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Stochastic description of single nucleosome repositioning by ACF remodelers
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Chromatin remodeling plays a crucial role in the activation or repression of transcription of eukaryotic genes.
The chromatin remodeler ACF acts as a dimeric, processive motor to evenly space nucleosomes, favoring
repression of gene transcription. Single-molecule experiments have established that ACF moves the nucleosome
more efficiently towards the longer flanking DNA than towards the shorter flanking DNA, thereby centering
an initially ill-positioned nucleosome on DNA substrates. In this paper we present a one-motor model with
nucleosomal repositioning rates dependent on the DNA flanking length. The corresponding master equation is
solved analytically with experimentally relevant parameter values. The velocity profile and the effective diffusion
constant for nucleosome sliding, computed from the probability distributions, are in accordance with available
experimental data. In order to address the observed kinetic pauses in experimental Förster Resonance Energy
Transfer profiles, we extend the master equation to account for transitions between explicit motor states, i.e.,
adenosine triphosphate (ATP) loading and ATP hydrolysis in both ACF motors. The results of this extended
two-motor model are compared to the previous effective one-motor model and allow insights into the role of the
synchronization of the two motors acting on the nucleosome.
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I. INTRODUCTION

Chromatin remodeling is the modification of the chromatin
structure due to the repositioning or removal of nucleosomes
[1]. Nucleosomal repositioning can be spontaneous due to
thermal fluctuations or forced by adenosine triphosphate
(ATP) dependent remodelers [2,3]. The latter are protein
complexes with multiple functionalities; their key unit is
a helicase-like ATPase derived from the superfamily SF2
of helicases. The functional subdivision of the remodeler
families is based on the domains neighboring the ATPase
domain, which allows us to distinguish four families: the
switching defective/sucrose nonfermenting (SWI/SNF) family,
which recognizes histone tail acetylations with the help of
bromodomains; the chromodomain, helicase, DNA binding
(CHD) family, which carries chromodomains to recognize
histone tail methylations; the inositol requiring 80 (INO80)
family; and, of our concern here, the imitation switch (ISWI)
family.

In this paper, we are concerned with the chromatin
remodeler ACF, which is the abbreviation for ATP-utilizing
chromatin assembly and remodeling factor, which belongs
to the ISWI family of ATP-dependent chromatin-remodeling
complexes [1]. A sketch of this dimeric remodeler is shown
in Fig. 1. A major yeast homolog of ACF is ISW2, a complex
which has three recognition sites in the remodeler-nucleosome
complex. The first is the DEXD (ATPase) domain, which is
given by the amino acid sequence from 180 to 376 and contains
an aspartic acid (D)–glutamate (E) motif (X is any amino acid,
and D is glutamate). It contacts DNA at 17–18 base pairs
(bp) from the dyad axis; the two other domains are called
the HAND domain (amino acid sequence from 745 to 882),
which makes contacts at 60–62 bp, and, finally, the so-called
SANT/SLIDE domain (amino acid sequences from 882 to
941 and from 977 to 1069, respectively), making contact at
92 bp [4]. These motor proteins have thus, in addition to the
ATPase domain DEXD, two other recognition domains which

bind to nucleosomal and extranucleosomal DNA. Hydrolysis
of ATP induces conformational changes in the remodeler
which pull the extranucleosomal DNA into the nucleosome,
generating loops [5,6]. Unidirectional diffusion of the loop
consequently repositions the nucleosome [7,8]. Concerning
ACF, recent research has shown that it acts as a dimeric,
processive motor by which nucleosomes are center positioned
with respect to DNA strands [5,9–12]. In vivo, ACF, like other
ISWIs, thus represses the transcription of genes by favoring the
formation of regularly positioned nucleosomal arrays [13–15].
The catalytic subunits SNF2h of human ACF (hACF) that
contact the nucleosome at opposing ends, i.e., the binding of
the ATPase domains of SNF2h at the superhelix location (SHL)
2 (−2) located 17–18 bp (−17, −18 bp) from the dyad axis, are
explicitly visualized in cryoelectron microscopy studies [10].
Electron paramagnetic spin resonance studies show that in
the (unloaded) apo and the ADP states one of the two H4
tails is bound by one catalytic subunit SNF2h of hACF. The
latter study combined with the fact that, in the apo and ADP
states, the Hill coefficient takes a value of ≈2, thus indicating
cooperativity, for the measured Cy3 fluorescence intensity
(depending on the binding of SNF2h to the nucleosome) as a
function of the SNF2h concentration, leads to the picture that
one motor is attached to SHL 2 or −2, while the other motor
serves as an anchor to stabilize the complex. The superhelix
location refers to the position of the major groove of the DNA
contacting the nucleosome counted from the dyad axis (SHL
0) in forward and backward directions, up to ±7.

