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Critical points of the O(n) loop model on the martini and the 3-12 lattices
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We derive the critical line of the O(n) loop model on the martini lattice as a function of the loop weight
n basing on the critical points on the honeycomb lattice conjectured by Nienhuis [Phys. Rev. Lett. 49, 1062
(1982)]. In the limit n → 0 we prove the connective constant μ = 1.750 564 5579 . . . of self-avoiding walks on
the martini lattice. A finite-size scaling analysis based on transfer matrix calculations is also performed. The
numerical results coincide with the theoretical predictions with a very high accuracy. Using similar numerical
methods, we also study the O(n) loop model on the 3-12 lattice. We obtain similarly precise agreement with the
critical points given by Batchelor [J. Stat. Phys. 92, 1203 (1998)].
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Introduction. The O(n) loop model [1] originates from the
high-temperature expansion of the O(n) spin model [2]. It
can be considered a model describing a nonintersecting loop
gas. On lattices with coordination number three, the partition
function is very simple:

Z =
∑
G

xbnl, (1)

where the sum is over all configurations of nonintersecting
loops denoted asG; x is the weight of a bond (an edge occupied
by loop segments), or an occupied vertex, and n is the weight
of a loop. b is the number of bonds or occupied vertices, and l

is the number of loops.
Generally speaking, there is a high-temperature phase with

dilute loops and a low-temperature phase with dense loops.
At the transition point xc, the longest loop grows to infinity
and begins to percolate the system. The critical properties of
this transition are universal, which are well described by the
Coulomb gas theory [3]. However, the determination of the
critical points of this model on various lattices remains to be
treated case by case. O(n) critical lines have been found on
the honeycomb lattice [4–6], the square lattice [7], and the
triangular lattice [8]. In addition to this transition point, there
are several other branches of critical behavior, for example,
“branch 0,” which describes a higher critical point, as reported
in Refs. [8–10].

In the n → 0 limit, the critical O(n) loop model describes
long polymers in a good solvent or self-avoiding walks (SAWs)
[11]. The study of the O(n) loop model has led to a wealth of
information on the configuration properties of SAWs [12]. The
number of configurations of SAWs in k steps, that is, Ck scales
as [13]

Ck ∼ Aμkkγ−1 (2)

for large k. A is a constant. γ = 43/32 is an universal critical
exponent, which can be obtained via the Coulomb gas theory
[4]. μ is the connective constant which is lattice dependent, and
equals to 1/xc of the n → 0 loop model. Although the studies
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on the SAWs have advanced a lot since it was introduced
[14], the values of μ for most of two-dimensional lattices are
found numerically [15–19]. The conjectured critical line of
the O(n) loop model on the honeycomb lattice [4] provides

μ =
√

2 + √
2 on the honeycomb lattice.

The critical line of the honeycomb O(n) loop model was
found by an exact mapping on a Potts model [4] and by using
the Bethe ansatz [5,6]:

x2
c = 1

2 + √
2 − n

. (3)

This result was known to be true for the Ising case (n = 1) [20],
and was recently proved for the case n = 0 by Duminil-Copin
and Smirnov [21]. The phase diagram inferred from this result
has been well verified by different numerical methods [22,23].
Batchelor derived the critical points of the O(n) loop model
on the 3-12 lattice by mapping the honeycomb loop model to
the 3-12 lattice [24]:

(
x2

c + x3
c

1 + x3
c n

)2

= 1

2 + √
2 − n

. (4)

Making use of this result, Batchelor obtained μ =
1.711041 . . . for the 3-12 lattice, which coincides with the
result previously found by Jensen and Guttmann [18] using
other methods. This was made rigorous by the result of
Duminil-Copin and Smirnov [21]. In the present paper we shall
provide some independent numerical results for the critical
point of the O(n) loop model on the 3-12 lattice, and on its
phase behavior.

Inspired by Batchelor’s work, we studied the O(n) loop
model on the martini lattice. This lattice was first proposed
by Scullard [25] in the study of percolation. The percolation
threshold and the critical points of the q-state Potts model
[26,27] on this lattice are known exactly [28], but the critical
points of the O(n) loop model are not known yet. In this
paper we derive the critical points of the O(n) loop model
as a function of n on the martini lattice. In particular, in
the limit n → 0, we prove the connective constant μ =
1.750 564 5579 . . . of SAWs on the martini lattice. In addition,
we build the transfer matrix (TM) and apply a finite-size
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FIG. 1. (Color online) The O(n) loop model on the honeycomb
lattice (a) and the martini lattice (b).

scaling analysis for a numerical study of the model on the
martini and the 3-12 lattice.

