the
matrix 2A − D (right).

V. NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of our proposed
method through its application to several examples. We first
start with several artificial networks having comparatively
clear community structures. The size of the networks con-
sidered ranges from tens of vertices to thousands of vertices.
We then apply our method to some real networks to evaluate its
performance. The first real network is the well-known karate
club network and the second is the dolphin social network.
These two networks have been studied by many researchers
for community identification. The third real network focuses
on an American college football network, the fourth focuses on
a gene regulation network from E. Coli, and the last focuses
on a collaboration network. These examples show that the
proposed metric is able to capture the community structure
quite well.

We compare our method with several popular methods,
including Newman Modularity optimization (NM), Spectral
Partitioning (SP), the Edge-betweenness Based method (EB)
[1], and the information-theoretic method (infomod) [32]. For
NM and EB, we use the programs developed in the R package
“igraph” directly. For infomod, we use the package “infomod”
developed by the authors. NM and infomod can select the
number of communities. We use our proposed criterion shown
in Eq. (3) to determine the number of communities for SP
and our proposed Graph Partitioning method GP. For EB,
the number of communities depends on how to cut the
hierarchical tree. Here, we only consider its identification
accuracy assuming the number of communities K is known.

A. Results for artificial networks

1. Networks composed of cliques

To investigate the resolution limit problem and evaluate
the criterion for determining a community, we consider the
networks composed of cliques because the structure of such
networks can be analyzed theoretically.

(a) The first example is the network shown in Fig. 3, which
is composed of six cliques with one of them connecting to
all the others. With NM, this network will be one community
without any subcommunity. We vary the value of K with K
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(a)

(b)

FIG. 5. (Color online) (a) A network composed of identical
cliques connected by single links as shown in Fig. 3(a) in [24].
(b) A network with two pairwise identical cliques as shown in
Fig. 3(b) in [24]. Larger circles denote the larger cliques.

increasing from 1 until condition (3) does not hold. With our
approach, the network is divided exactly into six communities,
with each community being one clique. With our criterion, SP
can identify all six communities. infomod can also find all the
communities.

(b) We consider networks composed of identical cliques
connected by single links shown in Fig. 5(a), which is the
same as Fig. 3(a) in [24]. Suppose there are n0 vertices in
each clique and there are a total of K cliques. Then when K

is greater than about the square root of the total number of
links [Kn0(n0 − 1)/2 + K], NM will combine two or more
cliques together. When the number of communities is set to be
K , our proposed method can find all the communities because
the objective function will be maximized under the correct
partition. When the number of communities is greater than K ,
some cliques will be divided into two or more parts. In this
case, the condition (3) for determining communities does not
hold. Thus the total number of inferred communities will be
K . We tried different values of K , and the results are consistent
with our analysis. SP can get the same results as our method in
this case. However, infomod cannot determine the number of
communities correctly. For example, in a network composed
of 25 identical cliques with five vertices each, it will identify
six communities, with five of them having 20 vertices and one
having 25 vertices.

(c) We consider networks consisting of cliques with
different sizes, as shown in Fig. 5(b), which is the same as
Fig. 3(b) in [24]. For a network composed of two pairwise
identical cliques, with each pair having the same size, if the size
of the two larger cliques is large enough compared to the two
smaller cliques, NM will merge the two smaller cliques into
one community. Similar to the analysis in (b), our method can
correctly find the communities. Numerical tests also show that
both our proposed method and SP can find all the communities.
For this network structure, infomod will give the same results
as NM in all our tests.

(d) In this example, we construct a network with
comparatively large size. This network is composed of 10
cliques with sizes 5, 5, 10, 20, 40, 80, 160, 320, 640, and
1280. There are a total of 2560 vertices. Two cliques are
connected by a single link in order of increasing size, e.g., the
clique with 80 vertices connects the cliques with sizes 40 and
160. In addition, the largest clique is connected to the smallest
clique with a single link. Finally, these cliques constitute a
ring. The sizes of the communities in this network are quite
unbalanced, and the increase of the size is not smooth. Due
to the extensive computational time, we do not consider EB.
NM identifies seven communities in the network. It combines
the network with sizes 5, 5, 10, and 20 together. infomod has
the same result as NM. Both SP and our proposed GP can
make a correct inference of the communities.

