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A detailed stochastic model of single-gene autoregulation is established and its solutions are explored when
mRNA dynamics is fast compared with protein dynamics and in the opposite regime. The model includes all the
sources of randomness that are intrinsic to the autoregulation process and it considers both transcriptional and
post-transcriptional regulation. The time-scale separation allows the derivation of analytic expressions for the
equilibrium distributions of protein and mRNA. These distributions are generally well described in the continuous
approximation, which is used to discuss the qualitative features of the protein equilibrium distributions as a
function of the biological parameters in the fast mRNA regime. The performance of the time-scale approximation
is assessed by comparison with simulations of the full stochastic system, and a good quantitative agreement is
found for a wide range of parameter values. We show that either unimodal or bimodal equilibrium protein
distributions can arise, and we discuss the autoregulation mechanisms associated with bimodality.
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I. INTRODUCTION

The role of stochasticity in cells and microorganisms has
been discussed theoretically since the 1970s [1,2]. Because
cellular processes often rely on chemical reactions, and,
correspondingly, on chance encounters between molecules or
molecular complexes, stochastic effects due to small numbers
are ubiquitous in the cell. In particular, cellular decision
processes, which are of of paramount importance, as they
allow cells to react to the internal and external media, are
based on gene activation and regulation, often depending
on random association and dissociation events. While many
works focus on the limits imposed by stochasticity and the
evolution of noise-minimization strategies [1,3–5], there is
a growing interest in possible functional roles of noise.
Generically, the basic role of randomness in gene expression is
to provide a natural means of generating phenotype variability
across a population, enhancing its capacity to quickly adapt to
fast-changing conditions.

The evolution of experimental molecular biology tech-
niques has made single-cell measurements possible and
brought numerous confirmations of the presence of stochastic
effects in gene expression [6], prompting a renewed interest
in the mechanisms underlying gene expression and regulation,
in general, and, specifically, in the sources of randomness
affecting them. The fact that genes coding for specific proteins
are often present in single copies may introduce considerable
noise. Furthermore, mRNAs are commonly present at low copy
numbers, from a few to a few hundred molecules, and many
proteins also exist at low numbers. Because transcription,
translation, and degradation events are stochastic, finite-size
fluctuations in mRNA and protein numbers become important.
Stochastic effects may suffice to drive long excursions of
a gene’s expression to higher or lower values, producing
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well-defined pulses in single-cell protein abundances over
time and/or multimodal protein expression distributions in a
population. Fluctuations of the biological parameters of the
system under consideration are another source of randomness.
For example, we characterize an active gene by a constant
effective transcription rate, while this rate may depend on
the presence of transcription factors whose concentration
fluctuations induce fluctuations of the effective rate. Exam-
ples of theoretical approaches to these ideas can be found
in [7–9].

The recent development of single-molecule techniques led
to the experimental identification of another, more specific
source of variability in gene expression that accounts for
the heavy-tailed distributions often found in measures of
population distributions of protein and mRNA abundance: both
transcription and translation have been found, in many cases,
to occur in time-localized bursts resulting in a geometrically
distributed number of molecules (see [10–13]).

As experimental evidence of these sources of randomness
accumulates [14,15], the tools of statistical physics are being
called upon for the development of a theoretical understanding
of the underlying mechanics in noisy gene expression. Several
models of the simplest elements of a gene regulatory network
have been studied as stochastic processes that include a repre-
sentation of some of these sources of randomness [7,16–19].
As expected, the stationary solutions of these models may
differ significantly from what one would obtain by simply
adding a noise term to the equations stemming from a
deterministic description. Moreover, the analytic solutions that
can be obtained under certain assumptions were found to be
in agreement with a wide set of experimental data [13].

In this paper, we make use of these tools to study a bottom-
up model for single-gene auto-regulation that includes all the
sources of randomness that are intrinsic to the autoregulation
process and is applicable in general to any protein species,
autoregulated by means either of transcriptional, as it is
commonly considered, or of post-transcriptional regulation.
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Analytic solutions of the general model obtained in two
complementary approximations for the relative timescales of
protein and mRNA dynamics are discussed in terms of the
qualitative features of the equilibrium protein distributions.
The conditions for these approximations to hold are studied
in some detail, and in their expected region of validity we
find good quantitative agreement with the results of stochastic
simulations of the full system. We use the analytic solutions to
discuss the conditions under which single-gene autoregulation
gives rise to bimodal protein distributions. Although these
distributions are often associated in the literature with the
presence of more complex regulation mechanisms, we find
that those conditions are quite general.

The paper is organized as follows. In Sec. II, we establish
the stochastic model. In Sec. III we present the solutions of
the model for the protein and mRNA equilibrium distributions
in the time-scale separation approximations, and we discuss
the qualitative features of the former. In Sec. IV, we study the
validity of the approximations and compare the approximate
analytic solutions with the results of simulations. We conclude
in Sec. V. The six appendices contain technical details which
are too cumbersome to include in the main text.

II. MODEL

We study the cell-level dynamics, and corresponding
population distributions, of a single protein capable of autoreg-
ulation and its mRNA. Protein and mRNA concentrations are
controlled by the balance between production and degradation
events. In transcriptional regulation (see Fig. 1, left arrow),
the regulatory feedback is mediated by binding of a molecule,
whose concentration depends on that of the protein itself, to
the promoter region in the DNA to alter the transcription rate of
its mRNA. This is the most commonly studied mechanism of
gene regulation, but other mechanisms have been reported in
the recent literature that act post-transcription, at the mRNA
rather than at the promoter level [20]. In this translational

FIG. 1. (Color online) Basic structure of the dynamics of a
single protein that autoregulates either (1) transcriptionally or (2)
translationally. Arrows representing protein and mRNA degradation
have been omitted.

regulation scenario, the regulator molecule interacts with the
mRNA to change its rate of protein production (see Fig. 1, right
arrow). In what follows we derive the master equations that
govern protein and mRNA abundances in both these scenarios,
starting with transcriptional regulation.

For concreteness, we consider regulation to be effected by
protein dimers, in agreement with experimental evidence for
some particular proteins [21]. Other choices, such as monomer
binding [16] and a general cooperative binding modeled by a
Hill function [7], have been used in the literature. We assume
the protein and mRNA populations to be noninteracting except
for the fact that proteins dimerize prior to binding to the
promoter. The time scale of promoter reactions (of the order
of seconds) is assumed to be much shorter than that of the
mRNA (of the order of minutes to hours) and protein (usually
of the order of hours), in agreement with data for the typical
time scales of these processes (see, e.g., [3] and [22]). Since
regulation takes place at the DNA level, we need to model
processes at three different levels: the promoter’s (DNA), the
mRNA’s, and the protein’s.

A. DNA level

For promoter dynamics, we essentially follow [23], adapted
to a fully stochastic description. The promoter site is assumed
to bind only one dimer molecule at a time. To avoid
unnecessarily heavy notation, in what follows we assume a
given value of protein copy number n in the cell; probabilities
should accordingly be taken as conditional probabilities given
n. Denote by Pf the free promoter state and by Pb the bound
state of the promoter and a dimer. For each instant t , let p(Pf ,t)
be the probability of the promoter’s being free and p(Pb,t) the
probability of its being bound to a dimer. The evolution of
the probability of the bound state is governed by the master
equation

ṗ(Pb,t | j ) = j k+p(Pf ,t | j ) − k−p(Pb,t | j ), (1)

where k+ and k− are the promoter site binding and unbinding
rates, and j is the number of dimer molecules available for
binding to the promoter. Since at all times the promoter is either
free or bound to a dimer, we also have p(Pf ,t | j ) + p(Pb,t |
j ) = 1.