Initiation of remodeling by hACF. Initiation of remodeling
has recently been proposed to occur via a kinetic proofreading
scheme [12,16,17]. Generally, kinetic proofreading scenarios
play a role in molecular recognition systems to achieve high
precision [18,19]. For ISWI/ACF, such a scenario has been
put forward by Narlikar [12] based on single-molecule experi-
ments in her group [9,11]. After binding of the ACF remodeler
to the nucleosome [11], an ATP-dependent step appears before
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FIG. 1. (Color online) Schematic representation of the ACF
remodeler, which acts as a dimeric motor. Each motor consists of
an ATPase domain which binds ATP and a SANT-SLIDE domain
which contacts extranucleosomal DNA. One motor loads ATP while
the other motor remains in the (unloaded) apo state. The ATP-carrying
motor binds the nucleosome tightly, and the second motor, weakly
bound, serves as an anchor [5,10]. Communication between the two
motors is required for a proper chromatin remodeling process. SHL
indicates the approximate location of the binding site with respect to
the histone octamer; see the text.

the actual remodeling of the nucleosome starts [11,12]. The
recognition step involving binding to the unacetylated histone
H4 tail and subsequent hydrolysis of ATP lead to an activation
step according to the kinetic proofreading scheme [12,16] in
chromatin remodeling by ISWI/ACF. Taking into account a
second recognition step involving extranucleosomal DNA, an
additional kinetic proofreading step is proposed to occur in
ISWI/ACF remodeling [17].

Actual remodeling by hACF. Concerning the known ex-
perimental details of the actual remodeling by hACF, we
consider gel mobility shift and Förster Resonance Energy
Transfer (FRET) experiments to be important. Gel mobility
shift experiments point to the existence of intermediates rather
than continuous nucleosome remodeling towards the center
of the DNA strand [9]. The gel electrophoretic mobility
indicates that the intermediates differ 13 bp in linker length,
i.e., 0N78,13N65, . . . The lNm state represents l bp linker
DNA on the “left” side (entry site) and m linker DNA on the
“right” side (exit site).

The actual remodeling dynamics are based on FRET
experiments that translate the energy transfer between the
donor dye on the DNA sequence and the acceptor dye on
the H4 tail of the nucleosome into a proper value of the DNA
linker length [9]. These experiments are used to determine the
transition rates between the intermediates. Using nucleosomes
with different flanking lengths, a plot of the natural log of the
rate constant ln(k), proportional to the activation energy of the
reaction, versus their DNA flanking length is a straight line
up to 60 bp linker length [9]. The reason for this phenomenon
is that there appears an optimal range in which the remodeler
can operate due to the concerted action between the ATPase
unit, located at SHL-2 or SHL2, and the SANT-SLIDE domain
that contacts the extranucleosomal DNA [20]. In this optimal
range, from 60 up to 100 bp, the activation energy no longer
changes with the linker length.

The FRET time traces further reveal kinetic pauses during
active remodeling [11], possibly related to ATP binding events.
The FRET time traces show kinetic steps, or translocation
steps, of 7 bp, 3 bp, and again 3 bp between the kinetic pauses,
summing up to the 13 bp translocation per ATP hydrolysis
event in the case of ACF, and therefore they are consistent with
the experimentally observed intermediates 0N78,13N65, . . .

in gel mobility shift experiments. It is important to note that,
experimentally, the kinetic steps, as well as the kinetic pauses,
depend on the ATP concentration [11]. The experimental
systems considered here are a gel mobility shift experiment
with 10 μM ATP and a FRET experiment with 2 μM ATP
[9,11]. The ACF concentrations are 25 and 6 nM, respectively.

Our approach. In this paper we address the motor action of
the chromatin remodeler ACF and its capability of positioning
a single nucleosome. We introduce two models: a single-
motor model and a two-motor model. This allows us to
build different levels of detail into the description. In the
one-motor model, we use experimental information from
gel mobility shift and FRET experiments to predict velocity
profiles, effective diffusion constants, and the probabilities of
the intermediates. In the two-motor model, we additionally
link the synchronization of the motors to the experimentally
observed kinetic pauses of the remodeling complexes, which
allows a more detailed analysis of the FRET time traces.

We first discuss a master equation of the one-motor
model. Conformational changes between the ATPase and
extranucleosomal DNA binding domain are expected to pull
in linker DNA from either side (entry and exit sites), resulting
in the idea that one motor is translocating to the left and the
other to the right [5], although more experimental evidence
is called for. This idea of the alternating action between the
two ACF motors and the dependence of the ATP-hydrolysis
rate on the DNA flanking length [20], which leads to a
competition between back and forward movement of the
nucleosome [5,9], is in this simple first model properly
translated into the length dependence of the transition rates.
We took the experimentally determined transition rates from
[9,11]. Second, the communication between the two motors is
considered using an extended master equation which models
explicit motor states. The idea of ATP loading as a means to
account for the observed kinetic pauses and sampling between
the two motors consequently enters the description.

