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The immune system is one of the most complex signal processing machineries in biology. The adaptive
immune system, consisting of B and T lymphocytes, is activated in response to a large spectrum of pathogen
antigens. B cells recognize and bind the antigen through B-cell receptors (BCRs) and this is fundamental
for B-cell activation. However, the system response is dependent on BCR-antigen affinity values that span
several orders of magnitude. Moreover, the ability of the BCR to discriminate between affinities at the high end
(e.g., 109M−1–1010M−1) challenges the formulation of a mathematical model able to robustly separate these
affinity-dependent responses. Queuing theory enables the analysis of many related processes, such as those
resulting from the stochasticity of protein binding and unbinding events. Here we define a network of queues,
consisting of BCR early signaling states and transition rates related to the propensity of molecular aggregates to
form or disassemble. By considering the family of marginal distributions of BCRs in a given signaling state, we
report a significant separation (measured as Jensen-Shannon divergence) that arises from a broad spectrum of
antigen affinities.
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I. INTRODUCTION

The immune system is a complex biological machinery con-
sisting of innate and adaptive systems that has evolved to de-
fend our organism from foreign invaders. The innate immune
system provides a first line of defense which nonspecifically
recognizes pathogen-associated molecules globally called
antigens and activates the adaptive immune response. This
first step ensures that a destructive response is triggered only
against foreign antigens (non-self) and not against molecules
of the host itself (self). The adaptive immune system consists
of white blood cells called lymphocytes. Different types of
lymphocytes, known as B cells and T cells, play different roles
in the immune response. B cells, the focus of this work, are
responsible for antibody-mediated responses, whereas T cells
carry out cell-mediated responses [1].

A key feature of the adaptive immune system is its ability to
respond to a large number of different antigens with high speci-
ficity. The clonal selection theory [2] shed light on how this can
be achieved by proposing that specificity for diverse antigens
already exists before they are encountered [3]. Initially, the
organism generates a pool of lymphocytes that can recognize
antigens through cell-type-specific receptors, e.g., B-cell
receptors (BCRs) for B cells [4]. BCR binding to antigen leads
to B-cell proliferation and clonal expansion, thus producing ef-
fector cells that are clones of the activated lymphocyte bearing
the same antigen-specific BCR. Activated B cells secrete anti-
bodies in the bloodstream to specifically recognize the foreign
antigen that initiates their production. However, how a specific
antibody is selected, given the magnitude of molecularly
diverse antigens, is still unclear. Additionally, the affinity range
over which B cells can recognize antigens spans several orders
of magnitude [5] and different affinity values induce different
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cellular responses [6]. Upon antigen binding [Fig. 1(a)–
1(b)], target sequences in the immunoreceptor tyrosine-based
activation motifs (ITAMs) of the BCR signaling subunits Igα

and Igβ are phosphorylated by the Src-family protein tyrosine
kinase Lyn and the cytoplasmic tyrosine kinase Syk (spleen
tyrosine kinase) [7] [Fig. 1(b)]. These processes are stochastic
and therefore they represent an intrinsic source of noise [8].

Various approaches modeled the dependence of B-cell
activation on antigen concentration and affinity. In Ref. [9],
an affinity-dependent increase of the B-cell surface enhances
the formation of BCR microclusters. While such spreading
response can amplify affinity sensitivity, little is known on how
B cells exploit membrane-proximal signaling to discriminate
among affinities at the level of microclusters. Recent studies
[6,10] provide novel, yet contrasting, interpretations on this
phenomenon. To our knowledge, the mechanism of BCR affin-
ity discrimination has been addressed using a time threshold
for a kinetic proofreading scheme involving BCR-antigen
binding and activated Lyn and Syk kinases [11]. Kinetic
proofreading models have been applied in immunology after
the seminal work of McKeithan [12]. The model accounts for
activation and deactivation rates of a series of biochemical
reactions occurring at receptor tails under the assumption
that upon antigen unbinding the receptor jumps back to the
native state regardless of its biochemical modifications. In [11]
well-defined transition rates tuned for the discrete stochastic
model have been proposed, with binding or unbinding events
implicitly modeled as geometric random variables. This model
has two major limitations. First, kinetic proofreading was
simulated ad hoc by introducing a deterministic time threshold
t for BCR-antigen binding that has to be exceeded before the
BCR could engage cytoplasmic signaling molecules. However,
when t is neglected the model is not able to separate affinity-
dependent responses for high affinity values. Second, despite
a careful parametrization a large number of simulations is
required in order to obtain statistically relevant results.