The number of dimers in the cell as a function of the protein
copy number is given in a rate equation description by (see,
e.g., [24] or Appendix A)

n2(n) = n

2
+ a2 −

√
n + a2, (2)

where a is a dimensionless parameter defined by a ≡√
V/(8kd ), V is the cell’s volume, and kd is the ratio of

the dimerization and undimerization rates. If there are n2(n)
dimers in the cell, the equilibrium probability distribution for
the number j of dimers available through diffusion for binding
to a promoter with characteristic volume VP much smaller than
the cell’s volume V is given by [24]

Pj (λn2(n)), (3)

where Pj (θ ) is the Poisson distribution of mean θ (evaluated
at j ), and λ ≡ VP /V � 1. When writing down (3) we have
taken into account that for typical values of protein (and
protein dimer) diffusion coefficients and dimerization rates
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(see [3], [25], and [26]), dimer formation and dissociation
within the small volume VP occur with a negligible probability
compared to diffusion into and out of VP . Note that λ is
typically very small, since promoters have linear dimensions
in the nanometer range and cells in the micrometer range. As
discussed, for example, in [27], other transport mechanisms
more efficient than three-dimensional diffusion must be at
play that enable the promoter to gauge the actual number
of molecules in the cell. Assuming that transport does not
distinguish between dimers, and that the number of dimers
does not influence the transport of a single dimer (essentially,
that dimers are independent regarding transport, as is the case
for diffusion), the distribution of dimers in VP is binomial in
general, with an “effective rate of volumes” parameter λ. In
the relevant limit λ � 1 we regain (3).

We now explicitly take into account that the promoter time
scale is much shorter than the protein time scale by assuming
that the distributions p(Pf ,t), p(Pb,t) have time to reach
equilibrium for each fixed value of the number of proteins.
Using the equilibrium dimer number distribution, we have

peq(P ) =
∑
j�0

peq(P | j )Pj (λn2(n)), (4)

with P ∈ {Pf ,Pb}. Solving Eq. (1) in equilibrium (ṗ = 0) and
substituting in (4) leads to

peq(Pf | n) =
∑
j�0

1

1 + kj
Pj (λn2(n)), (5a)

peq(Pb | n) =
∑
j�0

kj

1 + kj
Pj (λn2(n)), (5b)

where we have introduced the dimensionless parameter k ≡
k+/k− and we now emphasize the dependence on protein copy
number n.

B. mRNA and protein levels

The production of mRNA and protein molecules in the
cell has been found, in many cases, to occur in sharp
geometrical bursts [10–13]. Although the concept of bursts and
the mechanisms underlying them are still open to discussion
(see, e.g., [28] and [29], a basic description stems from two
simple ideas. First, if transcription and translation events are
widely spaced compared to their duration, it is reasonable
to speak of burst events. Second, the geometric distribution
relates to the number of consecutive “heads” in the throwing
of a (generally biased) coin; thus, if during a burst event
there is a fixed probability that another molecule will be
produced, a geometrically distributed number of molecules
results. A major achievement of this burst description is that
the resulting predicted form of unregulated protein expression
distributions [7,30] is remarkably simple and fits an impressive
number of experimental distributions measured for yeast
populations [13]. We adopt here an approach in which bursts
are formulated in a stochastic framework both for transcription
and for translation.

Owing to the time-scale separation between promoter and
mRNA/protein dynamics, for transcriptional regulation the

latter are described in chemical reaction notation by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∅
βmf (n)−−−→ μmm,

m
δm−→ ∅,

m
βp−→ m + μpp,

p
δp−→ ∅.

(6)

Here m is the mRNA and p is the protein, while n stands for
the protein copy number. f is the regulation function, such that

f (n) =
∑
j�0

1 + ρkj

1 + kj
Pj (λn2(n)). (7)

Thus, βm is the transcription rate when the promoter is free,
and ρβm is the transcription rate when the promoter is bound to
a dimer; the protein exhibits negative autoregulation (autoinhi-
bition) if ρ < 1 and positive autoregulation (autoactivation) if
ρ > 1; μm is the mean transcriptional burst size. With the burst
scenario in mind, the transcription rates above are to be inter-
preted as the mean rates at which a transcription event takes
place; this event is modeled as the instantaneous transcription
of a certain number (drawn from a geometric distribution) of
mRNA molecules. We assume here that regulation affects only
the base transcription rate, and not the burst size. Finally, δm is
the mRNA degradation rate. Similar definitions stand for the
protein parameters (with βp the translation rate, interpreted
as the rate at which a single mRNA molecule initiates an
instantaneous translational burst, μp the mean translational
burst size, and δp the protein degradation rate).

It is interesting to see that the time-scale separation for
promoter dynamics allows all details of regulation to be
condensed in the regulation function. Different regulatory
dynamics affecting only the transcription rate and obeying the
same time-scale separation may be modeled in this framework
simply by considering a different form of f (n). Note also that
a useful approximation to the regulation function as defined
by (7) exists if k � 1. If λn2(n) is small, the low j terms of
the sum will dominate; Taylor expansion of the denominator
to lowest order in kj (for kj � 1) and explicit calculation of
the sum lead to

f (n) ≈ 1 + ρkλn2(n)

1 + kλn2(n)
. (8)

If λn2(n) is large, the large j terms dominate, and the
approximation given by (8) remains valid because (1 +
ρkα)/(1 + kα) ≈ ρ for large α. Direct numerical calculation
reveals that (8) is a good approximation overall, even for
moderately large values of k < 1 (see Fig. 2).

Let Ei(θ ) ≡ (θ−1)i−1

θ i be the geometric distribution of mean
θ (evaluated at i), conditioned to nonzero values i � 1 because
a burst of zero molecules has no physical meaning [33]. Let
also pj,n(t) be the joint probability distribution of mRNA and
protein copy numbers (evaluated at mRNA copy number j and
protein copy number n) at time t . Then the master equation
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FIG. 2. (Color online) Approximation (8) for the regulation
function. We fixed λ = 10−2, ρ = 10, a = 102 for a typical example.
Bottom curves, k = 10−2; top curves, k = 0.5.

for process (6) reads

ṗj,n(t)=
⎡
⎣βmf (n)

∑
i�1

Ei(μm)
(
E−i

m − 1
) + δm(Em − 1)j

+ βpj
∑
i�1

Ei(μp)
(
E−i

p − 1
) + δp(Ep − 1)n

⎤
⎦pj,n(t),

(9)

where we have made use of the “step operators” Em, Ep,
defined by

Ei
mgj,n(t) = gj+i,n(t),

Ei
pgj,n(t) = gj,n+i(t),

(10)

for any function g depending on the mRNA copy number j ,
protein copy number n, and time t . With this notation, each
term of the sum in the first term on the right-hand side of (9)
stands for the creation of i mRNA molecules through a burst
of size i, with bursts of arbitrary size occurring at rate βmf (n).
The second term represents the degradation of one mRNA
molecule, occurring at rate δmj . Each term of the sum in the
third term on the right-hand side stands for the creation of
i protein molecules through a burst of size i, with bursts of
arbitrary size occurring at rate βpj . Finally, the last term in (9)
represents the degradation of one protein molecule, occurring
at rate δpn.