(e) We consider a network with the same size and the
same communities (cliques) as that in (d). This time one
single link between any two communities is generated. In
this case, NM identifies six communities, with the vertices
in the two smallest cliques separated and assigned to larger
communities. The cliques with sizes 10, 20, and 40 are
combined into one community. All the other five cliques can
be identified. infomod combines the cliques with sizes 5, 5,
10, and 20 together, with the remaining communities correctly
inferred. Both SP and our proposed method GP can find all the
communities correctly.

The above tests show that infomod also has the resolution
limit problem in the identification of network communities in
that it has difficulty in finding the communities with very small
size. This problem also persists in our following examples.
Because all the networks have clearly defined community
structures and all the vertices have several links in one
community, SP performs as well as our proposed method.

2. Random networks with community structure

In this subsection, we apply our proposed method and
the other methods to randomly generated networks having
community structure. Here, to see the identification accuracy,
we assume the number of communities is known. We consider
different settings for generating the random networks in the
following.

(a) In this example, we let the size of the networks be 200 or
400. For the networks with 200 vertices, we assume that there
are four communities in the network, with the community sizes
being 10, 45, 45, and 100. For the network with 400 vertices,
we assume there are six communities in the network, with sizes
10, 25, 45, 70, 100, and 150. We first partition all the vertices
into four or six communities. We then connect each vertex with
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TABLE I. Comparison of identification accuracy for networks
constructed based on the degree of each vertex.

n degin rout SP NM EB GP infomod

200 2 0.3 0.96 0.62 0.70 0.96 0.98(3, 97%)
0.5 0.64 0.53 0.52 0.83 –

3 0.5 1.00 0.65 0.99 1.00 1.00(3, 100%)
0.8 0.89 0.54 0.83 0.99 1.00(3, 100%)

400 2 0.3 0.97 0.53 0.60 0.98 0.99(4, 96%)
0.5 0.82 0.46 0.40 0.93 1.00(5, 80%)

3 0.5 1.00 0.56 0.98 1.00 1.00(5, 100%)
0.8 0.98 0.51 0.87 1.00 1.00(5, 86%)

a given number of vertices in the same community (degin).
Finally, we connect one community with other communities
with a number of links. This number is proportional to its
community size. We denote this ratio by rout. For each case, we
generated 100 networks. The identification accuracy is defined
as the average accuracy from these 100 networks. We apply
NM, SP, GP, EB, and infomod to these simulated networks.
For infomod, we list the identification accuracy, the number
of communities inferred, and the proportion of times that the
method identified this number of communities. The accuracy
of this method is based on the number of inferred communities,
not the true number of communities. We merge the corre-
sponding communities together to compute the identification
accuracy. A dash means that only one community is inferred
in the simulated networks. For all the other methods, we
assume that the number of communities is known. In Table I,
we highlight the highest identification accuracy with bold
type except for infomod. Among these methods, our proposed
method achieves the highest identification accuracy.

(b) In this example, we assume the sizes of the network
and the communities are the same as above. We first partition
the vertices into different communities. The vertices in one
community are connected with a probability such that the
community will have a given average degree. We remove
the vertices that have no connections. Since the connections
are randomly generated, the average degree will not be exactly
our given number. By removal of the singleton vertices, the
average degree of the community becomes larger. Finally, we
connect the communities using the same method as that in
the above example. For each case, we generate 100 networks.
We also apply NM, SP, GP, EB, and infomod to these tests.
The results are summarized in Table II. Again, we highlight
the method with the highest identification accuracy with bold
type. It is easy to see that our proposed method achieves the
best performance.