In this work we propose a model that captures the
orchestrated behavior of many molecules of different types,
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FIG. 1. (Color online) (a) Simplified signaling pathway, consisting of two states (s1 and s2). s1 provides a schematic representation of a
BCR. Heavy and light BCR chains are colored in light blue and blue, respectively. BCR signaling subunits Igα and Igβ are represented in
dark blue. The ITAMs are indicated. Transitions between states are indicated by arrows and modulated by the reported parameters. (b) Upon
BCR binding to antigen (Ag), target sequences in the ITAMs are phosphorylated by Lyn (s3) and Syk (s4). We assume that antigen unbinding
is nonreversible, i.e., the receptor reverts to s1, regardless of the state it was or is in.

leading to a more robust detection of different binding affinities
when compared with modifications applied at the receptor
level only. Our method avoids deterministic time thresholds
nevertheless delivering results in agreement with both in silico
observations and experimental results reported in Ref. [11].
The method exploits ideas outlined for T-cell receptors (TCRs)
[13], where each compartment of the kinetic proofreading
scheme is described as a queue. By combining time thresholds
and signal integration, the model in Ref. [13] is able to explain
T-cell specificity for different antigen densities. However, koff

does not span several orders of magnitude. A similar queuing
scheme was applied to the TCR recognition of self and non-self
antigens, where T cells were modeled as decision makers in
this discrimination process [14].

In our framework, the spatial component is not modeled
explicitly, although spatial proximity of reacting species influ-
ences the rates of binding events. We rather assume that there
are several foci where BCRs assemble [9,15] and we focus on
the transition steps taking place within the assembly zone.

This paper is organized as follows. Sec. II introduces the
modeling framework and the relevant formalism. In Sec. II A
we consider the marginal distributions of receptors in a given
state. The distance between probability distributions arising
from different BCR-antigen affinity values is analyzed in
Sec. II B. In Sec. III A, we choose the model parameter
based on experimental results, and sensitivity of the model
with respect to alterations of other parameter values is
discussed in Sec. III B. In Sec. III C, a simplified signaling
pathway is examined. Finally, Sec. III D analyzes the affinity
discrimination ability as a function of the number of BCRs in
the system.

II. MODEL

In the following, we introduce the formalism required to
understand the network of queues and analyze their behavior.
Due to their similarity to kinetic proofreading models [12], net-
work queuing systems can prove useful in solving biological
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problems. We model the behavior of BCRs in the system as
a closed migration process [16]. Briefly, a closed migration
process consists of a set S = {1,2, . . . ,S} of colonies, a
vector n = (n1,n2, . . . ,nS) defining the number of elements
belonging to each of the S colonies, and an operator Tij on n
defined as follows:

Tij (n) = (. . . ,ni − 1, . . . ,nj + 1, . . .). (1)

In words, the operator Tij (n) removes one element from colony
i and adds it to colony j . The term closed indicates that
elements cannot enter or leave the system, i.e., the total number
of elements is fixed to be N . Notice that the term migration
does not refer to physical movement. In our application to
BCRs, elements are receptors and colonies are the states in
which a receptor can be. The vector n is assumed to be a
Markov process with state space:

N = {n : ns � 0,s = 1, . . . ,S,1T n = N} (2)

and transition rates given by

q(n,Tij (n)) = λijφi(ni), (3)

where λij is the propensity for an element in the system to
transit from colony i to colony j and φi(ni) are monotonic
increasing functions of ni . Such a Markov process n is irre-
ducible if φi(n) > 0 whenever n > 0 and the topology of the
network describing the transitions from one colony to another
is such that for any pair of colonies (i,j ) transitions between
the two colonies happen almost surely. We assume that the
times at which binding and unbinding events occur follow an
exponential distribution [17]. Under these assumptions, we
model the behavior of BCRs in the system as “customers”
joining a queue. Each receptor then waits in the queue until
the next event takes place. Such event typically consists in
the binding or unbinding of either the antigen or a signaling
protein and this causes the receptor to join another queue, i.e.,
to transit to another colony. Experimental investigations of the
BCR system and of early events in B-cell activation [6,18,19]

suggested us to construct a network of queues consisting of
four states: (1) s1: unbound BCR, (2) s2: BCR bound to antigen,
(3) s3: BCR bound to Lyn, and (4) s4: BCR bound to both Lyn
and Syk.