C. Translational regulation

Consider now the case of translational regulation (Fig. 1,
right arrow). In this case we assume that mRNA production
proceeds through bursts without protein regulation and that the
rate of production of protein bursts in translation is modulated
by a regulation function f̃ (j,n) depending on mRNA and
protein copy numbers and describing an interaction (direct
or indirect) of the protein with its mRNA. Then mRNA and
protein dynamics are described in chemical reaction notation

by ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∅
βm−→ μmm,

m
δm−→ ∅,

m
βpf̃ (j,n)−−−−→ m + μpp,

p
δp−→ ∅.

(11)

The master equation for process (11) then reads

ṗj,n(t) =
[
βm

∑
i�1

Ei(μm)
(
E−i

m − 1
) + δm(Em − 1)j

+βpj
∑
i�1

Ei(μp)
(
E−i

p − 1
)
f̃ (j,n)

+ δp(Ep − 1)n

]
pj,n(t). (12)

III. APPROXIMATE SOLUTIONS FOR THE
EQUILIBRIUM DISTRIBUTIONS

In what follows, n and j always stand for protein and
mRNA copy numbers, respectively. The coupling between
mRNA and protein reactions leads to correlations between
the random variables corresponding to n and j . As a result,
the joint distribution pj,n does not factorize and separate
master equations for n and j do not exist. Studying the
solutions of the master equations (9) and (12) in general
calls for direct numerical simulations of the dynamics or
numerical integration techniques. However, further time-scale
separations between mRNA and protein dynamics may be
explored to simplify the problem. We say that mRNA is fast
(compared to protein) if we can write the joint equilibrium
distribution as

p
eq
j,n = q

eq
j |np

eq
n , (13)

where q
eq
j |n is the equilibrium solution to the master equation

for mRNA with fixed n. This means that mRNA dynamics are
fast enough for a large number of mRNA-only reactions to
take place before an n-changing reaction occurs, so that qj |n
reaches equilibrium and the time spent out of equilibrium is
negligible. Then, by substituting (13) in the appropriate general
master equation and summing over j , we obtain an equation
for p

eq
n independent of j . The physical idea is that for a certain

n the mRNA will essentially sample the distribution q
eq
j |n, and

j -dependent quantities are correspondingly averaged over this
distribution.

Similarly, we say that protein is fast if we may write

p
eq
j,n = p

eq
n|j q

eq
j , (14)

with analogous interpretations. In this case, for each j the
p

eq
n|j distribution is sampled and n-dependent quantities are

averaged over it.
We postpone to Sec. IV the analysis of the conditions under

which such a separation holds as a good approximation and
use it here to write down an equation for p

eq
n or q

eq
n from which

approximate analytic expressions for the stationary solutions
of the master equations (9) and (12) will be derived.
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A. Transcriptional regulation under fast mRNA dynamics

In this section we consider transcriptional regulation for the
case of fast mRNA compared to protein dynamics. We explore
both the discrete scenario and a continuous approximation. It
is convenient in this case to consider fixed n, since fast mRNA
dynamics should allow the mRNA copy number to equilibrate
for each fixed protein copy number. This means that we are
considering the reactions{

∅
βmf (n)−−−→ μmm,

m
δm−→ ∅

(15)

at fixed n. Let qj |n(t) be the distribution of mRNA copy number
(evaluated at j ) at time t , given n. The master equation for this
process has the simple form

q̇j |n(t) =
⎡
⎣βmf (n)

∑
i�1

Ei(μm)
(
E−i

m − 1
)

+ δm(Em − 1)j

⎤
⎦qj |n(t). (16)

Let q
eq
|n be the equilibrium distribution of mRNA copy

number, for each protein copy number n. The mean value
of mRNA corresponding to this distribution can be found to
be (see Appendix B)

〈id〉qeq
|n = μmγmf (n), (17)

where γm = βm/δm, and id is the identity function.
In the protein time scale, we have the reactions{

m
βp−→ m + μpp,

p
δp−→ ∅.

(18)

Let pn(t) be the distribution of the protein copy number
(evaluated at n) at time t . According to (13), the master
equation for this process reads

ṗn(t) =

⎡
⎢⎣ ∑

j � 0,

i � 1

βpEi(μp)
(
E−i

p − 1
)
jq

eq
j |n + δp(Ep− 1)n

⎤
⎥⎦

×pn(t) (19)

=
⎡
⎣rδp

∑
i�1

Ei(μp)
(
E−i

p − 1
)
f (n) + δp(Ep − 1)n

⎤
⎦

×pn(t),

where r ≡ μmγmγp and γp ≡ βp/δp. The parameter r is the
prefactor of the average effective rate of translation burst
events scaled by the degradation rate of the protein, rf (n).
We will see that, together with the average translational burst
size μp, it determines the protein equilibrium distribution in
this approximation.

As expected, when mRNA is fast, protein dynamics de-
pends at each time only on the average mRNA corresponding to
the available protein number n. Specifically, the translation rate
becomes proportional to 〈id〉qeq

|n , which is in turn proportional
to f (n). Through this mechanism, promoter-level regulation

gauges the number of proteins present in the cell at a certain
time. Note also that further details of mRNA dynamics,
including burst-like production, are lost at the level of protein.

Let us consider as well a continuous approximation of
the dynamics. For this we take x ≡ λn as an “approximately
continuous” variable (recall that λ � 1). A continuous master
equation for the distribution p(x,t) of protein “concentration”
x reads (see Appendix C)

ṗ(x,t) = rδp

∫ x

0
f (y)[E(x − y,μ̃p) − δD(x − y)]p(y,t)dy

+ δp ∂x[xp(x,t)], (20)

where E(x,θ ) ≡ (1/θ )e−x/θ is the exponential probability
distribution of mean θ evaluated at x and δD is the Dirac δ.
For simplicity we have chosen to keep the symbol f , such that
f (x) = f (n) for x = λn. The exponential distribution term
accounts for the contribution to p(x,t) due to bursts leading to
concentration x, and the Dirac δ term accounts for bursts away
from x; μ̃p is the rescaled burst size, μ̃p ≡ λμp. The last term
is due to protein degradation.

The equilibrium solution of (20) can be found to be (see
Appendix D)

peq(x) = Ac x−1e−x/μ̃p er
∫ x

c
duf (u)/u, (21)

where the constant Ac depends on the arbitrary constant c and
is determined by normalization.

If we solve Eq. (19) directly in the discrete setting (see
Appendix E), we find the solution

peq
n = rp

eq
0

n

n−1∏
i=1

(
r
f (i)

i
+ μp − 1

μp

)
, (22)

for n � 1, with p
eq
0 determined by normalization.

Generically, the continuous approximations presented
throughout this section are very accurate for burst sizes of
order 10 and higher. It should be noted, however, that very
sharp peaks (with a width of the order of a single molecule)
that arise for zero protein or mRNA in some parameter ranges
are not well captured by the continuous approximation.