These two examples suggest that our method performs well
compared to other methods. Since the networks have very
unbalanced structure, NM does not identify the communities
well. In our analysis, we found that EB focuses more on
the local structure of the network, and a good cutoff of the
hierarchical tree is critical for the performance of this method.
When a vertex connects several vertices within its community
but very few vertices beyond its community, SP performs
similarly to our proposed method. This is because maximizing
the average degree within each community and minimizing the
average number of connections between different communities

TABLE II. Comparison of identification accuracy for networks
constructed based on the average degree of the vertices in one
community.

n degin rout SP NM EB GP infomod

200 4 0.1 0.97 0.69 0.95 0.97 0.97(3, 82%)
0.3 0.75 0.64 0.69 0.94 0.95(3, 92%)

5 0.3 0.92 0.72 0.89 0.98 0.97(3, 99%)
0.5 0.67 0.67 0.71 0.96 0.96(3, 98%)

400 4 0.1 0.96 0.61 0.87 0.97 0.94(6, 27%)
0.3 0.80 0.57 0.53 0.94 0.94(4, 85%)

5 0.3 0.89 0.59 0.79 0.98 0.97(5, 90%)
0.5 0.62 0.55 0.56 0.97 0.96(5, 63%)

leads to similar results in this case. In Tables I and II, SP and
GP have similar performance under these conditions. However,
when the connections within the communities are not dense,
GP performs better than SP.

(c) We randomly generate a network with 2560 vertices
partitioned into eight communities. The sizes of these com-
munities are 20, 20, 40, 80, 160, 320, 640, and 1280. The
construction of the network is similar to that in (b). Here, we
let the average degree in each community be 5, and rout is
0.5. Then we remove the singleton vertices, which results in
a network with 2544 vertices. The structure of the network
is shown in Fig. 6(a). We apply the above-tested methods
to this network. Figures 6(b), 6(c), and 6(d) show the eight
most important eigenvectors of the methods GP, SP, and NM.
It can be seen that the eigenvectors of the GP method have
a much clearer pattern of the communities. The identification
accuracy of these methods is 0.98, 0.88, and 0.77, respectively.
For the EB method, we cut its hierarchical structure into
eight communities, where there are four communities of size
2. This also suggests that EB puts more emphasis on the
local structure of the network. infomod only identifies four
communities, where the communities with fewer than 320
vertices are grouped together.

B. Results for empirical networks

1. Karate club network

We consider Zachary’s network of karate club members
[33] in this example. There are 34 vertices in this network
corresponding to the members in a karate club. This dataset
has been applied as a benchmark to test many community
identification algorithms since the true communities are known
in this network. The people in the club were observed for a
period of three years. The edges represent connections of the
individuals outside the activities of the club. At some point, the
administrator and the instructor of the club broke up due to a
conflict between them. The club was separated into two groups
supporting the administrator and the instructor. The question
is whether it is possible to infer the composition of the two
groups from the original network structure recorded during the
three years. Figure 7 shows the network. Different shades of
the vertices distinguish the two groups. The two communities
have 16 vertices and 18 vertices, respectively, which can be
seen as a very balanced community structure.

Among the community identification algorithms applied
to this network, the major difference of the identification
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FIG. 6. (Color online) Pattern of the adjacency matrix A for a
randomly generated network with 2544 vertices (a) and the eight
most important eigenvectors for the three methods: (b) our proposed
method; (c) spectral partitioning; and (d) modularity optimization
method.

results is vertex 3. If we denote the community with the white
background of the vertex notation in the figure as C1, and the
other community as C2, then vertex 3 is in community C1 with

FIG. 7. The friendship network from Zachary’s karate club study.
The two communities are shown as either open or filled rectangles.

the method proposed in [1], while this vertex is in community
C2 with the methods proposed in [3,4,7]. With our proposed
method, we can achieve the true partition of the two groups,
and the objective value is 6.49.