This paper is organized as follows: we start by writing down
the master equation for the one- and two-motor models and
give a solution method for these first-order partial differential
equations. The computed motor velocity profiles and the
effective diffusion constants for the two models are compared
with experimental data. We finally discuss the effects of
different parametrizations of the two-motor model.

II. TWO NUCLEOSOME REPOSITIONING MODELS

A. The effective one-motor model

As a starting point for our analysis we assume that a nucle-
osome in a solution can be in one of three states. The first state
corresponds to a free nucleosome, not bound to the remodeler
(N + R). In the second state, the nucleosome is bound to the
remodeler, forming a nucleosome-remodeler complex (NR).
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FIG. 2. The small circles of each row represent the nucleosomal
intermediates with different extranucleosomal length (n = 1, . . . ,7).
The rows refer to N + R, NR, and NR∗ (see text). The proper rates
between the multiple states are indicated by arrows.

Finally, the third state refers to partially loosened DNA around
the nucleosome due to the remodeler’s consumption of one
ATP (NR∗). In this loosened state, successive intermediates
are generated by the successive movement of 13 ± 3 bp of
DNA across the histone octamer, thereby consuming one ATP
molecule per remodeling event [9].

More specifically, we consider a three-state model
with seven different intermediates with respect to the
DNA (see Fig. 2). The seven repositioned nucleosomes
are (0N78,13N65,26N52,39N39,52N26,65N13, and 78N0;
n = 1, . . . ,7), as experimentally verified. We represent the
on rate from N + R to NR as kc, the off rate from NR

and NR∗ to N + R as k′
c, the rate from NR to NR∗ as kI

(activation step), and the extranucleosomal DNA-dependent
remodeling rates in the direction n → n + 1 (n → n − 1)
as kn(k′

n). Further, if Pk(n,t), k = 1,2,3, are respectively the
probabilities of the nucleosome-remodeler complex occupying
the states N + R, NR, and NR∗, with n referring to the
position of the nucleosome along the DNA strand, then the
master equation can be written as

∂P1(n,t)

∂t
= −kcP1(n,t) + k′

cP2(n,t) + k′
cP3(n,t), (1)

∂P2(n,t)

∂t
= kcP1(n,t) − (kI + k′

c)P2(n,t), (2)

∂P3(n,t)

∂t
= kIP2(n,t) − (k′

c + k′
n + kn)P3(n,t)

+ kn−1P3(n − 1,t) + k′
n+1P3(n + 1,t). (3)

Our three-state model with appropriate rates is schematically
depicted in Fig. 2.

According to Michealis-Menten kinetics, we consider the
following enzymatic reaction scheme for the DNA transloca-
tion step:

NnR
∗ + ATP ⇀↽ NnR

∗ − ATP → Nn±1R
∗ + ADP + P.

Here NnR
∗ represents the nucleosome-remodeler complex,

where the nucleosome is in the loosened intermediate state
n without ATP bound, and NnR

∗ − ATP reflects the same
complex with ATP bound. The reaction rate r of the formation
of the product [21], here the remodeling step, is given by

r = Vmax
[ATP]

[ATP] + Km

, (4)

TABLE I. The computed values of the model parameter k0 as a
function of the ATP concentration.

[ATP] (μM) k0 (min−1)

2 0.013
10 0.057
20 0.098
200 0.27
2000 0.33

where Vmax is the maximal speed of the reaction, [ATP] is the
ATP concentration, and Km is the Michaelis constant [22].

Using the Arrhenius equation, the maximal reaction speed
Vmax is proportional to e−Ea/kT , where Ea is the activation
energy. If the remodeler concentration is saturated, then this
concentration must not be taken into account. As explained in
the Introduction, experiments reveal that the activation energy
varies linearly with the DNA flanking length up to 60 bp for
ACF. As a consequence, the transition rates are linker length
dependent too. From 60 up to ≈100 bp, the transition rates
are assumed to be constant but are expected to decrease to
zero at a DNA flanking length of ≈160 bp [20] due to loss of
contact of the DEXD domain at the SHL-2 or SHL2 location
(see Fig. 1 and [20]). The same accounts for values of the DNA
flanking length lower than 20 bp. Analytically, the transition
rate dependence takes then the following form:

kn =

⎧⎪⎨
⎪⎩

0, 0 < � < �min,

k0e
a�, �min � � � �max,

k0e
a�max , �max < � � �c .

(5)

The experimentally estimated parameter values for an ATP
concentration of 10 μM (gel mobility shift experiment) are
k0 = 0.057/min, a = 0.077 bp−1, �min = 20 bp, �max = 60 bp
and �c = 100 bp. Concerning the remaining rates for an ATP
concentration of 10 μM, we choose kc = 12/min, k′

c = 8/min,
and kI = 27/min (see [11,12] and Table II).