The role of the biological parameters in the qualitative
features of the protein distribution is particularly clear in the
continuous setting. To study some of these features, consider
the derivative of the probability distribution given by (21);
concentrations x > 0, where probability peaks correspond to
∂xp

eq(x) = 0, leading to

rμ̃pf (x) = x + μ̃p. (23)

Let us consider the regulation function as given by the
approximation described by (8). In the continuous description
we write

f (x) ≈ 1 + ρkx2(x)

1 + kx2(x)
, (24)

with

x2(x) ≡ λn2(n) = x

2
+ ã2 −

√
x + ã2 (25)

and ã = a/
√

λ. By noting that Eq. (23) is equivalent to a
quartic equation in z = √

x + ã2, it is easy to prove that peq is
at most bimodal (see Appendix F).
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FIG. 3. (Color online) Illustration of the effect of varying the
dimerization parameter ã when bimodality is possible. For low
dimerization (top) there is only a low concentration equilibrium,
and for high dimerization (bottom) there is only a high concentration
equilibrium. Bimodality without a peak at 0 arises only for intermedi-
ate dimerization (middle). Example parameters are r = 5, μ̃p = 0.9,
ρ = 28, k = 10−1, and (top) ã = 50, (middle) ã = 5, and (bottom)
ã = 0.

In the case of negative autoregulation (ρ < 1), peq is always
unimodal because the regulation function is monotonically
decreasing. Positive autoregulation (ρ > 1) is necessary for
more structured distributions, and bimodal distributions do in
fact arise for some parameter sets. It is interesting to note
that in the limit of weak dimerization (large ã), peq is always
unimodal, while in the limit of strong dimerization (small
ã), it is unimodal if γ > 1 and bimodal with a peak at 0 if
γ < 1; bimodal distributions that do not peak at 0 are present
only for intermediate dimerization (see Fig. 3). Near parameter
regions allowing for bimodality, the shape of peq is also very
sensitive to the promoter affinity k (see Fig. 4). Varying r and
ρ affects bimodality as well, but the values of these parameters
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FIG. 4. (Color online) Illustration of the effect of varying the
promoter affinity k when bimodality is possible. We fixed r = 5,
μ̃p = 0.9, ρ = 28, and ã = 5.

have a stronger effect on the peak positions. Finally, the burst
size parameter μ̃p also affects the position and relative size of
peaks in peq, but its essential role is to produce the heavy-tailed
distributions commonly observed experimentally.

It is now easy to obtain the distribution of mRNA expres-
sion. For the continuous approximation, taking into account
master equation (16), we have, as in (20),

q̇(z,t | x) = δm∂z[zq(z,t | x)] + βmf (x)

×
∫ z

0
[E(z − w,μ̃m) − δ(z − w)]q(w,t | x)dw.

(26)

This is an evolution equation for the distribution of a
“continuous” mRNA concentration variable z ≡ λj , given a
fixed protein concentration x = λn (with μ̃m again a rescaled
burst size). Since f depends on protein but not mRNA
concentration, we find for the equilibrium distribution (see
Appendix D) a 
 distribution:

qeq(z | x) = G(z,γmf (x),μ̃m). (27)

To find the equilibrium distribution of mRNA, we take the
integral over all values of protein concentration, weighted by
the respective probabilities given by (21):

qeq(z) =
∫ ∞

0
qeq(z | x)peq(x) dx

= 〈G(z,γmf,μ̃m)〉peq .

(28)

Similarly, the solution for the discrete dynamics, cor-
responding to Eq. (16), is given by a negative binomial
distribution (cf. Appendix E):

q
eq
j |n = Nj

(
μm

μm − 1
γmf (n),

1

μm

)
. (29)

The discrete equilibrium distribution for mRNA is found in
this case by summing over all n, weighing with the discrete
protein distribution given by (22)

q
eq
j =

∑
n�0

q
eq
j |np

eq
n

=
〈
Nj

(
μm

μm − 1
γmf,

1

μm

)〉
peq

.

(30)

The performance of the continuous approximation is similar
for mRNA and for protein.

B. Transcriptional regulation under fast protein dynamics

It is now convenient to consider fixed j , since in this
case protein dynamics is much faster and will equilibrate.
Let pn|j (t) be the distribution of the protein copy number
(evaluated at n) at time t , given j . We have again reactions (18),
but in this case we write the master equation for a fixed mRNA
copy number j :

ṗn|j (t) =
[
βpj

∑
i�1

Ei(μp)
(
E−i

p −1
) + δp(Ep−1)n

]
pn|j (t).

(31)
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In the continuous approximation, we find

ṗ(x,t | z) = γ̃pδp

∫ x

0
[E(x − y,μ̃p) − δD(x − y)]p(y,t)dy

+ δp∂x[xp(x,t)], (32)

where γ̃p ≡ γp/λ. This equation can be solved for the
equilibrium distribution in exactly the same way as Eq. (26),
yielding

peq(x | z) = G(x,γ̃pz,μ̃p). (33)

Similarly, the discrete solution [Eq. (31)] is

p
eq
n|j = Nn

(
μp

μp − 1
γpj,

1

μp

)
, (34)

where Nn(0,·) ≡ δn,0, with δn,0 a Kronecker δ symbol.
Following arguments similar to those leading to Eq. (19),

the master equation for mRNA reads, in this case,

q̇j (t) =
[
βm

∑
i�1

Ei(μm)
(
E−i

m − 1
)〈f 〉peq

|j

+ δm(Em − 1)j

]
qj (t), (35)

and the corresponding continuous master equation is

q̇(z,t) = δm ∂z[zq(z,t)] + βm

∫ z

0
〈f 〉peq(|w)

× [E(z − w,μ̃m) − δD(z − w)]q(w,t)dw. (36)

The equilibrium solution of Eq. (36) can be found through
the same method as the one used for Eq. (20), yielding

qeq(z) = Acz
−1e−z/μ̃meγm

∫ z

c
du〈f 〉peq(|u)/u, (37)

where Ac is again a normalization constant. The discrete
solution, for Eq. (35), is

q
eq
j = γmq

eq
0

j

j−1∏
i=1

(
γm

〈f 〉peq
|i

i
+ μm − 1

μm

)
, (38)

for j � 1, with q
eq
0 determined by normalization [note that

〈f 〉peq
|0 = f (0) = 1].

In the continuous approximation, the distribution of protein
concentration follows immediately from the integration of the
conditional distribution given by Eq. (33):

peq(x) =
∫ ∞

0
peq(x | z)qeq(z)dz

= 〈G(x,γ̃p id,μ̃p)〉qeq . (39)

The corresponding discrete distribution is

peq
n =

∑
j�0

p
eq
n|j q

eq
j

=
〈
Nn

(
μp

μp − 1
γp id,

1

μp

)〉
qeq

. (40)

As expected, in this time-scale regime the role of the
regulation function is confined to the level of mRNA. The
protein distribution depends only on the mRNA distribution,
plus the translation rate and protein burst size.

C. Translational regulation

In this scenario, mRNA production takes place through
bursts without protein regulation and so mRNA reaches
equilibrium independently of protein concentrations. For-
mally, mRNA dynamics decouples from the general master
equation, (12), yielding, for the mRNA distribution qj (t), the
master equation

q̇j (t) =
⎡
⎣βm

∑
i�1

Ei(μm)
(
E−i

m − 1
) + δm(Em − 1)j

⎤
⎦qj (t).

(41)

The equilibrium solution for an unregulated process of this
type (see Appendix E) is a negative binomial,

q
eq
j = Nj

(
μm

μm − 1
γm,

1

μm

)
, (42)

whose average is γmμm.
In the fast mRNA dynamics approximation, the master

equation for protein abundances reads

ṗn(t) =
⎡
⎣∑

i�1

βpEi(μp)
(
E−i

p − 1
)〈idf̃ (·,n)〉qeq

+ δp(Ep − 1)n

⎤
⎦pn(t), (43)

which, with the simple regulation function f̃ (j,n) = f (n),
reduces to

ṗn(t) =
⎡
⎣rδp

∑
i�1

Ei(μp)
(
E−i

p − 1
)
f (n) + δp(Ep − 1)n

⎤
⎦peq

n .