2. Dolphin social network

The dolphin social network in this subsection consists of 62
bottlenose dolphins living in Doubtful Sound, New Zealand.
The associations between different dolphins were observed
over several years. There are a total of 159 connections in this
network. Researchers found that this network can be divided
into two small groups following some key members’ departure
in the population, and the structure of the network appears
stable. Figure 8 shows the structure of the network. Different
colors and shapes of the vertices show the two groups that the
researcher found. The triangle vertex (vertex 37) is the vertex
that departed. The sizes of the two communities are 20 and 42,
which is somewhat unbalanced.
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FIG. 8. (Color online) The dolphin social network of Lusseau
et al. [34]. Different shapes show the different groups, with the
triangle vertex belonging to the group with square vertices.
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In [6], Newman compared the community identification
results with NM and SP. With NM, three vertices—numbered
20, 40, and 48 in the network—were assigned to the wrong
group, which outperformed SP. With our proposed method,
both vertices 20 and 48 can be classified correctly. The only
wrongly assigned vertex is 40, which has the same number of
connections to both groups. In this network, the modularity
obtained with our proposed method and NM is 0.38 and 0.39,
respectively. The larger modularity does not correspond to a
better community identification. infomod arrives at the same
results as our method.

3. Collage football network

To evaluate the performance of our proposed method GP
in a network with more than two communities, we turn to
the U.S. college football network [1]. This network describes
the American football games between Division IA colleges
during the regular season in 2000. There were 115 teams
and 613 games. The vertices in the network correspond to
the teams, while the edges represent the games between
any two teams connected. All the teams are divided into
“conferences” containing about 8 to 12 teams, with teams
in the same conference having more games among each other.
In this network, there are 12 communities corresponding to
the “conferences.”

We apply the methods NM, SP, GP, EB, and infomod to
identify the communities in this network. GP identifies 104
vertices correctly and SP identifies two more vertices correctly.
The major differences among SP, GP, and the original true
partition are mainly from the teams that do not belong to
any conference (five members in all). These teams tend to be
clustered with the conference with which they are most closely
associated. EB achieves the same results as our method.

The modularity of NM, SP, and GP is 0.45, 0.59, and
0.60, respectively. If we use our proposed method in Eq. (3)
to infer the number of communities, we will get a total of
13 communities, with the mid-American conference being
divided into two. This division can be easily seen in [1],
where EB is applied. infomod partitions the network into
10 communities with 99 vertices being correctly identified.
Among these 10 communities, 7 communities are the same as
those identified with our proposed method. The modularity of
it is 0.60.

4. E. Coli transcriptional regulation network

In this section, we apply our proposed method to a transcrip-
tional regulation network of E. Coli. The data set was down-
loaded from [http://www.weizmann.ac.il/mcb/UriAlon/]. It is
a sparse network with 423 nodes and 519 edges. Since we
can use some simple methods to find the separate parts of
a network, we only consider the largest connected part of
the network, which includes 328 nodes and 456 edges. We
notice that when the modularity optimization is applied for
community identification for the whole network, 27 commu-
nities are identified [24]. However, there are 35 unconnected
subnetworks in the whole network, which also shows that it is
better to detect the unconnected parts first.

Since we need to determine the cutoff for EB to determine
the number of communities, we only apply NM, SP, GP,

and infomod to this network, and we record the number
of communities with size greater than 5. GP identifies 20
communities, SP identifies 14 communities, NM identifies
15 communities, and infomod identifies 5 communities. The
modularity of these methods is 0.68, 0.66, 0.65, and 0.22,
respectively, and among them, GP achieves the maximum
value of modularity.