From the experimental data of the gel mobility shift
experiment, Eq. (4) allows us to compute kn for different
ATP concentrations. It suffices to calculate k0([ATP]) (see
Table I) because the parameter a is independent of the ATP
concentration. The Michealis-Menten constant is taken to be
50 μM, according to the previous experiment.

The master equation is a system of coupled linear partial
differential equations of first order which can be written in the
form

d

dt
�P = M �P , (6)

where �P = [Pk(n,t)]T, with (k,n) = (3,7) being a (21 × 1)
vector and M being a (21 × 21) rate matrix for n = 7.
Substitution of �P = C �PN in Eq. (6), with C being the
invertible matrix of eigenvectors of M, transforms the system
into a set of uncoupled linear partial differential equations, i.e.,

d

dt
�PN = D �PN, (7)
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where D is the diagonal matrix of eigenvalues λi for i =
k · n = 1, . . . ,21 and �PN is the vector of normal modes.
The general solution is then obtained in terms of a linear
combination of normal modes,

Pi(t) =
No∑
j=1

uij cj e
λj t , (8)

where Pi(t) is component i of vector �P , No is the length of
vector �P , uij are the components of matrix C, and cj are the
constants referring to the initial condition.

B. The two-motor model

The effective translocation steps with rate kn (k′
n) in

Fig. 2 consist of translocation and ATP-loading steps. In
order to investigate the separate effects of these steps, we
split the previous nucleosome-remodeler state NR∗ (0N78,
13N65, . . .) into four explicit motor states, i.e., (ATP, 0),
(ADP, 0), (0, ATP), and (0, ADP). The (ATP, 0) and (ADP,
0) states reflect that the adenosine triphosphate and adenosine
diphosphate are bound at the ATPase unit of motor 1 while
the other motor is in the apo state (unloaded state) and vice
versa for the other two states. We presume that the two
motors translocate DNA in opposite directions. Considering
transitions between these different motor states, we let the
motors communicate among each other (see Fig. 3).

Hydrolysis of ATP (ATP → ADP) with the subsequent
translocation step is depicted by large black arrows in Fig. 3
labeled with rate kn or k′

n. We clearly see that the ATP
hydrolysis at the ATPase unit of motor 1 translocates in the
opposite direction compared to motor 2. In order to include
the dependence of the rate of ATP hydrolysis with subsequent
translocation steps on the extranucleosomal DNA length, we
assume once again Eq. (5), but with a modified k0 value. The
parameter a reflects the intrinsic flanking-length dependence
and should be unchanged.

The dark gray arrows with rate kp refer to the ATP-loading
phase, i.e., the dissociation of ADP with the binding of a new
ATP molecule to the ATPase unit of motor 1 or 2. We include
also transitions between (ATP, 0) and (0, ATP) [blue (light
gray) arrows with rate ku], which represent unbinding of a
nonhydrolyzed ATP molecule belonging to the ATPase unit of
motor 1 (2) and subsequent binding of an ATP molecule at the
ATPase unit of motor 2 (1). These stages reflect ATP loading,
presumably related to the kinetic pausing of the remodeler.

In view of a highly processive motor (with a low k′
c

value) and to gain insight into the effects of ATP loading and
translocation separately, it suffices to restrict our description to
the active remodeling phase together with the N + R and NR

states of the end-positioned nucleosome 0N78 (see Fig. 3).
Because we neglect the dissociation of the remodeler in the
NR∗ states, the N + R and NR states of the 0N78 state
will only induce a time delay. These assumptions reduce the
number of possible states (28 states). The extended master
equation then reads:

∂P1(t)

∂t
= −kcP1(t) + k′

cP2(t), (9)

∂P2(t)

∂t
= kcP1(t) − (kI + k′

c)P2(t), (10)
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FIG. 3. (Color online) The presumed motor states (1, 2) of the
dimeric ACF remodeler with the transitions among them. The big
black arrows denoted by kn and k′

n reflect the translocation step using
ATP hydrolysis, i.e., the transition from the (ATP, 0) to (ADP, 0) state
for motor 1. The same is shown for motor 2, but with the reverse
translocation step. The ATP-loading step is split into two distinct
transitions. The first type of transition is the arrows with rate kp

(black and dark gray), which represent the reloading from an ADP to
an ATP state after the translocation step. The second type is depicted
by arrows with rate ku [blue (light gray)], which reflect the unbinding
of the ATP molecule at motor 1 and binding of an ATP molecule to
motor 2 or vice versa.