(44)

For a general regulation function f̃ (j,n), (44) still holds, where
now f (n) ≡ 〈idf̃ (·,n)〉qeq/(γmμm).

Equation (44) is the same equation that describes the
distribution of protein with transcriptional regulation under
fast mRNA dynamics [compare to Eq. (19)]. We thus see
that the protein equilibrium distribution is the same as found
in Sec. III A, with the appropriate interpretation of the new
regulation function f . Moreover, as we see in Sec. IV, this
solution holds under less stringent conditions than that of
Eq. (19).

Finally, let us consider the fast protein approximation in the
translational regulation scenario. By the same arguments as in
Sec. III B, the equilibrium protein distribution will be given by

peq
n =

∑
j�0

p
eq
n|j q

eq
j , (45)

where q
eq
j is the negative binomial, (42), and p

eq
n|j is the

equilibrium distribution for a fixed mRNA copy number j .
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The latter is the stationary solution to

ṗn|j (t) =
⎡
⎣∑

i�1

βpEi(μp)(E−i − 1)j f̃ (j,n)

+ δp(Ep − 1)n

⎤
⎦pn|j (t), (46)

already found in Sec. III A [see (19) and (22)] to be given by

p
eq
n|j = jγp p

eq
0

n

n−1∏
i=1

(
jγp

f̃ (j,i)

i
+ μp − 1

μp

)
(47)

or, in the continuous approximation for n [see (21)], by

p
eq
|j (x) = Ac x−1e−x/μ̃p ejγp

∫ x

c
duf̃ (j,u)/u. (48)

For the purpose of comparison of this approximation with
simulation results, we use the analytic solution given by (45)
with (42) and the continuous approximation for p

eq
n|j given

by (48).

IV. VALIDITY OF THE TIME-SCALE SEPARATION
APPROXIMATIONS

In this section we study the conditions under which the
time-scale separation assumptions used in Sec. III should hold
approximately. We illustrate the quality of the approximate
analytic solutions for protein by comparing them with the
results of simulations of the full stochastic process described
by the master equations (9) and (12) using the Gillespie
algorithm [31]. In order to illustrate the agreement with the
analytic distributions, the simulation curves shown below were
plotted for sampling sizes such that the error bars at each data
point are smaller than the markers. We have checked that
the structure of the curves obtained from these simulations is
robust down to order 105 independent samples.

Let the subscripts f and s refer to the fast and slow
species, respectively, and let α and σ be the mean and
standard deviation of the equilibrium distribution, respectively.
Consider also the average times T for a change of one molecule
to occur. Two conditions must be met:

(1) The fast species must approach equilibrium quickly
compared to Ts . If a change in the slow species produces a
change in the absolute value �αf in the equilibrium average
of the fast species, we must have

T
up
f

Ts

�αf � 1, (49)

where T
up
f is the average time for the production of one copy

of the fast species, since it is straightforward to check for
each case that re-equilibrating following a burst is the most
demanding scenario.

(2) The fast species must accurately sample the equilibrium
average within a time interval Ts . The relative standard error
of the mean for N uncorrelated samples from a distribution of
mean α and standard deviation σ is given by

ε = σ

α
√

N
. (50)

When the fast species dynamically samples the equilibrium
distribution, two uncorrelated measurements will be spaced in
time approximately by the correlation time τf = 1/δf . Thus,
considering the relative error in an interval Ts , we find the
condition

σf

αf

√
Tsδf

� 1. (51)

We now study the constraints imposed by applying condi-
tions 1. and 2 self-consistently in the hypothesis of fast mRNA
and fast protein, with both transcriptional and translational
regulation. For transcriptional regulation under fast mRNA
we have

αf = γmf (n)μm,

σf =
√

γmf (n)μm.
(52)

After a protein event leading to n we may write

T
up
f = [μmβmf (n)]−1,

(53)
�αf = μmγm�f,

where �f is the absolute value of the change in the value
of f associated with the protein event. Since production and
degradation reactions must be balanced in equilibrium, we
may estimate Ts for macroscopically occupied n as

Ts = [μpβpμmγmf (n)]−1. (54)

Then, setting δ = δp/δm, we find, for condition 1,

δμpr�f � 1 (55)

and, for condition 2, √
δμpr/γm � 1. (56)

We may combine the two conditions and write√
δrμp(

√
δrμp�f + 1/

√
γm) � 1. (57)

Note that �f is bounded by |ρ − 1|. It should be mentioned
that in the interpretation of a protein translation burst as
the protein production of a single mRNA molecule along
its whole lifetime, βp = δm(μp − 1)/μp (see [33]), δrμp =
(μp − 1)μmγm, and the conditions of the fast mRNA approxi-
mation may be met only for very low protein burst sizes, even
in the absence of regulation.

In Fig. 5 we plot the equilibrium protein distribution
obtained from simulations of the stochastic process (9),
together with the analytic solution, (22). The parameter values
were chosen taking into account condition (57). There is
excellent quantitative agreement between approximate and
exact solutions.

For transcriptional regulation under fast protein we have,
after an mRNA event leading to j ,

αf = μpγpj,

σf = √
γpjμp,

(58)
T

up
f = [μpβpj ]−1,

Ts = [δmj ]−1.

Since the variation in j due to a burst is of order μm, this leads
to

μm/δ � 1 (59)
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FIG. 5. (Color online) Illustration of the fast mRNA approxima-
tion with transcriptional regulation. Parameters are r = 5, μp = 90,
γm = 2.25 × 102, μm = 2, δ = 10−2, ρ = 28, k = 0.1, a = 50, and
λ = 10−2. Error bars are smaller than markers.

for condition 1, and for condition 2 we find

1/
√

δγp � 1. (60)

The combined condition is
1√
δ

(μm/
√

δ + 1/
√

γp) � 1. (61)

In Fig. 6 we illustrate the behavior of the analytic solu-
tion given by (40) versus simulations of the full stochastic
process, (9). The parameter values were chosen taking into
account condition (61), and once again, there is excellent
quantitative agreement.

Consider now the case of translational regulation. The fast
mRNA approximation may be treated in much the same way
as the corresponding transcriptional regulation case. Note,
however, that the mRNA-only reactions now decouple, and
the equilibrium solution for the mRNA distribution does not
depend on n. Thus �αf = 0, and condition 1 imposes no
constraints. The resulting constraint is due to condition 2 only
and becomes √

δrμpf (n)

γm

� 1, (62)

to be considered for macroscopically occupied values of n.
Recall that f (n) is bounded by max(1,ρ). Figure 7 again
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FIG. 6. (Color online) Illustration of the fast protein approxima-
tion with transcriptional regulation. Parameters are γp = 3, μp = 20,
γm = 3, μm = 20, δ = 102, ρ = 7.5, k = 0.25, a = 200, and λ =
10−2. Error bars are smaller than markers.
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FIG. 7. (Color online) Illustration of the fast mRNA approxi-
mation with translational regulation. We took f̃ (j,n) = f (n), and
the parameters are r = 5, μp = 90, γm = 6.3 × 104, μm = 2, δ = 1,
ρ = 28, k = 0.1, a = 50, and λ = 10−2. Error bars are smaller than
markers.

shows excellent quantitative agreement between the analytic
solution derived in Sec. III C for fast mRNA dynamics and the
equilibrium distributions obtained from simulations of (12).