Since genes in the same community are more likely to
have similar biological functions, we perform the enrichment
analysis by using the KEGG pathways [35], with the R
package GOSTATS from Bioconductor. For each community,
the statistically most significant pathways are analyzed. We
compare the enrichment results of the four methods and record
the communities in which there are at least two genes in the
same pathway. There are 9, 8, 8, and 3 communities enriched
with GP, SP, NM, and infomod, respectively. GP identifies one
more community than NM, which is enriched for the pathway
“pyrimidine metabolism, purine metabolism, and metabolic
pathways.” SP identifies one different community from NM
and GP, which is enriched for the pathway “two-component
system.” infomod enriches quite different pathways from the
other three methods, with the largest community having a
size of 328, which enriched the pathway “two-component
system.” The other two enriched pathways are “nucleotide
excision repair” and “phenylalanine, tyrosine, and tryptophan
biosynthesis.”

5. General Relativity and Quantum Cosmology
collaboration network

In this section, we consider a comparatively large network
with 5242 vertices and 28 980 edges. This network is from
the e-print arXiv and describes the scientific collaborations
between authors with papers submitted to the General Rela-
tivity and Quantum Cosmology (arXiv GR-QC) category in
the period from January 1993 to April 2003 (124 months). It
begins within a few months of the inception of the arXiv,
and thus represents essentially the complete history of its
GR-QC section. In the network, if two authors coauthored
a paper, there is an edge between them. If one paper was
coauthored by t authors, a completely connected (sub)network
on t vertices was generated. The data set was downloaded from
[http://snap.stanford.edu/data/ca-GrQc.html].

Due to the extensive computation, we only apply the
methods NM, SP, GP, and infomod (not EB) to this network.
In this example, we mainly look at the structures of the
identified communities. For NM, we determine the number
of communities by maximizing the modularity for different
numbers K . It identifies 258 communities in the network,
and the modularity is 0.77. For SP, after calculation of its
eigenvalues, we identify 355 unconnected parts. We use the
k-means algorithm to cluster the eigenvectors corresponding
to these eigenvalues. The modularity is 0.66. Due to the
clustering efficiency, it may not result in 355 unconnected
parts in reality. With infomod, 359 communities are identified
and 8 communities have size greater than 10. The modularity
is 0.72. For our proposed method, we set the number to be
359, which is the maximum number of communities among
all these tested methods, and it satisfies the inequality (3). The
modularity is 0.73.
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TABLE III. The five communities with the highest average degree
identified by the methods SP, NM, GP, and infomod.

SP 21.96(53) 16.11(19) 15.19(47) 15.00(16) 14.15(133)
NM 28.37(33) 21.88(43) 17.70(54) 15.00(82) 14.44(43)
GP 44.78(46) 37.49(43) 34.00(35) 23.00(24) 22.33(24)
infomod 44.78(46) 37.49(43) 32.47(38) 10.19(469) 6.00(7)

For each of these methods, we record the five communities
with the highest average degrees, which are shown in Table III.
Our method and infomod identify the same two communities,
which have the highest average degrees. In addition to these
two communities, our method identifies more communities
with average degree higher than those identified by other
methods. We have tried different numbers of K , from 30 to
400 for our method, and these five communities are always
consistent. Such dense subnetworks are, in fact, what we aim
to find in community identification.