We fix the number of receptors N within a given surface
area and for simplicity we do not add any further constraints
on other quantities. The total number of antigen, Lyn, and Syk
molecules is assumed to exceed the total number of signaling
engaged BCRs (Table II) to prevent an insufficient allocation
of resources in the system [20].

Transitions from one state to another can be defined as
follows:

q(n,Tij (n)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

konφi(ni), i = 1, j = 2

k
Lyn
on φi(ni), i = 2, j = 3

k
Syk
on φi(ni), i = 3, j = 4

k
Lyn
off φi(ni), i = 3, j = 2

k
Syk
off φi(ni), i = 4, j = 3

koffφi(ni), i ∈ {2,3,4}, j = 1

.

According to experimental results [18], we set φ1,2,3(n) = n

and φ4(n) = nq , where q > 1. The choice for colonies 1,2,3
follows from the fact that transitions between them are
independent of the elements within these colonies. However,
recruitment of the Syk kinase to the modified BCR tail (s4) is
connected to downstream signaling pathways and contributes
to cytoskeleton organization [18]. Thus, we hypothesize that
transitions leaving s4 depend on the number of BCRs in s4.

Next, we turn our attention to the analysis of steady state
distributions of elements at each colony as a function of the
BCR-antigen affinity, namely, on the unbinding rate koff . This
is in line with considerations that differences in the antigen
affinity KD = kon

koff
are considered to be functional differences

related to koff and not to kon [21,22]. For this purpose, we
construct the generator of the continuous time Markov chain
describing the behavior of a single receptor in the system as

H =

⎡
⎢⎢⎢⎢⎣

−kon kon 0 0

koff −koff − k
Lyn
on k

Lyn
on 0

koff k
Lyn
off −koff − k

Lyn
off − k

Syk
on k

Syk
on

koff 0 k
Syk
off −koff − k

Syk
off

⎤
⎥⎥⎥⎥⎦ , (4)

and we compute the equilibrium distribution α = (αi) as

HT α = 0, (5)

which is equivalent to say that α satisfies the full balance
equations [16,23]. Under the above mentioned assumptions
the equilibrium distribution π of the process n satisfies [16]

π (n) = 1

C

S∏
i=1

α
ni

i∏ni

t=1 φi(t)
, (6)

being C a normalizing constant ensuring that∑
1T n=N

π (n) = 1. (7)

We computed C by enumerating all the possible configurations
that the vector n can attain.

A. Affinity estimation

The steady state distribution [Eq. (6)] can be rewrit-
ten taking into account the antigen binding affinity as
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FIG. 2. (Color online) Probability density functions for the total number of active Syk molecules (n4) for a different number of receptors,
different values of the exponent q in φ4, and Ag-BCR binding affinities θ1 = 106 (black �), θ2 = 107 (red �), θ3 = 108 (light blue �), θ4 = 109

(blue ◦), and θ5 = 1010 (green +). (a),(b) For q = 1, the marginals in Eq. (10) are not well separated for high affinity values. (c),(d) For q = 2,
the marginals are well separated. Furthermore, the separation between these probability distributions increases by including more receptors.

follows:

π (n|θ ) = 1

C

S∏
i=1

α
ni

i∏ni

t=1 φi(t)
, (8)

where θ is a parameter depending on koff in [Eq. (4)]. With this
setting, we can consider a family of probability distributions
πθ (n) = π (n|θ ) depending on different BCR-antigen affinity
values. Let us consider the marginal distribution of the total
number of activated Syk molecules (n4) derived from the
closed form steady state distribution in Eq. (6):

π̃ (n4) =
∑

n1+n2+n3=N−n4

π (n1,n2,n3,n4). (9)

Then, we are interested in the family of marginal probability
distributions:

π̃θ (n4) = π̃ (n4|θ ), (10)

parametrized by the system input θ representing the above
introduced affinity value [Fig. 2(a)–2(d)].

B. Accuracy

We consider the Jensen-Shannon divergence (JS diver-
gence) DJS [24] [a symmetrization of the Kullback-Leibler
divergence (KL divergence) [25]] as a measure of the differ-
ences between the marginal distributions π̃θi

and π̃θj
(defined

in Sec. II A):

DJS(π̃θi
,π̃θj

) = 1

2

N∑
k=1

π̃θi
(k) log

(
π̃θi

(k)

π̃θj
(k)

)

+ 1

2

N∑
k=1

π̃θj
(k) log

(
π̃θj

(k)

π̃θi
(k)

)
. (11)

We analyzed the behavior of the JS divergence between the
distributions πθi

, where θi = {106,107,108,109,1010}.