Critical points of O(n) loop model on the martini lattice.
Consider a honeycomb lattice with two sublattices A and B. A
loop configuration G also denotes the occupations of sublattice
A, as shown in Fig. 1(a). We rewrite the partition function (1)
in the following way:

Zh =
∑
G

xvnl =
∑
G

(x2)vA1VA−vAnl, (5)

where v = b is the number of vertices visited by loop segments,
VA and vA = v/2 are the number of vertices and the number of
visited vertices of sublattice A, respectively. Thus the weight
of a visited A vertex shown in Fig. 2(a) is x2, the weight of
an empty A vertex shown in Fig. 2(d) is 1.

Now consider the O(n) loop model on the martini lattice,
which is constructed by replacing the “star” (an A vertex)
shown in Fig. 2(d) by the structure shown in Fig. 2(e). Each
occupied (empty) A vertex corresponds to two possible
occupations on that structure, as shown in Figs. 2(b) and 2(c)
[Figs. 2(e) and 2(f)]. Thus, any given configuration G of loops
on the honeycomb lattice maps to the sum of 2VA possible
loop configurations on the martini lattice. Let x be the weight
of a bond for the martini loop model, the partition function
of the loop model on the martini lattice can be obtained by
summing on G:

Zm = (1 + x3n)VA

∑
G

(
x3 + x4

1 + x3n

)vA

nl. (6)

Mapping (x3 + x4)/(1 + x3n) → x2, we obtain Zh in (5)
multiplied by a trivial factor. It follows the critical points xc

of the O(n) loop model on the martini lattice:

xc
3 + xc

4

1 + xc
3n

= 1

2 + √
2 − n

. (7)

This result is in agreement with an existing result for
the O(1) loop model, which is equivalent to the high

x2 x3 x 4 x 3n1
(a) (b) (c) (d) (f)

1
(e)

+ +

FIG. 2. (Color online) Mapping of the vertex configurations. The
weights of the different vertices are shown. The same weights apply
to versions rotated by ±2π/3.

temperature expansion of the Ising model model [29] with
x = tanhKI , where KI is the coupling of Ising spins
sitting on the vertices of the martini lattice. According to
(7), KI

c = 0.749 790 959 036 . . . , which coincides with the
exactly known critical point of the q = 2 Potts model on the
martini lattice [28].

As another special case, we prove the connective constant
of the SAWs on the martini lattice. The substitution μ = 1/xc

in (7) for n = 0 determines μ as the solution of

1

μ3
+ 1

μ4
= 1 −

√
2

2
, (8)

which yields μ = 1.750 564 557 897 . . ..
We may further generalize the above results by allowing

bonds on the small triangles in Fig. 2(e) to have weight (xt )
different from those on the remaining ones (xs). Following the
mapping described above, we thus obtain a critical line in the
xt versus xs plane for a given n:

xs
2xt + xt

2xs
2

1 + xt
3n

= 1

2 + √
2 − n

. (9)

For the 3-12 lattice, the critical line of the generalized
model is

xs

(
xt + x2

t

)
1 + x3

t n
= 1√

2 + √
2 − n

. (10)

Finite-size scaling and transfer matrix calculation. Con-
sider the lattice (the 3-12 or the martini lattice) wrapped on
a cylinder with circumference L. The magnetic correlation
function of the O(n) spin model is translated as the probability
that two sites at a distance r are linked by a single loop
segment [3], gr = Z′/Z, where Z′ = ∑

G ′ xbnl , andG ′ denotes
the configurations that connect sites 0 and r by precisely
one single loop segment. In our transfer-matrix analysis of
the finite-size-scaling behavior, it is sufficient to substitute
the configurations G ′ that connect any site of row 0 to any
site of a row at a distance r as measured in the length
direction of the cylinder. The exponential decay of gr at large
distances is determined by the magnetic gap in the eigenvalue
spectrum of the transfer matrix. The scaled magnetic gap
Xh(x,L) = Lζ

