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Range-limited centrality measures in complex networks

Maria Ercsey-Ravasz,l*z’* Ryan N. Lichtenwalter,>> Nitesh V. Chawla,? and Zoltdn Toroczkai®>*1
"Faculty of Physics, Babes-Bolyai University, Kogalniceanu street 1, RO-400084 Cluj-Napoca, Romania

2Interdisciplinary Center for Network Science and Applications (iCeNSA), University of Notre Dame, Notre Dame, Indiana 46556, USA

3Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
*Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA
(Received 22 November 2011; published 6 June 2012)

Here we present a range-limited approach to centrality measures in both nonweighted and weighted directed
complex networks. We introduce an efficient method that generates for every node and every edge its betweenness
centrality based on shortest paths of lengths not longer than £ = 1, ..., L in the case of nonweighted networks,
and for weighted networks the corresponding quantities based on minimum weight paths with path weights not
larger than w, = ¢A, ¢ = 1,2...,L = R/A. These measures provide a systematic description on the positioning
importance of a node (edge) with respect to its network neighborhoods one step out, two steps out, etc., up to
and including the whole network. They are more informative than traditional centrality measures, as network
transport typically happens on all length scales, from transport to nearest neighbors to the farthest reaches of the
network. We show that range-limited centralities obey universal scaling laws for large nonweighted networks. As
the computation of traditional centrality measures is costly, this scaling behavior can be exploited to efficiently
estimate centralities of nodes and edges for all ranges, including the traditional ones. The scaling behavior can
also be exploited to show that the ranking top list of nodes (edges) based on their range-limited centralities
quickly freezes as a function of the range, and hence the diameter-range top list can be efficiently predicted.
We also show how to estimate the typical largest node-to-node distance for a network of N nodes, exploiting
the afore-mentioned scaling behavior. These observations were made on model networks and on a large social
network inferred from cell-phone trace logs (~5.5 x 10° nodes and ~2.7 x 107 edges). Finally, we apply these
concepts to efficiently detect the vulnerability backbone of a network (defined as the smallest percolating cluster
of the highest betweenness nodes and edges) and illustrate the importance of weight-based centrality measures

in weighted networks in detecting such backbones.

DOI: 10.1103/PhysRevE.85.066103

I. INTRODUCTION

Network research [1-5] has experienced an explosive
growth in the last two decades, as it has proven itself to be
an informative and useful methodology to study complex
systems, ranging from social sciences through biology to
communication infrastructures. Both the natural and man made
world is abundant with networked structures that transport
various entities, such as information, forces, energy, material
goods, etc. As many of these networks are the result of
evolutionary processes, it is important to understand how the
graph structure of these systems determines their transport
performance, structural stability, and behavior as a whole. A
rather useful concept in addressing such questions is the notion
of centrality, which describes the positioning “importance”
of a structure of interest such as a node, edge, or subgraph
with respect to the whole network. Although the notion of
centrality in graph theory dates back to the mathematician
Camille Jordan (1869), centrality measures were expanded,
refined, and applied to a great extent for the first time in social
sciences [6-10], and today they play a fundamental role in
studies involving a large variety of complex networks across
many fields. Probably the most frequently used centrality
measure is betweenness centrality (BC) [10-16], introduced
by Anthonisse [11] and Freeman [12] defined as the fraction

“mercseyr@nd.edu
ftoro@nd.edu

1539-3755/2012/85(6)/066103(14)

066103-1

PACS number(s): 89.75.Hc, 89.65.—s, 02.10.0x

of all network geodesics (shortest paths) passing through a
node (edge or subgraph). Since transport tends to minimize
the cost or time of the route from source to destination, it
expectedly happens along geodesics, and therefore centrality
measures are typically defined as a function of these, however
generalizations to arbitrary distributions of transport paths
have also been introduced and studied [17,18]. Geodesics are
important for structural connectivity as well: removing nodes
(edges) with high BC, one obtains a rapid increase in diameter,
and eventually the structural breakup of the graph.

In general, centrality measures are defined in the context
of the assumptions (sometimes made implicitly) regarding the
type of network flow [16]. These are assumptions regarding
the nature of the paths such as being shortest, or arbitrary
length paths, weighted or valued paths, walks (repeated
nodes and edges) [19], etc., and the nature of the flow,
such as transport of indivisible units (packets), or spreading
or broadcasting processes (infection, information). Besides
betweenness centrality, many other centrality measures have
been introduced [10], depending on the context in which
network flows are considered; for a partial compilation see
the paper by Brandes [14]; here we only review a limited
list. In particular, stress centrality [20-22], simply counts
the number of all-pair shortest paths passing through a node
(edge) without taking into account the degeneracy of the
geodesics (there can be several geodesics running between
the same pair of nodes). Closeness centrality [8,13,23] and its
variants are simple functions of the mean geodesic distance
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(hop count) of a node from all other nodes. Load centrality
[14,24,25] is generated by the total amount of load passing
through a node when unit commodities are passed between
all source-destination pairs using an algorithm in which the
commodity packet is equally divided among the neighbors
of a node that are at the same geodesic distance from the
destination. Group betweenness centrality [26,27] computes
the betweenness associated with a set of nodes restricted to
all-pair geodesics that traverse at least one of the nodes in the
group. Ego network betweenness [28] is a local betweenness
measure computed only from the immediate neighborhood of a
node (ego). Eigenvector centrality [29,30] represents a positive
score associated to a node, proportional to the sum of the scores
of the node’s neighbors, solved consistently across the graph.
The corresponding score vector is the eigenvector associated
with the largest eigenvalue of the adjacency matrix. Random
walk centrality [31,32] is a measure of the accessibility of a
node via random walks in the network. Other centrality-type
measures include information centrality of Stephenson and
Zelen [33], the induced endogenous and exogenous centrality
by Everett and Borgatti [34], and the notion of accessibility
pioneered by Costa et al. [35-37].

Bounded-distance betweenness was introduced by Borgatti
and Everett [10] as betweenness centrality resulting from all-
pair shortest paths not longer than a given length (hop count).
It is this measure that we expand and investigate in detail
in the present paper. A condensed version for unweighted
networks has been presented in Ref. [38]. Since we are also
generalizing the measure and the corresponding algorithm to
weighted (valued) networks, we are referring to it as range-
limited centrality. Note that range limitation can be imposed
on all centrality measures that depend on paths, and therefore
the analysis and algorithm presented here can be extended to
all these centrality measures.