Note the similarity between Fig. 7 and Fig. 5, which is due
to the fact that we have considered for the translational reg-
ulation function f̃ (j,n) = f (n), with f (n) the transcriptional
regulation function used for the results in Fig. 5. Note also that
the ratio δ between protein and mRNA decay rates is far higher
in the case of Fig. 7, illustrating that, in terms of the relative
stability of protein and mRNA, the fast mRNA approximation
is much less demanding for translational regulation than for
transcriptional regulation.

For the case of translational regulation in the fast protein
approximation, the distribution of the fast species at fixed j is
more structured and may be bimodal in general. Furthermore,
the dependence of peak positions for the protein distribution
on j is also more complicated. A calculation of the parameter
constraints imposed by conditions 1 and 2 in this scenario
would not lead to simple estimates such as the ones found in the
previous three cases. However, the arguments and calculations
above provide the intuition that the separation regime will
be reached for a certain set of parameters if δ is made large
enough, as shown in Fig. 8. This figure also illustrates the

0.0 0.5 1.0 1.5 2.0
x /102
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theoretical

FIG. 8. (Color online) Illustration of the fast protein approxi-
mation with translational regulation. We took f̃ (j,n) = f (n), and
the parameters are γp = 0.25, μp = 90, γm = 10, μm = 2, δ = 103,
ρ = 28, k = 0.1, a = 50, and λ = 10−2. Error bars are smaller than
markers.
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good performance, despite the pronounced peak at low x, of
the continuous approximation, which was used to plot the
analytic curve (see Sec. III C). In the preceding figures the
approximation for continuous n is also very good (data not
shown).

The parameter values for the figures shown throughout
this section were chosen so as to illustrate the accuracy of
the predicted distributions when the conditions of validity
of the time-scale separation approximation are met. The
fulfillment within a large margin of these conditions was
favored over biological realism. However, we have found, in
a broader exploration of parameter space, that the theoretical
distributions derived in Sec. III yield useful approximations for
a large set of biologically plausible parameter combinations.

V. DISCUSSION AND CONCLUSIONS

In this paper we have established a detailed stochastic model
of single-gene auto-regulation and explored its solutions when
mRNA dynamics is fast compared with protein dynamics
and in the opposite regime. The time-scale separation allows
the derivation of analytic closed-form expressions for the
equilibrium distributions of protein and mRNA. Except for
very small numbers of molecules, these distributions are
well described in the continuous approximation, which we
discuss in detail. We typically find distributions that differ
significantly from Gaussian distributions and exhibit heavy
tails. This is the effect of an essential ingredient of the
model, the transcriptional and translational bursts, which
typically have a magnitude comparable to the system size. The
continuous approximation is well suited to the description of
the qualitative features of the protein equilibrium distributions
as a function of the biological parameters for fast mRNA.
In particular, we find that for positive autoregulation and
intermediate values of the dimerization parameter a, the pro-
tein equilibrium distributions are bimodal, with two nonzero
peaks in a significant range of the remaining parameters. In
more general terms, our results show that a fully stochastic
description of single-gene positive autoregulation generates
structured protein distributions that otherwise can only be
explained in the framework of more complex gene regulatory
networks.

We have discussed the conditions under which the time-
scale separations hold in good approximation and illustrated
the performance of both regimes for transcriptional and for
translational regulation in comparison with simulations. We
found a broad range of parameter values where one of
the two opposite time-scale regimes provides a very good
approximation. In this range, statistical measures such as
mean and variance commonly used in the biological literature
to characterize experimental results on protein and mRNA
abundances in ensembles of cells can be readily computed
from the analytic equilibrium distributions derived in Sec. III.
However, mean and variance fall short of characterizing dis-
tributions that can be unimodal or bimodal and nonuniformly
heavy tailed. For the purpose of comparing the results of the
model with real data, it is best to consider the full analytic
distributions.

Evidence of translational regulation reported in the bi-
ological literature raises the question of understanding its

role in the context of stochastic gene expression. Recent
work has shown how different post-transcriptional regulation
mechanisms modulate noise in protein distributions [32]. Here
we have shown that the equilibrium protein distributions for
translational regulation have the same form as those that arise
under transcriptional regulation in the case of fast mRNA.
In particular, the structured protein distributions produced
by transcriptional autoregulation with fast mRNA are also
produced by translational autoregulation under less demanding
conditions in terms of protein and mRNA relative stability.
On the other hand, we have shown that in the translational
regulation scenario these structured protein distributions are
often found as equilibrium solutions also for fast protein
dynamics. These properties suggest an additional biological
rationale for translational regulation: it allows for efficient
autoregulation, circumventing mRNA stability. This idea
concurs with the analysis in [22] based on experimental data
for protein-mRNA lifetime pairs.

Transcriptional and translational bursts are an essential in-
gredient of the model whose possible underlying mechanisms
and statistics are currently being discussed in the literature.
Throughout the paper, we have assumed the simplest form for
these bursts. Extending these results, in particular, the validity
of the time-scale separation approximation, to the case of more
complex mRNA and protein production statistics (see [29])
will be the subject of future work.

ACKNOWLEDGMENTS

Authors T.A. and A.N. wish to thank two anonymous
referees and R. Travasso for their useful criticism of a
previous version of this paper. The authors are also grateful to
D. Henrique for many helpful discussions of the biological
foundations and applications of the model. Financial support
from the Portuguese funding agency Fundação para a Ciência
e a Tecnologia (FCT) under Contract No. POCTI/ISFL/2/261
is gratefully acknowledged. T.A. and E.A. were also supported
by the FCT under Grant Nos. PTDC-FIS-70973-2006 (T.A.)
and SFRH/BPD/26854/2006 (E.A.).

APPENDIX A: DIMER DYNAMICS

Consider a cell of volume V where there are n copies
of some molecular species that can be characterized by a
dimerization rate k+

d (dimensions volume × time−1) and an
undimerization rate k−

d (dimensions time−1). Our goal here is
to find the explicit form of n2(n), the number of dimers as
a function of the (fixed) total copy number n. The equations
governing dimerization dynamics of this species at a fixed total
density φ ≡ n/V are

φ̇1 = k+
d φ2

f − k−
d φ2, (A1a)

φ = φf + 2φ2. (A1b)

Equation (A1a) is the rate equation for temporal dynamics,
and the conservation equation, (A1b), reflects that molecules
are either free (φf ≡ nf /V ) or bound in pairs as dimers (φ2 ≡
n2/V ).
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Defining kd ≡ k+
d /k−

d , Eq. (A1a) yields, in equilibrium,

φ2 = kdφ
2
f . (A2)

Using Eq. (A1b) for φf leads, in terms of copy number, to the
desired result,

n2(n) = n

2
+ a2 − a

√
n + a2, (A3)

where a is a dimensionless parameter defined by a ≡√
V/(8kd ).
It is also interesting to note that there are two limits in

which (A3) becomes very simple and intuitive. On the one
hand, if a2 � n, we find

n2(n) ≈ n

2
. (A4)

In physical terms, this can be understood as follows: for a
certain density n/V , if kd is high enough, most proteins will
bind in dimers; conversely, for a certain kd , if the density
is high enough, most proteins will again be bound because
of the increased collision probability. On the other hand, if
a2 � n, we are in the opposite limit, where most proteins will
be free. Taylor expansion of the square root leads, in lowest
order, to

n2(n) ≈ kd

V
n2. (A5)

This result can also be found by setting φf ≈ φ in (A2).

