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Populations are seldom completely isolated from their environment. Individuals in a particular geographic or
social region may be considered a distinct network due to strong local ties but will also interact with individuals
in other networks. We study the susceptible-infected-recovered process on interconnected network systems and
find two distinct regimes. In strongly coupled network systems, epidemics occur simultaneously across the entire
system at a critical infection strength βc, below which the disease does not spread. In contrast, in weakly coupled
network systems, a mixed phase exists below βc of the coupled network system, where an epidemic occurs in
one network but does not spread to the coupled network. We derive an expression for the network and disease
parameters that allow this mixed phase and verify it numerically. Public health implications of communities
comprising these two classes of network systems are also mentioned.
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I. INTRODUCTION

Complex network models of the interactions in human
society have been used to understand many problems in
epidemiology [1–8]. These models have generally assumed
that all of the nodes interact on a single network with a single
degree distribution. Even when these degree distributions
allow for large heterogeneities—as in the case of scale-free
networks [9], where hubs with large numbers of connections
can arise—the assumption remains that every node is part of
a single network and is represented by a single underlying
topology. In reality, however, societies are composed of
many interconnected networks, as in Fig. 1, which may be
communities within a larger population or separate systems
entirely. A disease can spread through the network of direct
personal contacts, via the water utilities network, and travel
from city to city over highway or airline networks. These
interconnected network systems may be composed of different
types of nodes, which may have degrees drawn from distinct
degree distributions and may have different connectivities
between them. Real-world examples of these systems can be
seen in a 2009 study by Stehlè et al. which found a threefold
difference in interaction time between students inside and
outside of their own class [10]. Other studies have shown
similar patterns [11,12]. Human-animal interacting network
systems are also of great importance. The H5N1 variant of
influenza spreads through the network of birds and from them
to individuals in the network of humans that work or live
closely with them. While no current mechanism exists for
efficient spreading from human to human, there is substantial
concern that such a mechanism will evolve [13]. Human-
mosquito-human transmission for the Plasmodium knowlesi
malaria strain is also a worrying concern [14].

Interconnected network systems have been of interest to
researchers in numerous different ways [15–21]. Intercon-
nected dependency networks, where failure in nodes in one
network causes failures of dependent nodes in the other
network, exhibit failure cascades, where the cross network
dependencies result in a network much more easily fragmented
than single networks of the same degree distribution [22].
Interconnected power networks, where transport capacity and

failure vulnerability are competing properties, were examined
and an optimal level of interconnection was found [23].
Networks without dependencies, such as interconnected social
networks, where populations exist at city, state, and national
levels, have also been examined. In these networks, the level
of movement between cities (the interconnections between
them) have been shown to affect the epidemic transition
on the metapopulation level [24,25], although, in this case,
the low-level networks were treated in a mean-field fashion,
classified only by rate equations and infection numbers, with
no internal network features. In addition, the percolation
threshold in interacting networks was found to be lower than
in single networks, with a giant cluster appearing for a smaller
total number of links [26].

In this work we consider two interconnected networks
(or, alternately, interconnected communities within a single,
larger network). We pose the following question: Under
what conditions will an epidemic spread only on the one
network, with minimal isolated infections on other network
components, and under what conditions will it spread across
the entire interconnected network system? Depending on the
parameters of the individual networks and their interconnec-
tions, connecting one network to another can have a profound
or a small effect on the spread of an epidemic. Identifying
the conditions in which these cases occur is vital to our
understanding and management of epidemic processes.

We define two different interconnected network regimes,
strongly and weakly coupled, and find the interaction strength
value separating these two regimes. Our primary result is
to show that, in the strongly coupled case, we find that all
networks are simultaneously either disease free or part of an
epidemic, while in the weakly coupled case a new “mixed”
phase can exist. In this mixed phase, the disease is epidemic
on only one network, and not in other networks, despite
the interconnections. The applications to public health are
straightforward. If two neighboring communities comprise a
strongly coupled network system, then an outbreak in any
community is cause for immediate concern in the other. Due
to this, in the strongly coupled case it becomes important to
pursue a strategy of communication and joint action between
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FIG. 1. An interconnected network system with two networks: A
and B. Nodes have intranetwork links within their own network but
also internetwork links connecting them to the other network.

public health agencies and perhaps even intervention from a
single agency with higher authority.

II. MODEL

In this section, we consider the case of only two intercon-
nected networks of equal size, but it is easily possible to extend
the model to an arbitrary number of networks of any size.

We form our interconnected network systems in the
following way:

(1) Generate two networks, A and B, with their own
intranetwork (A ↔ A and B ↔ B) degree distributions PA(k)
and PB(k) according to the standard Molloy-Reed configura-
tion model [27].