Centrality measures have received numerous applications
in several areas. In social sciences they have been extensively
used to quantify the position of individuals with respect
to the rest of the network in various social network data
sets [6,16]. In physics and computer science they have seen
widespread applications related to routing algorithms in packet
switched communication networks and transport problems
in general [17,24,39-44]. The connection of generalized
betweenness centrality based on arbitrary path distributions
(not just shortest) to routing that minimizes congestion has
been investigated by Sreenivasan et al. [17] using minimum
sparsity vertex separators. This makes a direct connection
to max-flow min-cut theorems of multicommodity flows,
extensively studied in the computer science literature [45,46].
Other works that use essentially edge betweenness type quan-
tities to quantify congestion in Internet-like graphs include
Refs. [47,48]. Dall’ Asta et al. connect node and edge detection
probabilities in a trace-route-based sampling of networks to
their betweenness centrality values [49,50]. Other applications
include detection of network vulnerabilities in the face of
attacks [51], cascading failures [52-54], or epidemics [55],
all involving betweenness-related calculations.

An important extension of centrality is to weighted, or
valued, networks [25,56—60]. In this case the edges (and also
the nodes) carry an associated weight, which may represent a
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measure of social relationship in social networks [61], channel
capacity in the case of communication networks, transport
capacity (e.g., nr of lanes) in roadway networks or seats on
flights [62].

From a theory point of view, there have been fewer results,
as producing analytic expressions for centralities in networks
is difficult in general. However, for scale-free trees, Szabd
et al. [63] developed a mean-field approach for computing
node betweenness, which later was made rigorous by Bollobés
and Riordan [64]. Fekete et al. provide a calculation of
the distribution of edge betweenness on scale-free trees
conditional on node in-degrees [65], and Kitsak er al. [66] have
derived scaling results on betweenness centrality for fractal
and nonfractal scale-free networks.

Unfortunately, computation of betweenness can be costly
[O(NM), where N is the number of nodes and M is the
number of edges, thus O(N?) is the worst case] [14,25,
57,67-69], especially for large networks with millions of
nodes, hence approximation methods are needed. Existing
approximations [32,70,71], however, are sampling based, and
not well controlled. Additionally, transport in real networks
does not occur with uniform probability between arbitrary
pairs of nodes, as transport incurs a cost, and therefore
shorter-range transport is expectedly more frequent than long-
range transport. Accordingly, the usage of network paths
is nonuniform, which should be taken into account if we
want to connect centrality properties with real transport. In
order to address some of the limitations of existing centrality
measures, we recently focused on range-limited centrality
[38]. We have shown that when geodesics are restricted
to a maximum length L, the corresponding range-limited
L-betweenness for large graphs assumes a characteristic
scaling form as a function of L. This scaling can then be used to
predict the betweenness distribution in the (difficult to attain)
diameter limit, and with good approximation, to predict the
ranking of nodes/edges by betweenness, saving considerable
computational costs. Additionally, the range-limited method
generates /-betweenness values for all nodes and edges and for
all 1 < I < L, providing systematic information on geodesics
on all length scales.

In this paper we give a detailed derivation of the algorithm
and the analytical approximations presented in [38] and
we demonstrate the efficiency of the method on a social
network (SocNet) inferred from mobile phone trace logs [72].
This network has a giant cluster with N = 5568785 nodes
and M = 26822764 directed edges. The diameter of the
underlying undirected network is approximately D ~ 26 and
the calculation of the traditional (diameter-range based) BC
values (using Brandes’ algorithm) on this network took 5 days
on 562 computers.

In addition, we present the derivations for an algorithm that
efficiently computes range-limited centralities on weighted
networks. We then apply these concepts and algorithms to
the network vulnerability backbone detection problem, and
show the differences between the backbones obtained with
both hop-count based centralities and weighted centralities.

The paper is organized as follows. Section II introduces
the notations and provides the algorithm for unweighted
graphs; Sec. III gives an analytical treatment that derives
the existence of a scaling behavior for centrality measures
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in large graphs; it gives a method on how to estimate the
largest typical node-to-node distance (a lower bound to the
diameter); discusses the complexity of the algorithm and
the fast freezing phenomenon of ranking by betweenness
of nodes and edges. Section IV illustrates the power of
the range-limited approach (by showing how well can one
predict betweenness centralities and ranking of individual
nodes and edges) using the social-network data described
above. Section V describes the algorithm for weighted graphs
and Sec. VI uses the range-limited betweenness measure to
define a vulnerability backbone for networks and illustrates
the differences in identification of the backbone obtained with
and without weights on the links.

II. RANGE-LIMITED CENTRALITY FOR NONWEIGHTED
GRAPHS

A. Definitions and notations

Let us consider a directed simple graph G(V,E), which
consists of a set V of vertices (or nodes) andaset E CV x V
of directed edges (or links). We will denote by (v;,v;) € E an
edge directed from node v; € V to node v; € V. The graph
has N nodes and M < N(N — 1) edges. The algorithm below
can easily be modified for undirected graphs, we will not treat
that case separately. A directed path w,,, from some node m
to a node #n is defined as an ordered sequence of nodes and
links w,,,, = {m,(m,vy),v1,(v1,v2),v2, ... v, (v;,n),n} without
repeated nodes. The “distance” d(m,n) is the length of the
shortest directed path going from node m to node n. We give a
definition of distance (path weight) for weighted networks in
Sec. V. In nonweighted networks the directed path length is
simply the number of edges (“hop count”) along the directed
path from m to n. There can be multiple shortest paths (same
length), and we will denote by o,,,, the total number of shortest
directed paths from node m to n. 0,,,(i) will represent the
number of shortest paths from node m to node n going through
node i. As convention we set

Umn(m) = 0111n(n) = Omn> Gmm(i) = 8i,m- (1)

The total number of all-pair shortest paths running through
a node i is called the stress centrality (SC) of node i, S(i) =
Zm,nEV omn(i). Betweenness centrality (BC) [10-12,14,57]
normalizes the number of paths through a node by the total
number of paths (o,,,) for a given source-destination pair
(m,n):

Bi)= Y I (E). )

0,
m,nev mn

Similar quantities can be defined for an edge (j,k) € E:

mn ‘9k
By = Y Tt )

GI?
m,neV mn

In order to define range-limited betweenness centralities, let
b;(j) denote the BC of a node j for all-pair shortest directed
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paths of fixed, exact length [. Then

L
BL(j) =Y b)) )

=1

represents the betweenness centrality obtained from paths not
longer than L. For edges, we introduce b;(j,k) and B (j,k)
using the same definitions. For simplicity, here we include
the start and end points of the paths in the centrality measures,
however, our algorithm can easily be changed to exclude them,
as described later.