III. RESULTS AND DISCUSSION

The family of probability distributions [Eq. (10)] represents
the readout of the proposed model with different input
affinities. We analyze the dependence of the distribution of the
number of active Syk molecules with respect to alterations of
the parameter q, the number of receptors N , and the matrix H

[Eq. (4)]. Some entries of H (i.e., binding affinities for Syk and
Lyn) have uncertain numerical values, whereas others depend
on the total concentration of antigen molecules (Sec. A). In the
following, we justify the choice of the parameter value q based
on experimental observations addressing the total number of
active Syk molecules for different BCR binding affinities.

A. Choice of the parameter q based on experimental results

The number of active Syk molecules has been reported to
strongly depend on the BCR-antigen binding affinity [6]. In
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TABLE I. Values of the ratios
μθhigh

μθlow
, where θhigh = 5 × 108M−1

and θlow = 9.9 × 106M−1 for the indicated number of receptors and
coefficients q of the modulating function φ4(·). Values of q � 2 are
in agreement with experimental results [6].

Number of receptors q = 1 q = 1.5 q = 2 q = 2.5

100 1.07 1.48 2.11 2.15
200 1.07 1.62 2.30 2.23
300 1.07 1.70 2.40 2.26
400 1.07 1.77 2.46 2.28
500 1.07 1.83 2.51 2.29

particular, TIRF (total internal reflection fluorescence) images
have shown that recruitment of phosphorylated Syk to the
contact area between the B cell and an antigen-containing
bilayer is enhanced in high affinity (5 × 108M−1) compared to
low affinity (9.9 × 106M−1) BCRs. More precisely, an ∼2.5-
fold reduction in the total number of active Syk molecules has
been observed within the contact area for low affinity BCRs
compared to high affinity ones. We therefore analyzed the
ratio

μθhigh

μθlow
of the total number of active Syk molecules within

a single signaling unit (see Table I), where μθhigh and μθlow

represent the mean number of active Syk molecules for the
affinity values θhigh = 5 × 108M−1 and θlow = 9.9 × 106M−1,
respectively. The value q = 2 captures the experimental
results.

B. Sensitivity to parameter values

The binding rates of Syk (kSyk
on ) and Lyn molecules (kLyn

on )
are fixed and reported in Table II. The unbinding rates k

Syk
off and

k
Lyn
off are reported to be within two orders of magnitude [11,26].

The fastest unbinding rates (10s−1) did not lead to a good
discrimination accuracy. Alterations of the values of k

Lyn
off did

not result in a significant change in the discrimination ability
[Fig. 3(a)]. Conversely, reducing the k

Syk
off from 1s−1 to 0.1s−1

resulted in an increase of the JS divergence of two to three
orders of magnitude for different values of q [Fig. 3(b)]. This
result is remarkable due to the key role of Syk in signaling
downstream to early BCR activation.

C. Simplified signaling pathway

We consider a simplified version of the pathway described
in Fig. 1 consisting of two states only, namely, the unbound (s1)
and the antigen-bound (s2) BCR [Fig. 1(a)]. We are interested
in testing whether this simplified pathway exhibits the same
ability to discriminate the affinity spectrum as the full length
one. Due to the lack of experimental data on the dependence
of antigen unbinding events on the number of antigen-bound
BCRs, a natural choice for the modulating functions φ1(·)
and φ2(·) would be the identity, e.g., q = 1. Nonetheless, we
analyzed the affinity discrimination ability for different values
of q. Interestingly, by setting q = 2 the simplified pathway
shows a discrimination ability comparable to the full pathway
[Fig. 4(a)]. However, the robustness of this system with respect
to alterations of antigen concentrations is strongly reduced.
Indeed, increasing the value of kon from 100 s−1 to 1000 s−1

results in an increase of the JS divergence by two orders of
magnitude for the simplified signaling pathway, whereas no
significant difference is obtained for the full length pathway
[Fig. 4(a)]. Notably, the value q = 1 is unable to produce
values of JS divergence that translate into a robust cellular
response for high affinities in both simplified and full length
pathways. Nevertheless, the full length pathway is still robust
to alterations of kon when compared to the simplified pathway
[Fig. 4(b)].