∂P3(n,1,t)

∂t
= −(kn + ku)P3(n,1,t)

+ kp[P3(n,2,t) + P3(n,4,t)] + kuP3(n,3,t)

+ kIP2(t)δn,1, (11)

∂P3(n,2,t)

∂t
= −2kpP3(n,2,t) + kn−1P3(n− 1,1,t) (n �= 1),

(12)

∂P3(n,3,t)

∂t
= −(k′

n + ku)P3(n,3,t)

+ kp[P3(n,2,t) + P3(n,4,t)] + kuP3(n,1,t),

(13)
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∂P3(n,4,t)

∂t
= −2kpP3(n,4,t)

+ k′
n+1P3(n + 1,4,t) (n �= 7), (14)

with the initial condition P1(t = 0) = 1. P1(t) and P2(t)
represent the N + R and the NR states of the end-positioned
nucleosome, respectively. P3(n,M,t) reflects the loosened
state NR∗, with n = 1, . . . ,7 being the previously discussed
intermediates and M = 1, . . . ,4 being the four motor states,
i.e., (ATP, 0), (ADP, 0), (0, ATP) and (0, ADP), in that order.
Here δn,1 = 1 when n = 1 and 0 otherwise. Furthermore,
P3(1,2,t) = P3(7,4,t) = 0 due to the initial condition P1(t =
0) = 1. The extended master equation will be solved with the
same mathematical technique as discussed above.

III. RESULTS AND DISCUSSION

A. The effective one-motor model

In order to examine the remodeling process, we consider
the mononucleosomes initially in one of the seven free
nucleosome states with different flanking DNA lengths, i.e.,
0N78, 13N65, 26N52, 39N39, 52N26, 65N13, and 78N0.
In the vector �P , this corresponds to setting the component
P (n,t = 0) = 1 for each n ∈ {1, . . . ,7} and P (m,t = 0) =
0 otherwise for the remaining m �= n. The time evolution
of the probability distribution P (n,t) is shown in Fig. 4.
Irrespective of the initial condition (only 0N78 and 13N65 are
shown in Fig. 4), the steady-state probability of P (n = 4,t)
(39N39) reaches nearly 60%, indicating that the remodeler
produces mainly center-positioned nucleosomes in all cases,
as experimentally observed [11,20]. The transition times to
reach the steady-state condition obviously depend on the on
rate kc, off rate k′

c, and the activation step rate kI .
During the remodeling process, the motor velocity v along

the DNA chain is computed from

v = d

dt

(
7∑

n=1

P (n,t)xn

)
. (15)

Here, xn is the nucleosome-remodeler position with respect
to the DNA. The distance xn = 0,13, . . . reflects the 0N78,
13N65, . . . state. For end-positioned nucleosomes (0N78 and
78N0), the nucleosome sliding velocity reaches a maximum
of ≈0.5 bp/s at t ≈ 20 s (at an ATP concentration of 10 μM)
to converge to zero velocity when the nucleosome is center
positioned with respect to the DNA chain [see Fig. 5(a)]. The
steady-state velocity for t → ∞ is therefore zero [23]. An
initially centered nucleosome stays, of course, in the center
and has no sliding velocity. The repositioning time from
an end-positioned nucleosome 0N78 to a nearly completely
remodeled state (37N41, 37 bp flanking DNA, i.e., 95% of
39 bp) of 200 s is in good agreement with the gel mobility shift
experiment [9], although it is a little bit slower. This effective
one-motor model is merely an extension (with a binding step
and an activation step) of the model proposed in the gel
mobility shift experiment. Concerning the FRET experiment
at 2 μM ATP, we obtain an average velocity of ≈0.005 bp/s,
according to the previous 95% of 39 bp definition. Once more,

(a)

(b)

FIG. 4. (Color online) The probability distribution P (n,t) of
the effective one-motor model finding the mononucleosome in
repositioned state n after time t , with the initial conditions (a) 0N78
and (b) 13N65. The ATP concentration is in both cases equal to
10 μM ATP.

this theoretical result is clearly slower than the experimental
value of ≈0.05–0.1 bp/s [11].

Comparing the upper limit of 8/min [12] for k′
c to the

5/min for the initial translocation steps k1 and k2 leads to the
prediction that the ACF motor will fall off before complete
remodeling, as experimentally observed in a chase experiment
[9]. On the contrary, more recent experiments [11] point to a
highly processive motor, i.e., a motor capable of finishing the
complete remodeling before falling off. Lowering k′

c to 1/min,
which improves the processivity of the motor, increases, at 2
μM ATP, the average velocity from ≈0.005 to ≈0.05 bp/s. The
repositioning time decreases from ≈200 to ≈100 s in the case
of 10 μM ATP. Consequently, lowering the value of the off rate
k′
c to 1/min clearly improves the agreement with experiments.

The effective diffusion constant [24]

Deff =
⎡
⎣ 7∑

n=1

P (n,t)x2
n −

(
7∑

n=1

P (n,t)xn

)2
⎤
⎦/

(2t) (16)
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(a)

(b)

effDD (bp²/s)

FIG. 5. (Color online) (a) The motor velocity, or the nucleosome
sliding velocity, for the effective one-motor model. The nucleosome
sliding velocity reaches a maximum at t ≈ 10 s and decreases to zero
velocity when the nucleosome is center repositioned with respect to
the DNA. (b) The effective diffusion constant for the different initial
positions. The ATP concentration is in both cases equal to 10 μM
ATP.

reaches a maximal value of 1–2 bp2/s [see Fig. 5(b)]. We
introduce the Péclet number as a measure of linear transport
compared to diffusion,

Pe = v�

Deff
. (17)

Here, v is the expected velocity, as defined in Eq. (15), and
� is a characteristic length scale of the system. In our model
the Péclet number reaches zero for the time t → ∞, indicating
that the velocity profiles decrease more rapidly to zero than the
effective diffusion constant. Large position fluctuations can
then be expected at steady state, which are indeed observed in
the experimental FRET studies [11] due to the bidirectional
and processive movement of ACF.