2π
ln(�(0)/�(1)), where �(0) and �(1) are the

largest eigenvalue of the TM for Z and Z′, respectively. ζ is
a geometrical factor determined by the ratio between the unit
of L and the thickness of a row added by the transfer matrix.
Another scaled gap Xt (x,L) = Lζ

2π
ln(�(0)/�(2)) describes the

exponential decay of the energy-energy correlation with �(2)

the second eigenvalue of the TM for Z.
The TM techniques of the O(n) loop model are well

described in the literature (e.g., see [9]). The procedure of
sparse matrix decomposition for the martini and the 3-12 lattice
equals that for the honeycomb lattice with the adding units
suitably chosen [22]. For further details see [30,31].

According to the finite-size scaling [32] and the conformal
invariance [33] theory, the scaled gap Xi(x,L), in the vicinity
of the critical point, satisfies

Xi(x,L) = Xi + a(x − xc)Lyt + buLyu + · · · , (11)

where Xi(i = h,t) is the magnetic and the temperature scaling
dimension, respectively; yt is the thermal exponent; u denotes
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FIG. 3. (Color online) Scaled gaps Xh(x,L),Xt (x,L) vs x for the
O(n) loop model on the martini lattice with L = 8 to 16. (a) and
(c): n = 0; (b) and (d): n = 2, with xc = 0.840896 indicated. Lines
connecting data points are added to guide the eye.

the leading irrelevant field, yu is the associated irrelevant
exponent. a,b are unknown constants. Such behavior is
illustrated in Figs. 3(a) and 3(c) for the case n = 0. The critical
point is estimated by numerically solving x in the equation
Xh(x,L) = Xh(x,L − 1), with system sizes up to L = 16. The
solution xc(L) converges to the critical value xc as

xc(L) = xc + a′uLyu−yt + · · · , (12)

where a′ is an unknown constant. The numerical estimations
and the theoretical predictions of the critical points of the mar-
tini lattice are listed in Table I. Our numerical estimations co-
incide with the theoretical predictions in a very high accuracy.

The universal values of Xi and the conformal anomaly c

of the two-dimensional O(n) loop model are exactly known
as [3,33]

c = 1 − 6(g − 1)2

g
,

(13)

Xh = 1 − 1

2g
− 3g

8
, Xt = 4 − 2g

g
,

where n = −2 cos(πg), 1 � g � 2.

At criticality, Xi(L) converges as follows to Xi with
increasing system size L,

Xi(L) = Xi + b′Lyu + · · · , (14)

where b′ is an unknown constant. The free energy density
f (L) = ζ ln �

(0)
L /L scales as [34,35]

f (L) = f (∞) + πc

6L2
. (15)

We then calculate f (L),Xt (L), and Xh(L) for a sequence
of systems up to size L = 16 at the critical points (7).
Fitting the data according to (14) and (15), we obtain the
scaling dimensions Xh,Xt and the conformal anomaly c,
which are also listed in Table I. Our numerical estimations
are in agreement with the theoretical predictions with a high
accuracy. For Xh,Xt , our results are also consistent with the
Monte Carlo results for n � 1 [23,36].

When n approaches 2, yt = 2 − Xt → 0. The corrections
to scaling due to the leading irrelevant field become rela-
tively strong, thus the precision of our numerical estimation
decreases. At n = 2, yt is exactly 0, so that intersecting
points between the curves Xi(x,L) and Xi(x,L − 1) may be
absent, as already suggested by (11), and as indeed observed
in Figs. 3(b) and 3(d). Therefore, we cannot numerically
determine the critical point xc in the usual way. However,
c and Xh,Xt are still estimated at the theoretical critical point.

Similar analysis is also performed to the 3-12 lattice.
Theoretical predictions and numerical estimations of critical
points for several values of n, which agree in a high accuracy,
are listed in Table II. From Tables I and II we can see that the
values of Xh,Xt and c for a two-dimensional O(n) loop model
on the martini lattice coincide with those of the 3-12 lattice,
as expected by the hypothesis of universality.