APPENDIX B: MEAN mRNA IN EQUILIBRIUM
(FAST mRNA)

Consider the mRNA master equation, (16). Multiplying
both sides by j and summing over j , we find an equation for
the mean,

∂t 〈id〉q|n(t) =
⎡
⎣βmf (n)

∑
i�1

Ei(μm)
∑
j�0

j
(
E−i

m − 1
)

+ δm

∑
j�0

j (Em − 1)j

⎤
⎦qj |n(t). (B1)

Let us compute (omitting the arguments t , n for simplicity)∑
j � 0,

i � 1

Ei(μm)j
(
E−i

m − 1
)
qj =

∑
i�1

Ei(μm)
∑
j�0

j (qj−i − qj )

=
∑
i�1

iEi(μm)
∑
j�0

qj

= μm, (B2)

where we have made use of the fact that qj = 0 whenever the
copy number j is negative. Now let us look at∑

j�0

j (Em − 1)jqj =
∑
j�0

j (j + 1)qj+1 −
∑
j�0

j 2qj

=
∑
j�1

(j − 1)jqj −
∑
j�0

j 2qj

= −
∑
j�0

jqj = −〈id〉q|n(t). (B3)

Since we are looking for the equilibrium mean we now set
the left-hand side of (B1) to 0, and using results (B2) and (B3)
we find the desired result:

〈id〉qeq
|n = μmγmf (n). (B4)

APPENDIX C: CONTINUOUS APPROXIMATION

Here we study a continuous approximation for equations of
the form

ṗn(t) =
⎡
⎣rδ

∑
i�1

Ei(μ)(E−i − 1)f (n) + δ(E − 1)n

⎤
⎦pn(t),

(C1)

where f is some function of (protein or mRNA) copy number
n, r �= 0 and δ �= 0 are constants, and the step operator E
raises n. For some time t , let copy number n be fixed, and
let x = λn be the corresponding concentration. In accordance
with the main text, the convention f (n) = f (x) is used. First,
note that a reasonable definition for the continuous distribution
obeys

pn(t) ≡ p(x,t)λ[(n + 1/2) − (n − 1/2)]

≈
∫ n+1/2

n−1/2
p(x,t) dx = λp(x,t). (C2)

Now consider the conditioned geometric distribution. We
have

En(μ) = (μ − 1)(n−1)

μn
= 1

μ − 1
e−n log(1−1/μ). (C3)

If we take μ � 1 (which is biologically common, especially
for proteins; see, e.g., [11] and [13]) and expand log(1 − 1/μ)
around 1/μ = 0, we find to lowest order

En(μ) ≈ 1

μ
e−n/μ = λ

1

μ̃
e−x/μ̃ = λE(x,μ̃), (C4)

with μ̃ = λμ. Now note that, apart from the constant coeffi-
cients, the creation term in Eq. (C1) may be written∑

i�1

Ei(μ)(E−i − 1)f (n)pn(t)

=
∑
i�1

Ei(μ)f (n − i)pn−i − f (n)pn(t)

=
n∑

i=0

(En−i(μ) − δn,i)f (i)pi, (C5)

where δn,i is a Kronecker δ symbol. Note that the upper limit
of the sum can be extended to infinity by taking Ej (μ) = 0 for
j � 0, and the lower limit can be extended to negative infinity
since pi = 0 for i < 0.

The Kronecker δ term reads
n∑

i=0

δn,if (i)pi = f (n)pn(t)

= λ

∫ x

0
δD(x − y)f (y)p(y,t) dy,

(C6)
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where δD is the Dirac δ. Note that, for a meaningful conversion
to the continuous case, the lower limit of the integral must be
strictly included (in order to encompass the contribution of the
δ function). Thus, the upper and lower limits of the integral
may be extended to infinity.

For the conditioned geometric distribution term in (C5), we
may write

n∑
i=0

En−i(μ)f (i)pi

≈
n∑

i=0

λE(λ(n − i),μ̃)f (i)λp(λi,t)

≈ λ

∫ x

0
E(x − y,μ̃)f (y)p(y,t)dy, (C7)

where, again, the upper and lower limits of the integral
may be extended to plus and minus infinity by considering,
respectively, E(y,μ̃) = 0 and p(y,t) = 0 for negative y. Here,
the approximations μ � 1 (approximating the conditioned
geometric distribution with an exponential distribution) and
λ � 1 (approximating the sum with an integral, i.e., consider-
ing x continuous) have been explicitly used.

Finally, the degradation term in Eq. (C1) reads, apart from
a factor of δ,

(E − 1)npn(t) = [(n + 1)pn+1(t) − npn(t)]

= 1

λ
[(x + λ)λp(x + λ)(t) − xλp(x,t)]

≈ λ∂x(xp(x,t)), (C8)

where we again make use of λ � 1 to approximate a finite
difference with a derivative. Noting that ṗn(t) = λṗ(x,t) and
collecting terms, we find

ṗ(x,t) = rδ

∫ x

0
f (y)[E(x − y,μ̃) − δD(x − y)]p(y,t) dy

+ δ ∂x[xp(x,t)]. (C9)

APPENDIX D: CONTINUOUS EQUILIBRIUM
DISTRIBUTIONS

Here we follow [7] to obtain an analytical solution to
Eq. (C9). As discussed in Appendix C, the upper and lower
integration limits may be extended to plus and minus infinity,
respectively. Thus, defining

w(x ,μ̃) = E(x,μ̃) − δD(x), (D1)

we may write

ṗ(x,t) = rδ(w(μ̃) ∗ fp)(x,t) + δ ∂x[xp(x,t)], (D2)

where ∗ is a convolution product. In equilibrium we have

−∂x[xpeq(x)] = r(w(μ̃) ∗ fpeq)(x). (D3)

Laplace transformation of this equation leads to

s ∂sp̂(s) = rŵ(s)L(fpeq)(s)

= rŵ(s)(f̂ ∗ p̂)(s)

= −r
s

s + 1/μ̃
(f̂ ∗ p̂)(s). (D4)

Here, ĝ(s) = L(g)(s) = ∫ +∞
0 e−sxg(x) dx (integration limit

0 strictly included) is the Laplace transform of function g

(evaluated at s), and p̂ = L(peq). Convolution theorems have
been used in the first and second lines, and in the third line the
explicit form of ŵ(s) was substituted. Rearranging terms, we
have

(s + 1/μ̃)p̂(s) = −r(f̂ ∗ p̂)(s), (D5)

which inverse transforms to

∂x[xpeq(x)] = (rf (x)/x − 1/μ̃) xpeq(x). (D6)

This equation can easily be solved, leading to

peq(x) = Ac x−1e−x/μ̃er
∫ x

c
duf (u)/u. (D7)

The constant Ac is determined by normalization (depending
on the arbitrary integration limit c).

Consider now the case f (x) = 1, for all x. Solving the
integral in (21) and normalizing the probability distribution to
integral unity, we find

peq(x) = xr−1e−x/μ̃

μ̃r
(r)
= G(x,r,μ̃). (D8)

This is the 
 distribution of parameters r and μ̃ (
 is the
Euler 
 function). With r = μmγmγp and μ̃ the mean rescaled
protein burst size (with definitions according to the main
text), this is the equilibrium solution for unregulated protein
dynamics with fast mRNA.