Finally, for comparison with the extended two-motor model
in the next section, we restrict our calculation for different
ATP-concentrations to the initial condition 0N78 and set k′

c =
1/min (high processivity), using the values of Table I. The

(a)

(b)

Deff(bp²/s)

eff

FIG. 6. (Color online) (a) The motor velocity, or nucleosome
sliding velocity, for the effective one-motor model with an initially
end-positioned 0N78 nucleosome (and k′

c = 1/min) at different ATP
concentrations. The nucleosome sliding velocity reaches a maximum
at t ≈ 10s to decrease to zero velocity, when the nucleosome is
center repositioned with respect to the DNA. (b) The corresponding
effective diffusion constants for the one-motor model at different ATP
concentrations.

computed velocity profiles and the effective diffusion constant
are shown in Fig. 6.

B. Two-motor model

We focus now on the extended two-motor model (see
Fig. 3). The model rates ku, kp, and kn are related to the
experimental kinetic pauses (assuming that the kinetic pauses
reflect ATP-loading time) and translocation steps [11]. We
recall kn = k0e

a� [Eq. (5)], as already mentioned, with the
intrinsic length dependence a = 0.077 bp−1 and assume the
same binding and unbinding rate of ATP and ADP, i.e.,
ku = kp.
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Concerning the translocation steps, we let the 13 bp
intermediates in our model correspond to the sum of the
kinetic steps of 7 bp, 3 bp, and again 3 bp (between kinetic
pauses), experimentally observed in the initial remodeling
of the 0N78 (n = 1) nucleosome [11]. The step time τtr

per intermediate is consequently a simple summation of the
individual ATP-dependent kinetic step times, and k1 = 1/τtr .
The parameter k0, independent of the DNA flanking length,
can then be determined for all intermediates.

Concerning the kinetic pauses, we presume an effective
pause τk , representing the ATP-loading step, as a sum of
the experimentally observed first, second, and third kinetic
pauses [11]. In the motor state (ADP, 0) (of the intermediate
13N65), we expect a 50% chance to make the direct transition
(ADP, 0) → (ATP, 0) and a 50% chance to make the
transition (ADP, 0) → (0, ATP), followed by the sampling step
(0, ATP) → (ATP, 0). This yields the expression

3

2

1

kp

= τk, (18)

which links the effective pause τk to the internal motor state
transitions kp and ku. As a consequence, we have kp and ku

for all the intermediates. The values of ku, kp, and k0 used for
several ATP concentrations, as well as the values of the on rate
kc and the activation step kI , which are both ATP dependent
too, are given in Table II [11].

The typical probability density functions of the advanced
two-motor model are similar to the simpler effective one-motor
model at the same ATP concentration (see Figs. 4 and 7),
although a broader distribution of intermediates is obtained
from the two-motor model at steady state. From the probability
density distributions, the velocity profiles and the effective
diffusion constant as a function of the ATP concentration can
again be calculated and are depicted in Fig. 8.

The maximal velocity increases from 0.1 to 5 bp/s as a
function of augmenting ATP concentration (from 2 μM to
2 mM). While the one-motor model uses effective remodeling
rates from normalized Cy3 intensities in FRET studies [9]
and the two-motor model includes experimental kinetic pauses
and translocation steps (thus analyzing the FRET time traces
more in detail), these experimental results independently give

TABLE II. The estimated values of the model parameters k0 and
kp(= ku) as a function of the ATP concentration. The sample values
of 1/twait for 20, 200, and 2000 μM are estimated from [11], and we
set kc = 3

2 (1/twait) and kI = 3(1/twait). The latter values are multiplied
by a factor of 3 (in rough approximation) to obtain a system saturated
in ACF. The waiting time twait for 2 μM is taken from more detailed
waiting time distributions [11], which have an average of ≈50 s for
a rather high ACF concentration of 16 nM. Concerning the values of
k0 and kp , we estimated these values from the experimental graphs
of [11].