(2) Draw a degree from the internetwork (A ↔ B) degree
distribution, PAB(k), for all the nodes in both networks.

(3) If the total degree assigned to nodes in network A is
not equal to the total degree assigned to nodes in network B,
randomly reassign a node in B until the total numbers in each
network are equal.

(4) Randomly connect nodes in network A to nodes in
network B to form the interconnected network system.

This method generates random, uncorrelated, intercon-
nected network systems with specified inter- and intranetwork
degree distributions. While this method works for any arbitrary
degree distribution, Px(k), we present results only for random
Poissonian degree distributions.

The susceptible-infected-recovered (SIR) epidemic model
is used here to study the effects of interconnected network
structure on epidemic threshold. The SIR model is well
established and describes diseases such as HPV, seasonal
influenza, or H1N1 [24,28]. In this model, each node has
three possible states: susceptible (s), infected (i), or recovered
(r). Each node begins in state s, except for a single node in
one network chosen to be in state i. Nodes in state i infect
their neighbors in state s with probability β at each time
step, changing them to i. Nodes enter state r after spending a
recovery time tr in state i.

In order to find the threshold for an epidemic, we can think
of epidemic spreading as a bond percolation process [3,29,30]
on a network. In bond percolation, links between nodes are
activated with a certain probability p. If this probability is
greater than a certain critical value, pc, then a giant cluster
emerges, where the existence of a path between any two nodes
is almost certain. In a disease-spreading model, nodes infect
their neighbors, “activating” the links between them with a
certain probability, and a disease reaches nodes through this

entire network above a certain critical value, βc, just as in the
case for percolation.

In complex networks, this critical threshold for percolation
if all potential links are activated is κ = 2. Here κ is the
expected number of nearest neighbors that a node chosen
by following an arbitrary link will have and is calculated
from the ratio between the second and the first moments
of the degree distribution: κ = 〈k2〉/〈k〉. For κ � 2, a giant
cluster exists, while for κ � 2 only small isolated clusters
exist. If some subset of bonds is activated at random with
probability p, a giant cluster appears at a critical value of
pc = 1/(κ − 1) [31].

The SIR model likewise has an epidemic phase transition at
a critical β = βc, below which the disease remains confined to
the local neighborhood of the initial infection and above which
the disease spreads throughout the network. This transition
from the disease-free phase to the epidemic phase depends on
the average number of secondary infections per infected node
becoming larger than 1. This allows the long-term survival
of the disease, as the infection density will grow over time
on average, and, thus, ensures that the epidemic spreads
to a large fraction of the population. In our problem, the
expected number of susceptible neighbors that a node has
when it just becomes infected is given by κ − 1, since the
total expected number of neighbors is κ , and one of them must
be excluded as the infected parent from which the current
node descended. The transmissibility Tβ = 1 − (1 − β)tr is
the probability to infect a neighbor before recovery. The mean
number of secondary infections per infected node is, thus,
NI = (κ − 1)Tβ. The infection will die out if each infected
node does not infect on average at least one replacement so,
for a very large network, the critical point is given by the
relation (κ − 1)Tβ = 1. The single network model exhibits
only a single transition at βc given by [3]

βc(κ) = 1 − [1 − (κ − 1)−1]1/tr . (1)

In the interconnected network model, the behavior is more
complicated, as the disease can potentially cause an epidemic
in different combinations of the networks. The disease can
be in the epidemic phase in both networks, in the disease-
free phase in both networks, or active in one network
while the other remains disease free, called here the mixed
phase. The boundaries of these phases are controlled by κA,
κB , and κT , where κA and κB are calculated over the individual
A and B networks, disregarding internetwork connections,
and κT is calculated over the entire coupled network system,
including intra- and internetwork links.

III. STRONGLY COUPLED NETWORK SYSTEMS

We consider an interconnected network system to be
strongly coupled if κT is larger than κA and κB . For random
networks, κ = 〈k〉 + 1, and, thus, we may write κT in terms of
the average degrees 〈kA〉, 〈kB〉, and 〈kAB〉 as follows:

κT = [〈kA〉2 + 〈kA〉 + 〈kB〉2 + 〈kB〉 + 2〈kAB〉2 + 2〈kAB〉
+ 2〈kA〉〈kAB〉 + 2〈kB〉〈kAB〉]
× [〈kA〉 + 〈kB〉 + 2〈kAB〉]−1. (2)
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Without loss of generality, we define network B as the
more intraconnected network (〈kB〉 > 〈kA〉). For fixed network
parameters 〈kA〉 and 〈kB〉, we can then derive the critical
interaction strength 〈kAB〉c that separates strongly coupled
(κT > κB) from weakly coupled (κT < κB) networks,