Similar to other algorithms, our method first calculates these
BCs for a node j [or edge (j,k)] from shortest directed paths
all emanating from a “root” node i, then it sums the obtained
values for all i € V to get the final centralities for node j [or
edge (j,k)]. This can be done because the set of all shortest
paths can be uniquely decomposed into subsets of shortest
paths distinguished by their starting node. Thus it makes sense
to perform a shell decomposition of the graph around a root
node i [73-77]. Let us denote by C (i) the L-range subgraph
of node i containing all nodes which can be reached in at
most L steps from i [Fig. 1(a)]. Only links which are part of
the shortest paths starting from the root i to these nodes are
included in C ;. We decompose C . into shells G;(i) containing
all the nodes at shortest path distance / from the root, and all
incoming edges from shell / — 1 [Fig. 1(b)]. The root i itself
is considered to be shell 0 [G(i) = {i}]. Let

ink o in -7k
b=y "; L= Y YR

o
neGiy " neG(i) mn

denote the fixed-I-betweenness centrality of node &, and edge
(j,k), respectively, based only on shortest paths all starting
from the root i. Here r is not an independent variable: given i
and k [or (j,k)], r is the radius of shell G, (i) containing k [or
(j,k)],thatisk € G,(i)and (j,k) € G,(i). Note that;,(k) = 0
[or 0i,(j,k) = 0] if k [or (j,k)] do not belong to at least one
shortest path from i to n, and thus there is no contribution
from those points n from the /th shell. The condition for k [or
(j,k)] to belong to at least one shortest path from i to n can
alternatively be written in the case of (5) as d(k,n) =1 —r,a
notation which we will use later.

For simplicity of writing, we refer to the fixed-I-
betweenness centralities (the b;s) as “/-BCs” and to the
cumulative betweenness centralities [the By s obtained from
summing the /-BCs; see (4)] as [L]-BCs.

B. Range-limited betweenness centrality algorithm

While the basics of our algorithm are similar to Brandes’
[14,57], we derive recursions that simultaneously compute
the [/]-BCs for all nodes and all edges and for all values / =
1,...,L. The algorithm thus generates detailed and systematic
information (an L-component vector for every node and every
edge) about shortest paths on all length scales and thus provides
a tool for multiscale network analysis.

First we give the algorithm, then we derive the specific
recursions used in it. For the root node i we set the initial
condition: o;; = 1. For other nodes, k # i, we set o;; = 0.
The following steps are repeated for everyl =1, ...,L:

(1) Build G,(i), using breadth-first search.
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FIG. 1. (Color) (a) Consecutive shells of the C5; subgraph of node i (black) are colored red, blue, green. Grey elements are not part of the
subgraph. (b) The (x,y,z) near a node j are the b,(i|j) values for £ =1, £ =2, and £ = 3. The [x,y,z] on an edge (j,k) give the b,(i|j,k)
values for £ =1, £ = 2, and £ = 3. Given a node j, the number inside its circle is the total number of shortest paths o;; to j from i. Colors
indicate quantities based on £ = 1 (red), £ = 2 (blue), and £ = 3 (green).

(2) Calculate o for all nodes k € G,(i), using

Oik = Z Oij, (6)
JjeGp_1G)

(.G (i)

and set
bi(ilk) = 1. (7)

(3) Proceeding backward, throughr =1 —1,...,1,0,
(a) Calculate the [-BCs of links (j,k) € G,1(i) [thus j €
G,(i), k € G,41(i)] recursively:
bk = by 2L, (8)
Oik

(b) and of nodes j € G, (i) using (8) and
bl =Y. btk ©)

keG, 1 1()
(.kEGy 41 ()

(4) Finally, return to step 1 until the last shell G.(i) is
reached.

In the end, the cumulative [/]-BCs, that is the B;s, can be
calculated using (4). Figure 1 shows a concrete example. The
subgraph of node i has three layers. Each layer G;(i) and
the corresponding /-BCs are marked with different colors:
I =1 (red), [l =2 (blue), and [ =3 (green). As described
above, the first step creates the next layer G, (i), then in step
2, for every node k € G;(i) we calculate the total number
of shortest paths o;; from the root to node k. These are
indicated by numbers within the circles representing the nodes
in Fig. 1 (e.g., 0y; = 1, 0jx = 2, 0y, = 5). As given by (6), oji
is calculated by summing the number of shortest paths that end
in the predecessors of node & located in G, (i). For example,
node p € G3(i) in Fig. 1 is connected to nodes k and m in shell
G»(i), and thus 0;, = ojx + 0jp, =2+ 1 =3.

Equation (7) states that the /-BC of nodes located in G,(i)
is always 1. This follows from Eq. (5) for r = [ and using the
convention o (k) = o;;. Knowing these values, we proceed

backward (step 3) and calculate the /-BCs of all edges and
nodes in all the previous layers. Recursion (8) is obtained
from a well known recursion for shortest paths. If k& [or
(j,k)] belongs to at least one shortest path going from i to
n, then 0;,(k) = 00, and o0,(j,k) = 0;;0y,. Inserting these
in Eq. (5) for r — r 4 1 we obtain

r . Okn
bl =ou Y, (10)
neGy (i) Oin
d(k,n)=l-r—1
ol s Okn
prll =0y Y (11
neGy (i) mn

d(k.n)=l-r—1

where d(k,n) = | — r — 1 expresses the condition that the sum
is restricted to those n from G,(i), which have at least one
shortest path (from i), going through k or (j,k). Dividing
these equations we obtain (8). For, e.g., in Fig. 1, bg(i lk,n) =
b3(i|n)oi/oim = 1 x (2/5) = 2/5.

Having determined the /-BCs of all edges in layer G, (i),
we can now compute the /-BC of a given node in G,(i) by
summing the /-BCs of its outgoing links, that is using (9) [e.g.,
in Fig 1, b3(ilk) = bj(ilk,p) + b3(ilk,n) = (2/3) + (2/5) =
16/15].

This algorithm can be easily modified to compute other
centrality measures. For example, to compute all the range-
limited stress centralities, we have to replace Eq. (7) with
s}(i]j) = o;;. All other recursions will have exactly the same
form; we just need to replace the [-BCs [b](i|j), b;(i|j,k)]
with the [-SCs [s] (il ), s; (il j,k)].

If we want to exclude start and end points when computing
BCs or SCs, we first let the above algorithm finish, then we
do the following steps: (a) set the [-BC of the root node i
to 0, b?(i|i) =O0foralll=1,...,L, and (b) for every node
k € Gi(i) reset bi(ilk) = 0, for all I = 1, ...,L [for, e.g., in
Fig. 1 k is in the second shell, G,(i), so its 2-BC will become
O instead of 1]. Then via (4), the [/]-BCs and the corresponding
[/]-SCs are easily obtained.
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III. CENTRALITY SCALING—ANALYTICAL
APPROXIMATIONS

In [38] we have shown that the [/]-BC obeys a scaling
behavior as a function of /. This was found to hold for all suf-
ficiently large random networks that we studied [Erdés-Rényi
(ER), Barabdsi-Albert (BA) scale-free, random geometric
graphs (RGGs), etc.] including the social network inferred
from mobile phone trace-log data (SocNet) [78]. Here we detail
the analytical arguments, that indeed show that the existence of
this scaling behavior for large networks is a general property,
by exploiting the scaling of shell sizes. The scaling of shell
sizes was already studied previously, for, e.g., in random
graphs with arbitrary degree distributions [79,80]. For simplic-
ity of the notation, we only show the derivations for undirected
graphs.