C. Computational complexity analysis

Our proposed method includes two steps: the computa-
tion of the eigenvectors, and k-means clustering. We use
the Lanczos algorithm shown in [30] to compute the last
K eigenvectors of the matrix 2A − D. This method first
transforms the original matrix into a K × K tridiagonal matrix
TK . The transformation requires O(Kn2) for a dense matrix.
For a sparse matrix, the computational complexity is about
O(Kn). Then the eigenvalues and eigenvectors of the matrix
TK are calculated with a QR algorithm. For a tridiagonal
matrix, one QR decomposition requires O(K) operations. If
we set the number of iterations for QR to be q, then the
computation of eigenvectors will require O[K(q + n)] for
a sparse matrix. We are now working on a fast algorithm
for computing the eigenvectors by the randomized Lanczos
method [31]. k-means clustering has been studied for a long
time. It is an NP-hard problem in the general Euclidean space.
When the clusters are comparatively clear, it converges very
fast. Here we prespecify the total number of iterations niter.
Then the leading term of the computational cost for Lloyd’s
algorithm is O(nK2niter). The total computational cost for our
proposed method under our setting will be about O[nK2niter +
(q + n2)K] for a dense network and O[nK2niter + (q + n)K]
for a sparse network. SP has the same computational cost
if the same methods are applied for eigenvector calculation
and k-means clustering. The computational complexity of EB
is about O(n3) for sparse networks [1]. The computation
of infomod is parameter-dependent [5]. The computational
complexity for NM by using the leading eigenvector requires
about O(n2 log n). Overall, although our method is not the
fastest, it is computationally competitive compared to other
methods, as well as most methods presented in [5].

VI. CONCLUDING REMARKS

Research on community structure in networks has ex-
perienced an exponential growth in the past decades due
to its importance in understanding various networks. Many
methods have been proposed to identify communities from
the observed data, and some of these methods have proven

more effective than others in revealing network structures.
Despite such rapid progress in methodology, a rigorous and
functionally useful benchmark for comparing the community
structure identification methods remains an open issue. In this
paper, we have proposed a metric to identify network commu-
nities, which can work well even in unbalanced community
networks. The computational method is very fast and easily
implementable. Compared to popular methods in the literature,
our method performed better both for simulated networks and
some benchmark networks. It also led to biologically more
specific results for an E. Coli gene regulation network that was
considered.

As described in Ref. [36], networks may have topological
scales, which means that the same network may have different
community structures at different topological scales. Depend-
ing on the measure of communities, the vertices in the same
community at one scale may be separated at other scales. For
example, in a network composed of human acquaintances, at
some scale the communities may be formed by families, and
at some scale the communities may be formed by different
countries. Since in a family people may be from different
countries, the communities of different countries cannot be
the combination of families directly. Thus it is not easy to
construct the hierarchical structure of communities when the
measures of defining communities have overlaps. Determining
how to overcome such problems and construct the hierarchical
structure of communities remains a major challenge.

Although many methods have been proposed for the
identification of communities, and some methods estimate the
number of communities, further studies are needed to better
infer the number of communities. Also, due to the hierarchical
structure of communities, the number of communities may
vary for the same network. With our method, if we only use our
proposed criterion to determine the number of communities,
all the communities will be at the lowest level. According to
the hierarchical structure of communities in a network, it may
be more realistic to give several possible choices of the number
of communities. This is also left for future work.

For the practical question of choosing a specific method for
community identification, we suggest the users of these meth-
ods conduct a brief analysis of the network, such as dividing
the network into unconnected parts and analyzing the degree
distributions in order to choose a more appropriate method. In
great contrast to the computational algorithms developed for
module identification, there is a lack of theoretical analysis on
the properties of these methods. Moreover, there is also a lack
of literature on the mechanism with which these communities
are generated in the first place. Progress in these two critical
areas will undoubtedly shed light on the relative performance
of different methods and also lead to better approaches to this
fascinating problem.

ACKNOWLEDGMENTS

We thank the two anonymous reviewers for their construc-
tive comments and suggestions. We thank Can Yang for his
comments and suggestions. This work was supported in part by
NSF Grant No. DMS 1106738, NIH Grants No. R01 GM59507
and No. P01 CA154295, and NSFC Grants No. 10901042, No.
10971075, and No. 91130032.

066114-10



COMMUNITY IDENTIFICATION IN NETWORKS WITH . . . PHYSICAL REVIEW E 85, 066114 (2012)

[1] M. Girvan and M. E. J. Newman, Proc. Natl. Acad. Sci. USA
99, 7821 (2002).

[2] A. Arenas, J. Borge-Holthoefer, S. Gómez, and G. Zamora, New
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