APPENDIX E: DISCRETE EQUILIBRIUM
DISTRIBUTIONS

In this Appendix we analyze, directly in the discrete setting,
Eq. (C1). Analogously to the continuous case, the discrete
master equation may be written

ṗn(t) = rδ(w(μ) ∗ fp)(n) + δ[(n + 1)pn+1(t) − npn(t)],

(E1)

where ∗ is now the discrete convolution product, and
w(n ,μ) = En(μ) − δn,0. We now follow the procedures in
Appendix D using the Z transform instead of the Laplace trans-
form, ĝ(s) = Z(g)(s) = ∑+∞

n=0 s−ng(n),Z(peq) = p̂. The cor-
responding equation in “momentum space” is

s(s − 1)∂sp̂(s) + s

μ
∂sp̂(s) = −r

(
f̂ ∗ p̂

)
(s). (E2)

Inverse transforming, we get

(n + 1)peq
n+1 + (1/μ − 1)npeq

n = rf (n)peq
n , (E3)

leading to the recurrence relation:

p
eq
1 = rf (0)peq

0 ,
(E4)

(n + 1)pn+1 = (
r
f (n)

n
+ μ − 1

μ

)
npeq

n , n � 1.

This is easily solved, yielding

peq
n = rf (0)peq

0

n

n−1∏
i=1

(
r
f (i)

i
+ μ − 1

μ

)
(E5)
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for all n � 1, with p
eq
0 determined by normalization (and

the standard convention that the product equals 1 when the
upper limit is smaller than the lower). Note that if f is a
regulation function per the main text, we have f (0) = 1, since
the promoter is necessarily free when no protein is present.

Consider now the case f (n) = 1 for all n. Write (E5) as

peq
n = μ

μ − 1

rf (0)peq
0

n

(
μ − 1

μ

)n n−1∏
i=1

(
μ

μ − 1
r
f (i)

i
+ 1

)

= r ′f (0)peq
0

n

(
μ − 1

μ

)n n−1∏
i=1

(
r ′ f (i)

i
+ 1

)
, (E6)

with r ′ = rμ/(μ − 1). The product can be solved explicitly is
terms of 
 functions, and normalizing to unit sum we find

peq
n = 1

μr ′

(
μ − 1

μ

)n

(n + r ′)


(r ′)
(n + 1)

= Nn

(
r ′,

1

μ

)
. (E7)

This is the negative binomial distribution of parameters γ ′ and
1/μ. The parameters are defined such that

Nn(k,p) = pk(1 − p)n
(

n + k − 1

k − 1

)
. (E8)

As in the continuous case (Appendix D), with r = μmγmγp

and μ the mean protein burst size μp (definitions according
to the main text), this is the discrete solution for unregulated
protein dynamics with fast mRNA (as reported, e.g., in [30]).

APPENDIX F: BIMODAL EQUILIBRIUM PROTEIN
DISTRIBUTIONS

Consider the continuous equilibrium distribution for protein
with fast mRNA, given by (21). The derivative of this
probability distribution is given by

∂xp
eq(x) = [rμ̃f (x) − (x + μ̃)]

peq(x)

μ̃x
. (F1)

If peq peaks at 0 [i.e., if ∂xp
eq(0) < 0], the term in brackets

in Eq. (F1) must be negative at 0. Because peq(x) > 0 for all
x > 0, other extrema of peq must satisfy

rμ̃f (x) − (x + μ̃) = 0. (F2)

Consider f (x) as given by (8). A change of variables to z =√
x + ã2 in Eq. (F2) leads to an equivalent quartic equation,

P4(z) = −z4 + 2ãz3 + α2z
2 + α1z + α0 = 0, (F3)

where the αi are real constants determined by the biological
parameters. The equation P ′′

4 (z) = 0 is quadratic in z and has
two solutions:

z = ã

2
±

√(
ã

2

)2

+ α2

6
. (F4)

If they are real, one of these solutions necessarily obeys z < ã.
Therefore, P ′′

4 (z) has at most one root in z > ã.
We now proceed to prove that peq is at most bimodal. Since

zeros of P4 correspond alternately to maxima and minima of
peq, the presence of more than two maxima requires at least
four positive roots of P4(z) in z > ã. But then P ′′

4 (z) would
have at least two roots in z > ã.
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[22] B. Schwanhäusser, D. Busse, N. Li, G. Dittmar,

J. Schuchhardt, J. Wolf, W. Chen, and M. Selbach, Nature 473,
337 (2011).

[23] R. Guantes and J. Poyatos, PLoS Comput. Biol. 4, e1000235
(2008).

[24] N. van Kampen, Stochastic Processes in Physics and Chemistry
(North-Holland, Amsterdam, 1992).

[25] M. Liu, P. Li, and J. Giddings, Protein Sci. 2, 1520
(1993).

[26] D. Xu, C. Tsai, and R. Nussinov, Protein Sci. 7, 533
(1998).

061913-13

http://dx.doi.org/10.1016/S0006-3495(77)85544-6
http://dx.doi.org/10.1016/0022-5193(78)90326-0
http://dx.doi.org/10.1073/pnas.0504321102
http://dx.doi.org/10.1073/pnas.0504321102
http://dx.doi.org/10.1103/PhysRevLett.100.258101
http://dx.doi.org/10.1103/PhysRevLett.100.258101
http://dx.doi.org/10.1371/journal.pbio.0020137
http://dx.doi.org/10.1371/journal.pbio.0020137
http://dx.doi.org/10.1126/science.1070919
http://dx.doi.org/10.1126/science.1070919
http://dx.doi.org/10.1103/PhysRevLett.97.168302
http://dx.doi.org/10.1103/PhysRevLett.97.168302
http://dx.doi.org/10.1371/journal.pbio.1000149
http://dx.doi.org/10.1371/journal.pbio.1000149
http://dx.doi.org/10.1016/j.mbs.2011.02.013
http://dx.doi.org/10.1038/nature04599
http://dx.doi.org/10.1016/j.gde.2007.02.007
http://dx.doi.org/10.1016/j.gde.2007.02.007
http://dx.doi.org/10.1038/ng869
http://dx.doi.org/10.1126/science.1188308
http://dx.doi.org/10.1126/science.1198817
http://dx.doi.org/10.1126/science.1202142
http://dx.doi.org/10.1126/science.1202142
http://dx.doi.org/10.1103/PhysRevE.72.051907
http://dx.doi.org/10.1103/PhysRevE.72.051907
http://dx.doi.org/10.1103/PhysRevE.80.041921
http://dx.doi.org/10.1103/PhysRevE.80.041921
http://dx.doi.org/10.1103/PhysRevE.79.031911
http://dx.doi.org/10.1103/PhysRevE.79.031911
http://dx.doi.org/10.1103/PhysRevLett.106.248102
http://dx.doi.org/10.1103/PhysRevLett.106.248102
http://dx.doi.org/10.1016/j.cell.2009.01.043
http://dx.doi.org/10.1073/pnas.0802288105
http://dx.doi.org/10.1073/pnas.0802288105
http://dx.doi.org/10.1038/nature10098
http://dx.doi.org/10.1038/nature10098
http://dx.doi.org/10.1371/journal.pcbi.1000235
http://dx.doi.org/10.1371/journal.pcbi.1000235
http://dx.doi.org/10.1002/pro.5560020917
http://dx.doi.org/10.1002/pro.5560020917
http://dx.doi.org/10.1002/pro.5560070301
http://dx.doi.org/10.1002/pro.5560070301
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