A. Betweenness of individual nodes

Let us define (-) as an average over all root nodes i in the
graph, and denote by z;(i) the number of nodes on shell G;(i).
We define the branching factor as

o = (zi41)/(21)s 12)

and model the growth of shell sizes as a branching process
[79,811,

2141(0) = 2oy [1 4+ @)]. 13)

Here €;(i) is a per-node, shell occupancy noise term, encoding
the relative deviations, or fluctuations from the (i-independent)
functional form of ;. Typically, |¢;| < 1, it obeys (¢;(i)) = 0
and (€;(i)en(j)) = 2A;8;,m6;,j, with A; decreasing with [. In
undirected graphs if i € G,,(j) then it implies that j € G,,(i),
and vice versa. Hence, in this case,

1+1
bi(j) = 5 szmzm— LYY . ()
IEV m 0ieG,(j)

The 1/2 factor comes from the fact that any given path will
be included twice in the sum (once in both directions). In
the case of m = 0 the only node in Gy(j) is j itself, and
the inner sum is equal with b})ﬂ( jl1j). Due to convention (1)
0ju(j) =0j, and hence from (5) we obtain b?+,(j|j) =
Y cir(y Tin(D/Ojn = zip1(j). For m =1+ 1, b11(lj) =
1 [see Eq. (7)] and the inner sum is again z;4+1(j). Thus we can
write

!
. L1 mo
b)) =20+ 530 D5 bl
m=1ieG,(j)
L1 .
= z111(J) + §M1+1(J), (15)
Note that the number of terms in the inner sum

ZieG,,,(/') b (1)) is zu(j), which is rapidly increasing with
m, and thus is expected to have a weak dependence on j.
Accordingly, we make the approximation

ul+1(1)~z > o), (16)

m=1i€Gn(j)
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where we replaced b, (i|j) by v/} (i), which is an average
(I + 1)-BC computed over the shell of radius m, centered on
node i:

ZkeGm(i) by'y (i 1k)

Zm (i) .
However, the sum of (I+1)-BCs in any m </+1
layer is equal to the number of nodes in shell G ;:
Zkecm(i)bﬁl(ilk)=z;+1(i). We can convince ourselves
about this last statement by using (5) and observing that
ZkeG,,,(i) oin(k) = oy, as all paths from i to n [n € G;11(i)]
must “pierce” every shell m <[+ 1 in between. Figure 1
shows an example: there are three nodes in G3 and the

sum of three-betweenness values (green) in layer G, is
(7/5) + (16/15) + (8/15) = 3. Therefore we may write

zi41()  z(@ey[l + ()]
Zm (i) B Zm (D)

where we used the recursion defined above for z;,1(i) as a
branching process (13). Inserting this in (16) we obtain

ur1(j) = o Z >

m=1ieG,(j)

~q Z Z Zl(l)

it icGe <m@)

-1 .
~a|an+ Y Y 2 o)

=t icGm(p (@)

o (i) = (17)

(i) = , (18)

2[4+ @)
)

where we neglected the small noise term due to the large
number of terms in the inner sum, and we used the fact that
for m = [ the leading term of the inner sum is just z;(j). From
Egs. (16) and (18), however, the double sum in (19) equals
u;(j) and we obtain the following recursion:

ure1(j) = oylzi(j) + wi (1. (20)
Equations (13), (15), and (20) lead to a recursion for b (j):
bis1(j) = albi(j) + z1(7)/2 + z(Hea(h)], (21

which can be iterated downto! = 1, where b1(j) = z1(j) = k;
is the degree of j:

bi(j) =~ py k; €9, (22)
with
Il 1)
,BI—Tm:lOlm——m, (23)
) Ly BN R )
§0) =) 7 U (24)

n=1
In many networks, the average shell size (z;) grows exponen-
tially with the shell “radius” [ (for, e.g., ER, BA, SocNet),
implying a constant average branching factor larger than 1:

a,:a:@>l. (25)

(k)
The exponential growth holds until / reaches the typical largest
shortest path distance L*, beyond which finite-size effects

066103-5



MARIA ERCSEY-RAVASZ et al.

appear. Accordingly, ; ~ &' and b; grows exponentially with
[. In this case, since b; is rapidly increasing with [, the
cumulative By (j) = Zle b;(j) will be dominated by b;, and
thus B obeys the same exponential scaling as b;, confirmed
by numerical simulations [Fig. 3(c) in [38] shows this scaling
for SocNet].

However, not all large networks have exponentially growing
shell sizes. For example, in spatially embedded networks
without shortcuts such as random geometric graphs, roadways,
etc., average shell size grows as a power law (z;) ~ 141
where d is the embedding dimension of the metric space. In
this case 8; ~ I and b;(j) ~ I and B; ~ L¢*!. Figure 3(d)
in [38] shows this scaling for RGG graphs embedded ind = 2
dimensions.

B. Distribution of /-betweenness centrality

Equation (22) allows us to relate the statistics of fixed-I-
betweenness to the statistics of shell occupancies for networks
that are uncorrelated, or short-range correlated. Since the noise
term (obtained from per-node occupancy deviations on a shell)
is independent on the root’s degree in this case, the distribution
of fixed-/-betweenness can be expressed as

pi(b) = (8 (bi(j) — b))
e} N-1
= / d¢ [ dk § (,BlkeE — b) P(k)®;(&), (26)
—00 1

where §(x) is the Dirac § function, P(k) is the degree
distribution, and &;(£) is the distribution for the noise & (),
peaked at & = 0, with fast decaying tails and ®;(x) = §(x).
Performing the integral over the noise &, one obtains the
distribution for [-BC, in the form of a convolution:

N—1
oi(b) = %/ dk P(k)®,(Inb —Inp; — Ink). (27)
1

From (27) follows that the natural scaling variable for between-
ness distribution is # = Inb — In §;. The noise distribution
®; (for [ > 1) may introduce an extra [ dependence through
its width o;, which can be accounted for via the rescaling
u > uj/o;, p;+— poy, thus collapsing the distributions for
different [ values onto the same functional form, directly
supporting our numerical observations presented in Ref. [38].
As @, is typically sharply peaked around 0, the most significant
contribution to the integral (27) for a given b comes from
degrees k >~ b/f;. Since k > 1, we have a rapid decay of p;(b)
in the range b < 8, a maximum at b = Bk where k is the
degree at which P(k) is maximum, and a sharp decay for
b> (N —1)p.