〈kAB〉c =
√

2〈kA〉〈kB〉 − 〈kA〉2 − 〈kA〉
2

. (3)

In strongly coupled network systems, we expect any epidemic
to emerge simultaneously on networks A and B. Using Eq. (1)
for each of the three κ , it can be seen that, for the strongly
coupled case βc(κT ), the critical value of β for the disease
to emerge on the giant component formed by the entire
interconnected network is smaller than both βc(κA) and βc(κB),
the critical values of β for epidemics to spread on networks
A or B ignoring internetwork links. As such, any pathogen
virulent enough to spread in network A or B alone will have al-
ready caused an epidemic occurring across the interconnected
network system. For this case, the disease spreads across the
interconnected network system as a single network, with the
internetwork connections bringing an epidemic into existence
before any intranetwork connections can do so independently;
the mixed phase will not be seen. To support this, we plot the
ratio of the largest connected infected cluster formed solely
from nodes connected with intranetwork links, compared to
the size of the largest connected cluster formed by nodes
connected with all links, in Fig. 2. For a strongly coupled
network system, the relative size of the largest connected
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FIG. 2. Epidemics in strongly coupled network systems spread
across all networks, remaining confined to one network in weakly
coupled network systems. We plot SB , the size of the largest connected
cluster solely in network B, divided by ST , the size of the infected
cluster across the interconnected network system, for both strongly
and weakly coupled network systems. The B-only cluster decreases
in relative size until criticality [βc(κB ) = 0.048], showing that the
epidemic spreads throughout both networks rather than remaining
confined in B in the strongly coupled system. By contrast, in the
weakly coupled system, the relative size of the B-only cluster grows
until β = βc(κT ) = 0.054, showing that growth is localized in the
more strongly coupled network. For the strongly coupled network,
〈kA〉 = 1.5, 〈kB〉 = 2.5, and 〈kAB〉 = 2.5. For the weakly coupled
network, 〈kA〉 = 1.5, 〈kB〉 = 4.55, and 〈kAB〉 = 0.3. In all cases,
NA = NB = 104 and tr = 5.

infected component contained entirely in a single network
decreases initially, showing that the epidemic is occurring
across the interconnected network system, not locally in one
of the networks. Thus, in the strongly coupled case, epidemic
spreading is enhanced due to internetwork connections, with
epidemics occurring for less virulent diseases than would
spread on either network alone (lower βc.)

One note is that for networks of identical intranetwork
degree (〈kA〉 = 〈kB〉) 〈kAB〉c = 0. That is to say, identical
networks always form strongly coupled network systems. This
is in agreement with our findings that the phase diagram of
strongly coupled network systems is similar to that of single
networks. An interacting network system formed by attaching
the labels “A” and “B” to different halves of a single network
would be such an example system, and one should not expect
that this relabeling could have any effect on the physical
properties, such as phase transitions, of that network.

IV. WEAKLY COUPLED NETWORK SYSTEMS

If two networks are connected with 〈kAB〉 below the
threshold value from Eq. (3), i.e., κB > κT , we define the
interconnected network system to be weakly coupled. From
Eq. (2) this also gives κT > κA. Turning again to Eq. (1) we
see that βc(κB) < βc(κT ) < βc(κA).

Epidemic spreading is a noncompetitive process. Adding
more links to a network can only increase the spread of an
epidemic, never decrease it, as the chance of a node infecting
its neighbors is constant regardless of degree. Thus, a disease
with β above the individual epidemic threshold of network
B [βc(κB)] will enter the epidemic phase on that network,
regardless of the other network and the values of κT and κA.
If β is below βc(κT ), however, the disease cannot spread to
more than isolated small clusters of network A. Thus, in the
weakly coupled case, we expect to see a mixed phase, with
the boundaries dependent on the values of β and 〈kAB〉. A
mixed phase indicates that the addition of the interconnections
between the two networks is only affecting epidemic spreading
on the network with weaker intranetwork connections, with
the epidemic on the network with stronger intranetwork
connections unchanged by the internetwork links. The weakly
coupled case in Fig. 2 shows this, with the largest connected
cluster contained entirely in B becoming larger compared to
the size of the giant component with increasing β until βc(κT )
is reached, indicating that the disease does not spread through
connected regions of network A.