[ATP] (μM) k0 (min−1) kp (s−1) kc (s−1) kI (s−1)

2 0.02 0.02 0.03 0.06
10 0.15 0.1 0.2 0.45
20 0.3 0.2 0.45 0.9
200 0.5 0.4 0.7 1.4
2000 0.6 0.6 1.0 2.1

FIG. 7. (Color online) The probability density function of the
intermediates as a function of time, computed from the advanced
two-motor model and thus starting from an initially end-positioned
0N78 nucleosome. The ATP concentration corresponds to 2 μM.

rise to qualitatively similar, acceptable velocity profiles and
effective diffusion constants. We may therefore conclude that
our assumptions in the two-motor model, describing a more
detailed communication scheme between the two motors and
explaining the phenomenon of kinetic pauses as ATP-loading
periods, are reasonable.

Both models include an ATP-dependent binding step of
ACF, as experimentally observed [11], which renders the
description more realistic. It remains to be said that, at high
ATP concentrations, the expected velocities of the effective
one-motor model are quantitatively higher than those of the
extended two-motor model. At low ATP concentrations (up
to 20 μM ATP), these differences are negligible. The average
velocity therefore, calculated according to the same definition
as in the one-motor model, approximates 0.05 bp/s for a
low ATP concentration of 2 μM (the long-space-dashed green
bottom curve in the Fig. 8 or the only curve in the inset), which
reflects rather well the obtained ≈0.05–0.1 bp/s remodeling
speed, derived from the experimental FRET study at the same
ATP concentration [11]. The same accounts for the gel mobility
shift experiment at 10 μM ATP. In the ATP concentration
interval from 2 μM to 2 mM, the effective diffusion constant
ranges from 0.4 to 15 bp2/s at the maximal remodeling
velocity. Similar effective diffusion constants are obtained
when comparing the one- and two-motor models at the same
ATP concentration. However, at high ATP concentrations, like
the velocity profiles, the effective diffusion constants of the
one-motor model are quantitatively higher than those of the
two-motor model.

An interesting point is that the blue (light gray) arrows
with rate ku (see Fig. 3), the unbinding of ATP from motor
1 and the binding of ATP to motor 2, reflect the sampling
between the two motors [10]. Statistically, there is a 50%
chance that the ATP molecule is bound to the wrong motor
in view of centering the nucleosome with respect to DNA.
However, the ATP-hydrolysis rate towards the short flanking
DNA (e.g., transition rate k′

2 ≈ 0.1/min) is low enough that the
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(a)

(b)

(bp²/s)D

eff

eff

FIG. 8. (Color online) (a) The motor velocity, or the nucleosome
sliding velocity, for the advanced two-motor model with an initially
end-positioned 0N78 nucleosome at different ATP concentrations.
The nucleosome sliding velocity reaches a maximum at t ≈ 10–20 s
and decreases to zero velocity when the nucleosome is center
repositioned with respect to the DNA. (b) The corresponding
effective diffusion constants for the two-motor model at different
ATP concentrations.

ATP molecule unbinds and binds to the ATPase unit of the other
motor with a high probability. The ATP-hydrolysis rate of the
motor towards the longer flanking DNA (e.g., transition rate
k1 ≈ 5/min) is fast, so it is probable that the translocation step
is actually done. Neglecting the blue (light gray) arrows with
rate ku or setting the corresponding transition rates to a very
low value results in nucleosome-remodeler complexes which
are not center positioned with the highest probability at steady
state (see Fig. 9). Mathematically, we keep the rate kp fixed
(the same value as in Table II) and use the rate ku → 0 in the
scheme of the two-motor model. Thus, this model emphasizes
the fact that, after arriving at an ADP state, not only is the next
ATP loading to the ATPase unit of either motor (the dark gray
arrows with transition rates kp) important, but a subsequent
sampling by binding and unbinding ATP molecules between

FIG. 9. (Color online) When the sampling between the two
motors is turned off (the value of ku is reduced by a factor of 100),
the probability density function of the advanced two-motor model
does not produce center-positioned nucleosomes with the highest
probability at steady state. The ATP concentration corresponds to
20 μM.

the ATPase units of the motors [blue (light gray) arrows with
transition rate ku] is required too.

C. Further insights from a different model parametrization

More rigorous computations of the on rate kc and of the
activation step rate kI reveal interesting insights about the
processivity of the ACF motor and the robustness of both
models. According to Michealis-Menten kinetics of the ACF
binding followed by an ATP-dependent activation step, the
inverse of the waiting time 1/twait is then given by

1/twait = α(ATP)
[ACF]

[ACF] + KACF

[ATP]

[ATP] + KATP
. (19)

After curve fitting of this formula with experimental data
points [11], KACF ≈ 4.8 μM and KATP ≈ 117 μM. The pro-
portionality constant α ≈ 0.7 s−1 for the high concentrations
of [ATP] = 200 and 2000 μM. For low ATP concentrations
α ≈ 0.56 with [ATP] = 20 μM and α ≈ 1.3 with [ATP] =
2μM. These minor deviations in α are due to the fact that KACF

is ATP dependent too (an ATP-dependent ACF binding step),
but we lack the experimental data for the ATP dependence of
KACF.