C. Estimating the average node-to-node distance in large
networks

The scaling law on its own does not provide information
about the typical largest node-to-node distance, which is
always a manifestation of the finiteness of the graph. However,
knowing the size of the network in terms of the number of
nodes N, one can exploit our formulas to find the average
largest node-to-node distance as the radius L* of the typical
largest shell beyond which finite-size effects become strong,
that is where network edge effects appear. This can be
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FIG. 2. (Color online) Volume Z, growth with radius ¢£.
(a) Extrapolating the growth for SocNet one can estimate that it
reaches the N = 5568785 mark at L* ~ 9.35. Similarly, there is
exponential growth for both ER (b) and BA models (c).

estimated as the point where the sum of the average shell
sizes reaches N. Hence

L* L*
Z; =121: §l+1 =N, (28)

providing an implicit equation for L*. The ;s are determined
numerically for / = 1,2,3, ... and a corresponding functional
form fitting its scaling with / can be extrapolated for larger /
values up to L*, when the sum in (28) hits N. For our social
network data one obtains L* =~ 9.35 [see Fig. 2(a)]. Here L*
is not necessarily an integer, because it is obtained from the
scaling behavior of the average shell sizes, and represents the
typical radius of the largest shell.

Expression (28) can be easily specialized for the two
classes of networks discussed above, namely for those having
exponential average shell-size growth (z;) ~ (k)a/~! [such
as for the ER and BA models, Figs. 2(b) and 2(c)] and
for those having a power-law average shell-size growth as
(z;) ~ (k)14~. For the exponential growth case we obtain

L= L1+ % "y 29
_R“< T ) @

resulting in the L* ~ In N behavior for large N.
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For the power-law growth case there is no easily invertible
expression for the sum, however, if we replace the summation
with an integral, we find the approximate

d 1/d
L*~|14+ —N
( T )

expression, with the expected asymptotic behavior L* ~ N!/4
as N — oo.

(30)

D. Algorithm complexity

We are now in position to estimate the average-case
complexity of the range-limited centrality algorithm. For every
root i, we sequentially build its [ = 1,2, ...,L shells. When
going from shell G;_;(i) to building shell G;(i), we consider
all the z;_; nodes on G;_(i). For every such node j we add
all its links that do not connect to already tagged nodes [a
tag labels a node that belongs to G;_;(i) or G;_»(i)] to G;(i),
and add the corresponding nodes as well. This requires on
the order of (k) operations for every node j, hence on the
order of (k)(z;—1) operations for creating shell G,(i). Next is
Eq. (6), which involves (¢;) steps, where ¢; is the number of
edges connecting nodes in shell G;_; (i) to nodes in shell G, (i).
Equation (7) involves (z;) steps. Equations (8) and (9) generate
a total of 2 anzl (e,;) operations. Hence for a given [ there are
a total of (k)(z;_1) + (e;) + (z;) + 2 an:l (e ) operations on
average. Thus the average complexity of the algorithm C can
be estimated as

L 1
C~NY (<k><zl1> + {er) + (z) + 2Z<em>) SENEID
=1 m=1

Note that the set of edges in the shells G,,—;(i) and G, (i)
are all fanning out from nodes in G,,—1(i), and thus we can
approximate (e, _1) + {(ey) with (k)(z,,—1). Thus the estimate
becomes

L

! L
CNE YD aw) = Ntk Y (L — 1+ Diz).  (32)
m=1

I=1 =1
From (32) it follows that

L

L
N(k) Y (z) <C < LN{K) Y (z1). (33)
=1 =1

For fixed L, the complexity grows linearly with N as N — oo.
For L = L* we can use (28) to conclude that

ONM) < C < O(L*NM), (34)

where M = N (k)/2 denotes the total number of edges in
the network. Recall that the Brandes or Newman algorithm
has a complexity of O(NM) for obtaining the traditional
betweenness centralities. Specializing the expression (32) to
networks with exponentially growing shells one finds the same
O(N M) complexity [that is the upper bound O(NM In M)
in (34) is not realized]; see Fig. 3; for networks with power-law
growth shells, however, we find O(N 174 M), as in the upper
bound of (34). The extra computational cost is due to the fact
that instead of a single value, our algorithm produces a set
of L numbers (the /-BCs), providing multiscale information
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FIG. 3. (Color online) Scaling of range-limited betweenness
computation times (in seconds) as a function of NM for ER and
BA models, where N is the number of nodes and M is the number
of edges of the graphs. For ER the average degree was 5 and the BA
model’s parameter was i = 3. The symbols are actual running times
(not averages) for 100 networks, measured on an Apple quad core
Mac Pro workstation.

on betweenness centrality for all nodes and all edges in the
network.

E. Freezing of ranking by range-limited betweenness

In Ref. [38] we have provided numerical evidence that the
ranking of the nodes (same holds for edges) by their [L]-
BC values freezes at relatively small values of L. Here we
show how this freezing phenomenon emerges. Consider two
arbitrary nodes i and j, with degrees k; and k;. Using Eq. (22)
we can write

b;(j k; k;
ln% =i a() -6 =L+ AL G9)
Based on (24),
1—1
) o [+1—n
Ar=E() =80 =Y — = Xn (36)

n=1

where X, = €,(j) — €,(i). By definition, €,(j) is the per-node
variation of shell occupancy from its root-independent value,
for the nth shell centered on root node j. Expectedly, for larger
shells (larger n), the size of the shells becomes less dependent
on the local graph structure surrounding the root node, and for
this reason this noise term has a decaying magnitude |€,(j)|
with n. Thus the X,, can be considered as random variables
centered around zero, with a magnitude that is decaying with
increasing n. The contributions of the noise terms coming
from larger radius shells in the sum (36) is decreasing not
only because the corresponding X, s are decreasing in absolute
value, but also because their weight in the sum is decreasing [as
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1/(I + 1)], and therefore when moving from / to/ + 1 in (36)
the change (the fluctuation) in A; decreases for larger [. This
effectively means that the right-hand side of (35) saturates,
and thus, accordingly, the left-hand side saturates as well,
freezing the ordering of betweenness values. If the two nodes
have largely different degrees (Ink;/k; is relatively large),
the noise term A; will not be able to change the sign on
the right-hand side of (35), even for small / values, and thus
the ordering between nodes with very different degrees will
freeze the fastest, followed by nodes with degrees that are
close to each other. Clearly, the freezing of ordering between
nodes with identical degrees (k; = k;) will happen last. The
probability for the ordering to flip when increasing the range
from [ to [ + 1 can be calculated for specific network models,
however, it will not be discussed here.