D. Dependence on the number of receptors within
a signaling unit

Experimental results have shown that upon antigen binding
BCRs arrange in microclusters on the B-cell surface [9,15].
Here we study the effect of the number N of BCRs within
a single signaling unit on the affinity discrimination. To this
purpose, we analyzed the increment of the JS divergence as a
function of N and computed its discrete derivative with respect
to N :

	JS

	N

∣∣∣∣
Ni

= JS(Ni+1) − JS(Ni)

Ni+1 − Ni

. (12)

By analyzing the behavior of the JS divergence [Fig. 5(a)]
we observe that allocating an increasing number of receptors
within a single signaling unit results in an increase of
the cellular capability to discriminate between high range

TABLE II. Values of the parameters used in the simulation. The orders of magnitude of the binding and unbinding rates are extracted from
the reported references. kon has been estimated according to Eqs. (A1) and (A2).

Reaction Real value Mapped value Symbol Reference

Ag-BCR (on) 0.7–3.8 × 106M−1s−1 25–1000s−1 kon [11,28]
Ag-BCR (off) 0.7–3.8 × 10−4s−1 0.7–3.8 × 10−4s−1 koff [5]

Lyn (on) ∼107M−1s−1 1.4s−1 k
Lyn
on [31]

Lyn (off) 10 − 0.1s−1 1s−1 − 0.1s−1 k
Lyn
off [26]

Syk (on) ∼107M−1s−1 24s−1 k
Syk
on [26,31]

Syk (off) 10 − 0.1s−1 1s−1 − 0.1s−1 k
Lyn
off [11]

4 × 105 NBCR [26]
1.6 × 106 NSyk [26]
2.8 × 104 NLyn [26]
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(a)

(b)

FIG. 3. (Color online) Sensitivity to parameter values. Logarithm
of the JS divergence for the pair of affinities listed on the x

axis ([p,p + 1] maps to [10p − 10p+1]) upon altering k
Lyn
off (a) and

k
Syk
off (b). Different lines correspond to different parameter sets

as [(a),(b)] k
Syk/Lyn
off = 1s−1, q = 1.5 (dashed blue �), k

Syk/Lyn

off =
0.1s−1, q = 1.5 (solid blue �), kSyk/Lyn

off = 1s−1, q = 2 (dashed black
◦), kSyk/Lyn

off = 0.1s−1, q = 2 (solid black ◦). The system is robust with
respect to alterations of k

Lyn
off and kon, whereas alterations of k

Syk
off are

crucial in the affinity discrimination.

affinities (109M−1 − 1010M−1). However, such an increase
is sublinear for values of q � 2. Remarkably, the best affinity
discrimination for N between 100 and 500 is achieved with
q = 2, in agreement with experimental results [15]. For this
parameter value there exists a critical value of N above
which the discrete derivative of the JS divergence decreases
[Fig. 5(b)].

The JS divergence of two n-dimensional distributions
p = (p1, . . . ,pn) and q = (q1, . . . ,qn), whose marginals are

(a)

(b)

FIG. 4. (Color online) Logarithm of the JS divergence for the pair
of affinities listed on the x axis ([p,p + 1] maps to [10p − 10p+1])
for q = 2 (a) and q = 1 (b). kon = 100s−1 for the pathway consisting
of s1 and s2 only (Ag) (solid black ◦); kon = 1000s−1 for the (Ag)
pathway (dashed black �); kon = 100s−1 for the pathway up to s4

(Syk) (solid blue •); kon = 1000s−1 for the (Syk) pathway (dashed
blue �). The pathway up to Syk is more robust than the one consisting
of antigen binding only with respect to alterations of kon.

independent and identically distributed is [25]

DJS(p,q) = nDJS(pi,qi). (13)

By assuming independence between the signaling units, it
follows from Eq. (13) that the JS divergence increases linearly
with the number of clusters. The number of clusters is reported
to be around 20–25, each consisting of 100–500 BCRs [15].
Our model suggests that the optimal number of BCRs to be
allocated in a single unit is within the range [100,150]. Values
of N within this range maximize the discrete derivative of the
JS divergence. Additionally, this result potentially explains
the reason for the organization of BCRs in multiple signaling
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(a)

(b)

FIG. 5. (Color online) Behavior of the JS divergence (a) and the
discrete derivative of the JS divergence (b) between distributions
resulting from high affinity values (109M−1 and 1010M−1) as a
function of the total number of receptors within a signaling unit.
Different lines correspond to different values of q in φ4: q = 1 (solid
green �); q = 2 (dashed blue ◦); q = 2 (solid black ◦); and q = 2.5
(dashed blue ×). (a) The dashed red � line shows the theoretical linear
increase of the JS divergence that would be obtained by extending
the segment yielding the maximum discrete derivative in (b). (b) The
range of the optimal number of BCRs to be allocated in a signaling
unit falls between the vertical dashed lines.

units. Indeed, given N receptors, their arrangement in clusters
of size within the range [100,150] leads to a better affinity
discrimination than a single signaling unit having the same
number of BCRs [Fig. 5(a)].