If β is increased to above βc(κT ), network B becomes
capable of spreading the disease to network A, which now
enters the epidemic phase, even for β < βc(κA). This matches
the work done by Leicht and D’Souza [23], where a giant
cluster forms consisting of nodes in both networks, even when
the less intraconnected network is below its own percolation
threshold. We plot the full phase diagram for both weakly and
strongly coupled networks in Fig. 3, showing the disease-free
phase, the mixed phase, the epidemic phase, and the transition
between weakly and strongly coupled networks. The existence
of this mixed phase is important in the real-world context
of interacting networks, as the communities or systems that
comprise the components are likely to be governed by different
bodies. If two cities, for example, together form a weakly
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FIG. 3. The mixed phase disappears in the transition from weakly
to strongly coupled network systems. Sample phase diagram for
interacting network systems with 〈kA〉 = 1.5 and 〈kB〉 = 6.0 as a
function of infection strength β and internetwork degree 〈kAB〉,
showing the two critical β and 〈kAB〉c. In the weakly coupled
case, below βc(κB ) no epidemic occurs. For βc(κB ) < β < βc(κT ),
there exists a mixed phase, where a finite fraction of network B
becomes infected, but network A has only small infected clusters.
Above βc(κT ), an epidemic occurs across the entire network in
both the weakly and strongly coupled cases. For this diagram,
NA = NB = 104 and tr = 5.

coupled network system, the more highly connected city can
more safely disregard the links to, and response of, the less
highly connected city, as the spread of the epidemic will
depend on local parameters only.

We performed Monte Carlo simulations to verify this
result. First, Fig. 4 shows infection densities at different β,

 0

 0.02

 0.04

 0.06

 0.08

 0.10

 0.02   0.03   0.04   0.05   0.06

N
I /

 N
G

C

β

A
B

FIG. 4. In the mixed phase, the two networks have separate
transition values. Ratio of total number of infected NI in each
network to the size of the giant cluster NGC for two weakly
coupled networks with 〈kA〉 = 1.5, 〈kB〉 = 6.0, and 〈kAB〉 = 0.1.
The respective epidemic thresholds calculated from Eq. (1) are
βc(κB ) ≈ 0.035, βc(κT ) ≈ 0.0425. The infection can be seen to
become epidemic in network B well before it does in network A.
The network of networks has NA = NB = 104 and tr = 5.
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FIG. 5. Epidemics exhibit critical survival only in one network
for weakly coupled networks. Infection survival probabilities P (t) on
the individual networks with internetwork connectivity 〈kAB〉 = 0.1 at
β = βc(κB ). The survival probability in network A (lower curve, with
+ ), the less connected network, is a small fraction of that in network
B (upper curve with ©), the more connected network. The survival
probability in network B falls off as t−1, as expected of a system
at criticality. Network A does not show a smooth decrease toward
0 typical of a network much below criticality. The inset shows the
relative difference in the survival probabilities, [PB (t) − PA(t)]/P (t).
The arrow indicates the minimum difference between the two curves,
after the initial increase. Network parameters are 〈kA〉 = 1.5,〈kB〉 =
6.0, NA = NB = 104, and tr = 5.

corresponding to a horizontal sweep across the phase diagram
seen in Fig. 3 at 〈kAB〉 = 0.1. The epidemic spreading first
occurs at βc(κB), where the disease enters the epidemic
phase and spreads through network B, while the infection
density in network A remains negligible. This mixed region,
in agreement with our predictions, occurs in the region
βc(κB) < β < βc(κT ). In this regime, network A plays no role
in the spreading of the infection on network B. Above βc(κT ),
we see that the infection density in network A begins to rise,
showing that the entire interconnected network system is now
in the epidemic phase, as predicted.

For networks approaching the strongly coupled regime from
below, the mixed phase is expected to be small and, thus, is
difficult to identify from graphs such as the one in Fig. 4.
We thus examine not only the infection densities but also
the survival probability P (t), which is the probability of an
infection started from a single infected site being active at a
time t . Equivalently and more accessible from public health
records, the distribution of time spans of reported outbreaks
can be used. At criticality, the probability of an infection
started from a single infected site remaining active at a later
time t is expected to scale as P (t) ∼ t−1 [32]. Figure 5
shows the survival probabilities of the networks comprising
an interconnected with β = βc(κB) for both the strongly and
weakly coupled cases. In both cases, network B exhibits the
expected t−1 falloff in survivability with time that is expected
of a system at criticality, indicating that network B is actually
undergoing a phase transition at the disease-free/mixed phase
line. In the weakly coupled case, however, the survival
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FIG. 6. Survival probability gap shows mixed phase boundaries.
Fractional size of the minimum survival probability gap, �P (t)/P (tr )
(minimum distance between the two curves in Fig. 5 after the time tr
has passed) between two interacting ER networks with 〈kA〉 = 1.5 and
〈kB〉 = 6.0 at various infection strengths. From top to bottom, β =
βc(κB ) = 0.0358,0.038,0.04,0.042 and βc(κT ) = 0.044. The gap
shrinks with increasing interaction and with increasing β, matching
Fig. 3. At βc(κT ), the survival probability is the same in both networks
for all but 〈kAB〉 = 0.01, where it remains distinct due to finite-size
effects. For all systems, NA = NB = 104 and tr = 5.