IV. RANGE-LIMITED CENTRALITIES IN
A LARGE-SCALE SOCIAL NETWORK

In this section we illustrate the power of the range-limited
approach on a real-world social network inferred from cell-
phone call logs (SocNet). We show that computing the [L]-BCs
up to a relatively small limit length can already be used to
predict the full, diameter-based betweenness centralities of
individual nodes (and edges), their distribution, and the top
list of nodes with highest centralities.

This social network was constructed from 708 million
anonymized phone calls between 7.2 million callers generated
in a period of 65 days. Restricting ourselves to pairs of
individuals between which phone calls have been observed
in both directions in this period as a definition of an edge,
we found that the giant component of this network has about
5.5 million nodes and 27 million edges. The 65 days is long
enough to guarantee that individuals with strong social bonds
have called each other at least once during this interval, and
therefore will be linked by an edge in our graph.

To test and validate our predictions using the range-
limited method, we actually performed the computation of
the full, diameter-based betweenness centralities of all the
nodes in SocNet. To deploy the computation, we used a
distributed computing utility called Work Queue, developed
in the Cooperative Computing Lab at Notre Dame. The utility
consists of a single management server that sends tasks out
to a collection of heterogeneous workers and processors.
Specifically, our workers consisted of 250 Sun Grid Engine
cores, 300 Condor cores, and 12 local workstation cores, for a
total of 562 cores. This allowed us to finish thousands of days
of computation in the course of 5 days. Each worker received
arequest to compute the contribution of shortest paths starting
from 50 vertices to the betweenness centrality of every vertex
in the network, summed the 50 results, and sent them back
to the management server. Each time the management server
received a contribution, it summed the contribution with all
the others and provided another 50 vertices for the worker.

We also determined the network diameter from the data
using a similar distributed computing method, obtaining
D = 26. At first sight this value seems to be at odds with
the famous six degrees of separation phenomenon, which
implies a much smaller diameter. However, there are two
observations that one can make here. (1) The social network
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has a dense core with protruding branches (“tentacles”), which
mathematically speaking, can generate a large diameter. How-
ever, the experimentally determined six degrees of separation
does not probe all the branches, it actually relies on the
denser core for information flow. Hence it should be rather
similar to the average node-to-node distance, rather than the
rigorously defined network diameter. Indeed, the value of
L* = 9.35 that we obtained is rather close to the six-degrees
observation. (2) The social network constructed based on
cell-phone communications gives only a sample subgraph
of the true social network, where communications happen
also face to face and through land-line phone calls. Hence
one would likely measure an even smaller L* were such data
available.

A. Predicting betweenness centralities of individual nodes

In large networks, where measuring the full betweenness
centralities (i.e., based on all-pair shortest paths) is too costly,
we can use the scaling behavior of range-limited BC values
to obtain an estimate for the full BC value of a given node.
Plotting the [/]-BC values measured up to a limit L as a
function of /, we can extrapolate to ranges beyond L. In any
finite network the [/]-BC values will saturate, and thus we
expect the appearance of finite-size effects for large enough
[, that is in the range L* <[ < D, where L* is the typical
radius of the largest shell and can be estimated as described
in Sec. IIIC. In Fig. 4 we plot the [/]-BC values [B;(i)] for
| < L =5 for four nodes of SocNet. The four nodes were
chosen to have very different B; values. Ranking the nodes
by their [ = 5]-BC values, node i ranked the highest, and
nodes j, k, and m ranked 100, 1000, and 10 000, respectively.
The horizontal dashed lines represent the full BC values of
the nodes obtained from the exact, diameter-length based
measurements (as described above). Fitting the five values
and extrapolating the range-limited BCs, we can see that for
nodes i, j, and k, the curves reach their corresponding full
BC at around / ~ 9.5 agreeing well with the typical length
L* ~9.35 estimated in Sec. IIIC. For low ranking nodes
(small full BC) finite-size effects should appear at lengths
larger than L*, because they are situated towards the periphery
of the graph. Indeed, one can see from Fig. 4 that node m
reaches its full BC at/ =~ 10.3, still fairly close to the estimated
L*. Figures 4(b) and 4(c) show the same procedure for ER and
BA models.

Thus once we determined L* as described in Sec. IIIC,
then by simply extrapolating the fitting curve to the [/]-BCs of
a given node up to [ = L*, we obtain an estimate and lower
bound for its full betweenness centrality.

B. Predicting BC distributions

In SocNet the B; values have a log-normal distribution [38],
thus Q,[In(B;)] can be well fitted by a Gaussian [Fig. 5(a)]. The
parameters of the distribution also show a scaling behavior, and
extrapolating up to L* = 9.35 we obtain pu* = 17.28 for the
average [Fig. 5(b)] and o* = 2.25 [Fig. 5(c)] for the standard
deviation of the Gaussian. This predicted distribution is shown
as a dashed line in Fig. 5(a). Comparing it with the distribution
of the full BC values (/ = D) we can see that while the averages
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FIG. 4. (Color online) The [/]-BC values, B;, of four individual
nodes in the SocNet data (a) in the ER (b) and BA models as function
of /. The exact/full BC value of each node is indicated by a horizontal
dashed line, and denoted by B(i), B(j), etc. Extrapolating the range-
limited values for larger /, the exact BC values are reached at around
L* in all cases.

agree, the width of the distribution is, however, smaller than
the predicted value. This is caused by the fact that the [/]-BCs
do not saturate at the same / value: for low centrality nodes
saturation occurs at larger /, as also shown in Fig. 4.

C. Predicting BC ranking

Efficiently identifying high betweenness centrality nodes
and edges is rather important in many applications, as these
nodes and edges both handle large amounts of traffic (thus
they can be bottlenecks or congestion hot spots), and form
high-vulnerability subsets (their removal may lead to major
failures). Fortunately, due to the freezing phenomenon de-
scribed in Sec. III E, one does not need to compute accurately
the full BCs in order to identify the top ranking nodes and
edges. At already modest [ values we obtain top lists that have
a strong overlap with the ultimate, [/ = D]-BC top list. Here
we illustrate this for the case of SocNet.

Table I lists the [[]-BC (for/ = 1,2,3,4,5and ] = D = 26)
of the top ten nodes from the [D]-BC list in SocNet. The
overlap between the top lists at consecutive / values increases
with /. Given two lists, we define the overlap between their
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FIG. 5. (Color online) (a) Distribution Q; of the In(B;) values
in the SocNet for [ = 1,2,3,4,5,D, where D = 26 is the diameter,
and the predicted distribution for L*. The distributions can be fitted
with a Gaussian. (b) The average u and (c) standard deviation o as
function of /. Extrapolating to L* = 9.35 we obtain u* = 17.28 and
o* =2.25.

first (top-ranking) r elements by the percentage of common
elements in both r-element lists. Table II shows the overlap
between the top list based on [5]-BC and the one based on
the ultimate [D]-BC values. At [ = 5 the top four nodes are
already exactly in the same order as in the [D]-BC list, the
overlap is 90% between the lists of the top ten nodes, and even
for the top 100 node lists we have an overlap of 75%.