Conclusion. We derived the critical points of the O(n)
loop model on the martini lattice basing on the conjectured
critical points on the honeycomb lattice [4]. In the limit
n → 0, the connective constant of the SAWs on the martini
lattice is proved to be μ = 1.750 564 5579 . . .. Moreover, we
performed a finite-size scaling analysis based on numerical
TM calculations. Our numerical estimations agree with the
theoretical predictions, within a margin that can reach 10−9

(for n = 0,0.25). This rather high precision may be related to
the vanishing of the leading irrelevant field in the Nienhuis
result [4] for the critical line.

The critical points of the O(n) loop model on the 3-12 lattice
derived by Batchelor are also verified.

TABLE I. Critical points xc, conformal anomaly c, magnetic and temperature scaling dimensions Xh,Xt of the two-dimensional O(n) loop
model on the martini lattice. (T = theoretical prediction, N = numerical estimation.)

n xc(T) xc(N) c(T) c(N) Xh(T) Xh(N) Xt (T) Xt (N)

0 0.571244285 0.571244285(1) 0 0 0.1041667 0.104166(1) 2/3 0.666668(2)
0.25 0.584248605 0.584248605(1) 0.1300704 0.1300705(2) 0.1100192 0.1100193(1) 0.7395254 0.739526(1)
0.5 0.598867666 0.59886768(2) 0.2559499 0.255950(1) 0.1154420 0.1154420(1) 0.8177559 0.817756(1)
0.75 0.615559079 0.6155590(1) 0.3788781 0.3788783(3) 0.1204452 0.1204452(1) 0.9035105 0.9035104(2)
1.0 0.635024224 0.63502422(1) 0.5 0.500000(1) 0.125 0.12500000(1) 1 1.00000(1)
1.25 0.658437850 0.65843786(1) 0.6205051 0.6205053(2) 0.1290128 0.1290127(1) 1.1126008 1.1126007(1)
1.5 0.688067393 0.68806739(2) 0.7418425 0.741842(1) 0.1322435 0.1322434(1) 1.2518912 1.25189(1)
1.75 0.729662053 0.729664(3) 0.8662562 0.8662563(1) 0.1339623 0.13396(1) 1.4457176 1.445718(1)
2.0 0.840896415 – 1 1.000000(1) 0.125 0.1250000(1) 2 2.00000(1)
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TABLE II. Critical points xc, conformal anomaly c, magnetic and temperature scaling dimensions Xh,Xt of the two-dimensional O(n) loop
model on the 3-12 lattice. (T = theoretical prediction, N = numerical estimation.)

n xc(T) xc(N) c(T) c(N) Xh(T) Xh(N) Xt (T) Xt (N)

0 0.584439429 0.584439429(1) 0 0 0.1041667 0.104167(1) 2/3 0.666668(1)
0.25 0.601034092 0.601034092(1) 0.1300704 0.1300705(2) 0.1100192 0.1100193(1) 0.7395254 0.739526(1)
0.5 0.620240607 0.62024060(1) 0.2559499 0.255950(3) 0.1154420 0.115442(1) 0.8177559 0.817756(1)
0.75 0.642967899 0.6429678(1) 0.3788781 0.3788783(2) 0.1204452 0.1204452(1) 0.9035105 0.903510
1.0 0.670697664 0.67069766(1) 0.5 0.499999(1) 0.125 0.1250000(1) 1 1.000000(1)
1.25 0.706102901 0.70610291(1) 0.6205051 0.620505(1) 0.1290128 0.1290127(1) 1.1126008 1.112600(1)
1.5 0.754845016 0.754845(1) 0.7418425 0.741842(1) 0.1322435 0.1322435(1) 1.2518912 1.25189(1)
1.75 0.833205232 0.83320(2) 0.8662562 0.86626(1) 0.1339623 0.13396(1) 1.4457176 1.445718(2)
2.0 1.172534677 – 1 0.999999(1) 0.125 0.1250000(1) 2 2.00000(1)

The conformal anomaly, the magnetic and the temperature
scaling dimensions of the O(n) models on the two lattices
are numerically calculated. The estimations coincide with
the theoretical predictions, as expected according to the
universality hypothesis.
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[22] H. W. J. Blöte and B. Nienhuis, Physica A 160, 121 (1989).
[23] Y. J. Deng, T. M. Garoni, W.-A. Guo, H. W. J. Blöte, and A. D.
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