probability in network A does not fall off as expected, due
to infrequent and nonepidemic instances of infections from
network B. The slope of the survival probability for network
A thus cannot be used directly to confirm when it enters the
epidemic phase. However, if both networks are participating
in an epidemic, the disease should be active in both networks
at each time step. We thus introduce the survival probability
gap (inset of Fig. 5), �P (t) = min [[PB(t) − PA(t)] /P (t)], or
the minimum relative difference in the likelihoods that each
network will have any infected members (nodes in class i)
present at time t . We use this quantity to measure the deviations
of the survival probability in network A from the value that
is obtained from a network at criticality (network B) and,
thus, of how far away network A is from its own critical
point.

In Fig. 6 we plot this survival gap at different β, equivalent
to vertical slices across the phase diagram seen in Fig. 3. We
see that when 〈kAB〉 or β is increased to move outside the
expected mixed phase region and into the epidemic phase,
�P (t) goes to zero. In other words, at the mixed/epidemic
phase line, network A is behaving identically to a network
known to be at criticality and, thus, is itself critical along that
line. This confirms the assertion that there can be a gap in
survival probability only when one network is in the epidemic
phase and the other is not, i.e., in the mixed phase. Thus, a
nonzero survival probability gap can serve as a good predictor
for the presence of the mixed phase.

Last, we addressed the question of universality under
different values of inter- and intranetwork degree, finding
that along the disease-free/mixed phase transition line, the
behavior of networks with different κ is universal under
appropriate scaling. Figure 7 shows three different networks,
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FIG. 7. Survival probability gap scaling is universal when
rescaled by κB for different networks. The data collapse onto a
single curve, showing this universal behavior. The ratio of κT to
κB determines �P (t) along the disease-free/mixed phase border. For
the network systems with 〈kB〉 = 6.0, β = 0.0358; for 〈kB〉 = 12.0,
β = 0.01725. Both are βc(κB ) of the respective systems. Again, for
all systems, NA = NB = 104 and tr = 5.

all with 〈kB〉 > 〈kA〉 and β = βc(κB). Rescaling the survival
probability gaps by P (tr ) and plotting versus κT /κB instead
of κT directly, the curves collapse, showing �P (t), and,
thus, the mixed phase, disappears uniformly as the network
approaches the strongly coupled regime (κT > κB and 〈kAB〉 >

〈kAB〉c.) Near the critical point, �P (t) ∼ [(κT − κB)/κB]−1

(fit not shown). This identical behavior implies survival
probabilities in networks could be used as as a measure of
network connectivities near criticality, as the latter may be
difficult to obtain for social and biological networks, whereas
information on the duration of an epidemic outbreak in various
communities [from which P (t) can be estimated] is likely to
be recorded. In addition, the survival probability gap persists
well beyond 〈kAB〉 = 1 for appropriate 〈kA〉 and 〈kB〉. For the
system with 〈kA〉 = 3.0 and 〈kB〉 = 12.0, 〈kAB〉c ≈ 2.47. Even
when every node in network A is connected to two or more
nodes in network B, there can still be an order-of-magnitude
difference at minimum in the likelihood of finding the disease
active in the two networks; the mixed phase region is not
confined to small 〈kAB〉 only.

V. CONCLUSIONS

In summary, we introduced two classes for interconnected
network systems, strongly coupled and weakly coupled, and
studied the behavior of epidemics on them. In strongly coupled
network systems, epidemics occur always across the entire
interacting network system, with the presence of intercon-
nections enhancing epidemic spreading. In weakly coupled
network systems, a mixed phase exists where epidemics do not
always occur across the full interconnected network system,
and interconnections affect only epidemic spreading across the
less intraconnected network. We demonstrated the boundaries
and behavior of the mixed phase numerically as well as
analytically. Proper analysis of which groups of communities
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comprise strongly or weakly coupled systems could inform
public policy and highlight the necessity of cooperation
between different governing bodies or provide information
about the epidemic danger of increasing interaction between
human and animal populations.
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