The activation step rate kI = 1/〈tlag〉 with the average lag
time 〈tlag〉 and the binding rate kc = 1/〈tbind〉 with the average
binding time 〈tbind〉 are calculated from the waiting-time
distributions of the experimental systems for [ACF] = 4 nM
and [ATP] = 2 and 20 μM [11]. The lag time is only ATP
dependent, and the values for high ATP concentrations are
predicted by

1/〈tlag〉 = A
[ATP]

[ATP] + KATP
, (20)
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TABLE III. The model parameters kc = 1/〈tbind〉 and kI =
1/〈tlag〉 as a function of the ATP concentration, with [ACF] = 4 nM
and a saturated system of [ACF] = 30 nM from more rigorous
approximations.

[ATP] kc (s−1) kI

(μM) [ACF] = 4 nM [ACF] = 30 nM (s−1)

2 0.024 0.1 0.023
20 0.06 0.26 0.1
200 0.36 2.7 0.44
2000 0.55 3.9 0.66

with a fitted value of A ≈ 0.7 s−1. Because the waiting time is
the sum of the binding and the lag times, i.e., twait = tlag + tbind,
Eq. (19) permits the computation of kc = 1/〈tbind〉. All values
are gathered in Table III.

Concerning the effective one-motor model, in the case of
our referred experimental systems, these more rigorous kc and
kI approximations show once again that the k′

c upper limit of

(a)

(b)

FIG. 10. (Color online) The motor velocity, or the nucleosome
sliding velocity, for the advanced two-motor model with an initially
end-positioned 0N78 nucleosome at different ATP concentrations,
using Table III, with (a) [ACF] = 4 nM and (b) [ACF] = 30 nM.

8/min is too high and point to a highly processive motor with
k′
c values even lower than 1/min. A high processivity supports

our two-motor model, which does not include the dissociation
of the remodeler while actively translocating. Nevertheless,
the velocity profiles with the more rigorous calculations of
kc and kI are qualitatively similar to profiles generated with
the rough approximations of kc and kI (see Fig. 10), which
emphasizes the robustness of the advanced two-motor model
against model parameter estimations. Quantitatively, however,
these velocity profiles are lower compared to the case of the
rough approximations for kc and kI .

IV. CONCLUSION

We solved analytically a master equation of an effective
one-motor model for the repositioning of a single nucleosome,
motivated by recent gel mobility shift and FRET experiments
[10,12]. After adding ACF and ATP to the nucleosomes, this
model predicts that the end-positioned nucleosomes reach a
maximal sliding velocity of 0.5 bp/s for an ATP concentration
of 10 μM. Starting from an end-positioned nucleosome, a
repositioning time of ≈100–200s corresponds rather well to
the gel mobility shift experiment. The one-motor model is also
in good agreement with the FRET experiment at a low ATP
concentration of 2 μM. The nucleosome sliding velocity is
computed for different ATP concentrations. The intermediate
with equal DNA flanking lengths on either side has the highest
probability.

We next considered an extended two-motor model that
splits the effective translocation step of the one-motor model
into an ATP hydrolysis step with subsequent translocation
and an effective kinetic pause during which the remodeler
loads a new ATP molecule. A comparison of this two-motor
model with the previous effective one-motor model reveals
qualitatively similar results for velocity profiles, effective
diffusion constants, and probabilities of the intermediates from
independent experimental data, i.e., the measured time of
the translocation step and the kinetic pause on the one hand
and the effective transition rates between intermediates on
the other hand. Quantitatively, we obtain only minor intrinsic
differences in computed velocity and effective diffusion con-
stants between the two models. Both models are in reasonable
agreement with experiments. Therefore, the advanced two-
motor model has allowed us to lift the “black box” of the
remodeling mechanism employed by ACF a little bit. The
description of a detailed communication scheme between the
motors and the possible explanation for the phenomenon of
kinetic pauses are the benefits of this two-motor model. For the
two-motor model to predict center-positioned nucleosomes,
the sampling step between the motors is necessary, indicating
that the unbinding and binding of ATP molecules at the ATPase
unit of either motor are required on top of a simple next ATP
binding after the ATP-hydrolysis step. Further remarks and
findings confirm that the upper limit of 8/min for the off rate
is too high, and a highly processive motor with an off rate of
1/min (or less) improves the agreement with experiments.

While the addition of the motor-loading steps allowed us
to make some details of the fueling mechanism of the motors
and their synchronization explicit, our model is still simplistic
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as far as the mechanics of the motor is concerned. Our next
step therefore will be to extend the model by bringing in more
mechanistic details of the remodeling mechanism. For this we
believe the interaction between modeling and single-molecule
experiments to be useful guidance [25]. It should also be kept
in mind that due to their inherent complexity and a current
lack of sufficiently detailed experiments, in particular only a
few low-resolution remodeler structures are available to date

[26], only a few theoretical models for a chromatin remodeler
function exist so far in the literature [27–31].
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