V. RANGE-LIMITED CENTRALITY IN WEIGHTED
GRAPHS

In unweighted graphs the length of the shortest path
between two nodes is defined as the number of edges included
in the shortest path. In weighted networks each edge has
a weight or “length”: w;;. Depending on the nature of the
network this length can be an actual physical distance (e.g., in
road networks), or a cost or a resistance value. We define the
“shortest” (or lowest-weight) path between nodes i and j as
the network path along which the sum of the weights of the
edges included is minimal. We will call this sum the “shortest
distance” d(i, j) from node i to node j [note that we allow for
directed links, which implies that d(i, j) is not necessarily the
same as d(j,i)].

In order to define a range-limited quantity, let b;(j) denote
the (fixed) [-BC of node j from all-pair shortest directed paths
oflength W;_; <d < W), where W, < W, < ... < W area
series of predefined weight values or “distances”. The simplest
way to define these W, distances is to take them uniformly
W; = [ Aw, however, depending on the application, these may
be redefined in any suitable way. B; will again denote the

066103-9



MARIA ERCSEY-RAVASZ et al.

PHYSICAL REVIEW E 85, 066103 (2012)

TABLE 1. B, values of the top ten nodes in the [ D]-BC top list for SocNet, for / = 1,2,3,4,5, D, where D = 26 is the diameter.

Vertex Bl 32 B3 B4 B5 BD

1 600 7.76 x 10* 2.06 x 10° 3.01 x 107 2.87 x 108 1.26 x 10!
2 715 9.71 x 10* 2.22 x 108 3.05 x 107 2.85 x 108 1.25 x 10"
3 458 5.04 x 10* 1.26 x 109 1.87 x 107 1.86 x 108 9.82 x 10'°
4 371 3.11 x 10* 8.56 x 10° 1.31 x 107 1.29 x 108 5.82 x 100
5 337 2.29 x 10* 5.04 x 10° 7.23 x 109 7.55 x 107 5.34 x 10'°
6 285 1.93 x 10* 5.03 x 10° 7.56 x 109 7.85 x 107 5.07 x 10'°
7 488 2.82 x 10* 5.84 x 10 7.94 x 10° 7.96 x 107 4.89 x 10"
8 299 2.56 x 10* 6.91 x 10° 1.09 x 107 1.10 x 108 4.88 x 10'°
9 244 1.47 x 10* 3.44 x 109 4.87 x 10° 4.83 x 107 4.87 x 10'°
10 239 1.64 x 10* 4.57 x 10° 7.48 x 10° 8.06 x 107 4.81 x 10"

cumulative L-betweenness, which represents centralities from
paths not longer than W;. Note that we are still counting
paths when computing centralities, that is o,,,(i) still means
the number of shortest paths from m to n passing through i,
except for the meaning of “shortest,” which is now generalized
to lowest cost.

The algorithm is similar to the one presented above for
unweighted networks. We again build the subgraph of a node
i, but now a shell G,(i) will contain all the nodes k at shortest
path distance W;_; < d(i,k) < W, from the root node i. An
edge j — k is considered to be part of the layer in which
node k is included. In unweighted graphs a connection j — k
can be part of the subgraph only if the two nodes are in two
consecutive layers: if j € G,(i) thenk € G,4,(i). In weighted
networks the situation is different [Fig. 6(a)]. In principle
we may have edges connecting nodes which are not in two
consecutive layers, but possibly further away from each other
[the links i — n, j — oinFig. 6(a)], or even in the same layer
(the link m — n in the same figure).

When building the subgraph using breadth-first search,
we need to save the exact order in which the nodes and
edges are discovered and included in the subgraph [Figs. 6(b)
and 6(c)]. Let us denote with v(p) the index of the node
which is included at position p in this node’s list [Fig. 6(b)].
This means that the following conditions hold: d[i,v(1)] <
dli,v(2)] < d[i,v(3)] < ---. Similarly we have a list of edges,
where g.(p) — ¢,(p) is the edge in position p of the list,
and g,, g, denote the indexes of the two nodes connected by
the edge [Fig. 6(c)]. This implies the conditions d[i,q,(1)] <
dli,q,(2)] < d[i,q,(3)] < --- [note that every edge g.(p) —

TABLE II. Overlap between the lists of the top r nodes with
highest [5]-BC and with the highest [ D]-BC values.

Top x nodes Overlap (%)

1 100
2 100
3 100
4 100
10 90
50 72
100 75
500 70.2
1000 67.1

gy(p) is included in the edge list when node g,(p) is
discovered]. Again, we calculate bj(i|k) for a node k, and
b;(ilj,k) for an edge j — k. As defined above, these values
take into account only the shortest paths starting from node i,
and r denotes the shell containing the corresponding node or
edge. One uses the same initial conditions 0;; = 1,and o = 0
for all k # i, as before.

The algorithm has the following main steps, for every [ =
1,...,L:

(1) We build the next layer G,(i) using breadth first search.
During this search we build the list of indexes v, g, ¢, as
defined above. We denote the total number of nodes included in
the list [from all shells G (i) up to G;(i)] as N; and the number
of edges included as M;. During this breadth-first search we
also calculate the o;; of the discovered nodes. Every time a
new edge j — k is added to the list we update o;; by adding
to it 0;; (using algorithmic notation, o;; := oj; + 0;;). Recall
that o;; denotes the total number of shortest paths from i to k.
If the edge j — k is included in the subgraph (meaning that it
is part of a shortest path) the number of shortest paths ending
in j has to be added to the number of shortest paths ending
in k.

(2) The I-betweenness of all nodes included in the new layer
is set to b} (i|k) = 1, similarly to Eq. (7).

(3) Going backward through the list of edges we calculate

the fixed-/-BC of all nodes and edges. For p = M;, ...,1, we
perform the following recursions:
(a) for the edge g«(p) — q,(p),
. s Tigy(p)
b lilgx(p).qy(p)] = by lilgy(p)l———, (37)

iqy(p)

(b) immediately after the BC of an edge is calculated, the
betweenness of node ¢, (p) must also be updated. We have to
add to its previous value the [-BC of the edge ¢,(p) — q,(p):

bililg<(p)] = by lilg«(P)1 + b/ [ilg:(p),qy(P)].  (38)

(4) We return to step (1) until the last shell G (7) is reached.