IV. CONCLUSIONS

In this work, we investigated a possible mechanism explain-
ing the specificity of BCRs at high antigen binding affinities.
We did not explicitly model the spatial component in the
distribution of receptors within a single signaling unit, since
our focus was not on the causes driving the formation of BCR
microclusters, discussed in Refs. [6,9,15]. Instead, we were
interested in how a system consisting of several receptors

and early signaling molecules is able to give rise to different
equilibrium distributions depending only on ligand binding
affinity. Thus, we performed our analyses by considering a
fixed number of BCRs within each signaling unit, early signal-
ing states, and relevant transitions. Receptors are modeled as
queuing customers and their possible states are colonies. Such
colonies constitute a network of queues. The assumptions we
made on the network topology and on the transitions between
colonies enabled us to exploit a convenient factorization of
the steady state distributions of each queue [16]. Our model
captures the downstream signaling role of Syk molecules
[6,18] in a signaling unit through a nonlinear modulating
function. This allows one to generate different levels of Syk
activation in response to antigen affinity values spanning four
orders of magnitude. Additionally, our results suggest that
an optimal number of BCRs in a single signaling unit is
rather towards lower bounds of experimental observations
[15]. A possible limitation of the presented framework is the
necessity of relying on equilibrium distributions for clusters
of fixed size, without accounting for the biological processes
leading to the affinity-dependent formation of clusters [19,27].
Computational limitations currently hamper the extension of
the signaling pathway as well as the addition of more receptors
inside a single signaling unit because of the combinatorial
complexity of the state space defined in Eq. (2). Overcoming
these difficulties will constitute a valuable step towards the
analysis of longer pathways, making the proposed model
(Sec. II) suitable for applications to other contexts involving
cellular signaling.
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APPENDIX

The parameters used in the simulations are reported in Table
II and have been extracted from [11,28], and references therein.
The main issue is to identify suitable values for the ratio
kon/koff . In the following, we map the value of the dissociation
constant KD to suitable values of kon and koff . The latter follows
directly from the experimental observations that the half-life
of antigen (Ag)-BCR complexes is ∼1s for an affinity value
of 106M−1 and in the order of 30 min for an affinity value of
1010M−1 [5] (Table II). Since differences in binding affinity
depend only on koff [21,22], we determine a suitable value of
kon. The value of kon is the result of both the encounter rate
of a BCR and an Ag molecule and their reaction rate [28].
Assuming that the reaction rate is the limiting step, the values
of kon can be determined by finding the collision time between
a BCR and an Ag molecule. For this purpose, we exploit the
simulation setting described in Refs. [11,29], where a square of
size 1.5 μm, a given number NAg of Ag molecules, and BCRs
were considered. Each Ag molecule is supposed to occupy the
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center of a circle, having radius

r =
√

A

NAgπ
(A1)

so that the area A is fully covered by the union of those circles.
Next, we consider one annulus having outer radius given by
Eq. (A1) and inner radius s, e.g., the radius of an Ag molecule,
in the order of ∼5 nm. The outer circle of the annulus has a
reflecting boundary, whereas the inner boundary is absorbing.
A BCR undergoes Brownian diffusion in the annulus. Berg and

Purcell [30] computed the average time required for a BCR to
meet an Ag molecule as

τ = r4

2Dr (r2 − s2)
log

r

s
− 3r2 − s2

8Dr

, (A2)

where Dr = DAg + DBCR = 2 × 0.1 μm2/s is the resulting
diffusion coefficient of a BCR and an Ag molecule [11].
Different numbers of Ag molecules map to different mean
capture times. In particular, 100 Ag molecules on A correspond
to a mean capture time of ∼1/25s, 500 to ∼1/200s, 1000 to
∼1/600s, and 2000 to ∼1/1000s.
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