As we have seen, the algorithm and the recursions are very
similar to the one presented for unweighted graphs. The crucial
difference is that the exact order of the discovered nodes and
edges has to be saved, because the BC values of edges and
nodes in a shell cannot be updated in an arbitrary order. As
an example, Fig. 6 shows a small subgraph and the list of
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FIG. 6. (Color) (a) Shells of the C5 subgraph of node i (black)
are colored red, blue, green. Distances defining the shells are W, = 1,
W, = 2, W5 = 3. The weight or length is shown next to each edge.
Given a node j, the number inside its circle is the total number of
shortest paths coming from the root i: o;;. (b) The list of nodes v(p)
and (c) list of edges ¢,(p) — ¢,(p) are shown together with their
one-, two-, and three-betweenness values.

nodes and edges together with their one-, two-, and three-
betweenness values.

VI. VULNERABILITY BACKBONE

An important problem in network research is identifying
the most vulnerable parts of a network. Here we define the
vulnerability backbone (VB) of a graph as the smallest fraction
of the highest betweenness nodes forming a percolating cluster
through the network. Removing simultaneously all elements
of this backbone will efficiently shatter the network into
many disconnected pieces [51,82]. Although the shattering
performance can be improved by sequentially removing and
recomputing the top-ranking nodes [51], here we focus only
on the simultaneous removal of the one-time computed VB of
a graph, the generalization being straightforward.

Next we illustrate that range-limited BCs can be used to
efficiently detect this backbone by performing calculations
up to a length much smaller than the diameter. This is
of course expected in networks that have a small diameter
[D = O(n N) or smaller], however, it is less obvious for
networks with large diameter [D = O(N%), a > 0]. For this
reason, in the following we consider random geometric (RG)
graphs [83,84] in the plane. The graphs are obtained by
sprinkling at random N points into the unit square and
connecting all pairs of points that are found within a given
distance R of each other. We will use the average degree
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FIG. 7. (Color) The vulnerability backbone VB of a random
geometric graph in the unit square with N = 5000, (k) =5, and
D =195. The top 30% of nodes are colored from red to yellow
according to their [/]-BC ranking (see color bar). The VB based on
the [[]-BC is shown for different values: [ = 1,2,5,15,45,195.

(k) = N R* [84] instead of R to parametrize the graphs.
In Fig. 7 we present measurements on a random geometric
graph with N = 5000 nodes, average degree (k) = 5. The
hop-count diameter of this graph is D = 195. The weights
of connections are considered to be the physical (Euclidean)
distances. Clearly, since the links of the graph are built based on
a rule involving the Euclidean distances, the weight structure
and the topology of the graph should be tightly correlated.
Thus we do expect strong correlations between the [/]-BC
values measured both from the unweighted and the weighted
graph. The weight ranges W; defining the layers during the
algorithm were chosen as W, = 0.00725/, [ =1,...,D, so
that Wp = 0.007 25D = 1.413 is close to the diagonal length
of the unit square ~/2. The nodes and connections are colored
according to their [/]- B C ranking for different / values (see the
color bar in Fig. 7). The backbone is already clearly formed at
| = 45. Figure 8 compares the VBs of the graphs obtained with
and without considering the connection weights (distances).
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FIG. 8. (Color) Vulnerability backbones based on full BC rank-
ings in two random geometric graphs with N = 5000 nodes, and
average degrees (k) =5 and (k) = 10, respectively. The rankings
were calculated both on the unweighted graph (left column) and
weighted one (right column).

Two RGs with densities (k) =5 and (k) = 10 are presented.
In the case of the denser graph the backbone is concentrated
towards the center of unit square, as periphery effects in this
case are stronger (we do not use periodic boundary conditions).
Although qualitatively the two VBs are similar, the VB is
sharper and clearer in the weighted case. There can be actually
significant differences between the two backbones, in spite of
the fact that one would expect a strong overlap. In Fig. 9 we
show these differences by coloring the nodes of the two graphs
from Fig. 8 according to the In(r,,,, /r,,) values, where r,,, is the
rank of a node obtained using the nonweighted algorithm and
7y 1S obtained using the weighted graph. The nodes are colored
from blue to red, blue corresponding to the case when the
unweighted algorithm strongly underestimates the weighted
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FIG. 9. (Color) Comparison between the rankings obtained with
and without considering the weights of connections for the two RG
graphs in Fig. 8. Colors indicate the In(r,,/r,) values, where r,,
is the rank of a node obtained using the nonweighted algorithm and
ry 1s obtained with the weighted graph (see the color bar). In denser
graphs the differences become more significant.
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ranking of a node and red is used when it overestimates it.
Although it is of no surprise that weighted and unweighted
backbones differ in networks where the graph topology and
the weights are weakly correlated, the fact that there are
considerable differences also for the strongly correlated case
of random geometric graphs (the blue and red colored parts
in the right panel of Fig. 9) is rather unexpected, underlining
the importance of using weight-based centrality measures in
weighted networks.

VII. CONCLUSIONS

In this paper we have introduced a systematic approach to
network centrality measures decomposed by graph distances
for both unweighted and weighted directed networks. There
are several advantages to such range-based decompositions.
First, they provide much finer grained information on the
positioning importance of a node (or edge) with respect to
the network than the traditional (diameter-based) centrality
measures. Traditional centrality values are dominated by the
large number of long-distance network paths, even though
most of these paths might not actually be used frequently
by the transport processes occurring on the network. Due to
the fast growth of the number of paths with distance in large
complex networks, one expects that the distribution of the
centrality measures (which incorporate these paths) to obey
scaling laws as the range is increased. We have shown both
numerically and via analytic arguments (identifying the scaling
form) that this is indeed the case, for unweighted networks; for
the same reasons, however, we expect the existence of scaling
laws for weighted networks as well. We have shown that these
scaling laws can be used to predict or estimate efficiently
several quantities of interest that are otherwise costly to
compute on large networks. In particular, the largest typical
node-to-node distance L*, the traditional individual node and
edge centralities (diameter range) and the ranking of nodes and
edges by their centrality values. The latter is made possible by
the existence of the phenomenon of fast freezing of the rank
ordering by distance, which we demonstrated both numerically
and via analytic arguments. We have also introduced efficient
algorithms for range-limited centrality measures for both
unweighted and weighted networks. Although they have been
presented for betweenness centrality, they can be modified to
obtain all the other centrality measure variants.

Finally, we presented an application of these concepts
in identifying the vulnerability backbone of a network, and
have shown that it can be identified efficiently using range-
limited betweenness centralities. We have also illustrated the
importance of taking into account link weights [85] when
computing centralities, even in networks where graph topology
and weights are strongly correlated.
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