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Networks of fast-spiking interneurons are crucial for the generation of neural oscillations in the brain. Here we
study the synchronous behavior of interneuronal networks that are coupled by delayed inhibitory and fast electrical
synapses. We find that both coupling modes play a crucial role by the synchronization of the network. In addition,
delayed inhibitory synapses affect the emerging oscillatory patterns. By increasing the inhibitory synaptic delay,
we observe a transition from regular to mixed oscillatory patterns at a critical value. We also examine how the
unreliability of inhibitory synapses influences the emergence of synchronization and the oscillatory patterns.
We find that low levels of reliability tend to destroy synchronization and, moreover, that interneuronal networks
with long inhibitory synaptic delays require a minimal level of reliability for the mixed oscillatory pattern to be

maintained.
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I. INTRODUCTION

Synchronization is an important phenomenon that occurs
in many biological and physical systems [1]. In the brain, the
rhythmic oscillations of concerted electrical activity, which
are representative for the synchronous firing of neurons, have
been observed in different regions, including the neocortex,
hippocampus, and thalamus [2,3]. Since neural oscillations
are associated with many high-level brain functions, the
pertinent research has attracted considerable attention in the
past decades [2—4]. It has been proposed that these oscillations
not only carry information by themselves, but that they may
also regulate the flow of information and assist by its storage
and retrieval in neural circuits [5].

In the brain, fast-spiking interneurons are mutually con-
nected by both inhibitory chemical synapses as well as electri-
cal synapses (gap junctions) [6]. The evidence is mounting that
networks composed of fast-spiking interneurons could provide
synchronization mechanisms by means of which important
rhythmic activities, such as the gamma (y, 25-100 Hz) rhythm
and the mixed theta (6, 4-12 Hz) and y rhythm [7-9], can be
generated. Computational studies indicate that inhibitory and
electrical synapses play an important role by the generation
of these oscillations. For example, it has been shown that
interneuronal networks with solely inhibitory synapses can
produce y oscillations, but that adding gap junctions to the
network can further increases their stability and coherence [8].
It has also been reported that interneuronal networks coupled
by both fast and slow inhibitory synapses can produce the
mixed 6 and y rhythmic activity [9]. In addition, several
theoretical studies have been performed to provide a deeper
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understanding of how the inhibitory and electrical synapses
promote synchronization among coupled neurons [10].

Information transmission delays, which are due to the finite
propagation speeds and due to time lapses occurring by both
dendritic and synaptic processing [11], are also an inherent
part of neuronal dynamics. In particular, the transmission
delays of chemical synapses are not to be neglected [11].
Physiological experiments have revealed that they can be up
to several tenths of milliseconds in length [12]. On the other
hand, the transmission delays introduced by electrical synapses
are comparably short, usually not exceeding 0.05 ms [12], so
they are often not taken explicitly into account. In terms of
dynamical complexity, the existence of time delays makes a
nonlinear system with a finite number of degrees of freedom
become an infinite-dimensional one, which may enrich the
dynamics [13], enhance synchronization [14], and facilitate
spatiotemporal pattern formation [15].

Although existing studies attest clearly to the fact that
information transmission delays have a significant impact on
the synchronization of interneuronal networks, to the best of
our knowledge the focus has always been on considering only
short inhibitory synaptic delays [16]. However, since as noted
above, the delays of chemical synapses may be substantial,
it is also of interest to consider long inhibitory synaptic
delays. Given that previous studies have shown that different
time delay lengths may have rather different effects on the
synchronization of coupled nonlinear oscillators [14,15], we
anticipate that the consideration of long inhibitory synaptic
delays may lead to new and inspiring results.

To resolve this, we here study the synchronization in
an interneuronal network that is coupled by both delayed
inhibitory as well as fast electrical synapses, focusing specif-
ically on the effects of inhibitory synaptic delays covering
a wide window of values. Our simulations reveal that the
delayed inhibition not only plays an important role in network
synchronization, but that it can also lead to different oscillatory
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patterns. The comparatively fast gap-junctional coupling, on
the other hand, contributes solely to the synchronization of
the network but does not affect the emergence of oscillatory
patterns. Most interestingly, we show that a sufficiently long
inhibitory synaptic delay induces a rapid transition from the
one-frequency to the two-frequency state, thus leading to
the occurrence of a mixed oscillatory pattern. Moreover, we
also show that the unreliability of inhibitory synapses has
a significant impact on both the synchronization and the
emergence of oscillatory patterns. Our findings thus add to
the established relevance of time delays in neuronal networks
and highlight the importance of synaptic mechanisms for the
generation of synchronized neural oscillations.

The remainder of this paper is organized as follows. In
Sec. II, we present the mathematical model and introduce
the synchronization measure. Main results are presented in
Sec. III, while in Sec. IV we summarize our work and briefly
discuss potential biological implications of our findings.

II. MATHEMATICAL MODEL

We consider a network composed of N fast-spiking in-
terneurons. Neurons in the network are randomly connected
by inhibitory and electrical synapses with probability p. and
Pe, respectively. For simplicity, all synapses are bidirectional.
We do not allow a neuron to be coupled to another neuron
more than once by using the same type of synaptic coupling
or a neuron to be coupled with itself. We assume that all
electrical synapses are fast, thus considering delays only by
the inhibitory synapses. This assumption is reasonable, as we
have argued in the Introduction. The dynamics of fast-spiking
interneurons is described by the Wang-Buzsaki model [17].
It has a form similar to the classical Hodgkin-Huxley model
[11,18], with details as follows [17]:

dVi

- —gnamihi (Vi — Exy) — gxnt (Vi — Ex)

- (Vi = ED+ L™ + (), ey
where the three gating variables obey the equations

mi = dt,(Vi)/ [otm, (Vi) + B, (VD]

dh;
T ¢ [on, (V)1 = i) — Bu, (Vidhi] (2)
dl’l,‘
E = ¢ [Olni(vi)(l - ni) - :Bn,-(Vi)ni] .
Here i =1,2,...,N is the neuron index, V; denotes the

membrane potential of neuron i, and the six rate functions
are [17] o, (Vi) =0.1(V; + 35)/{1 —exp[-0.1(V; 4+ 35)]},
Bm, (Vi) = 4exp [—(V; + 60)/18], o, (Vi) = 0.07 exp [—(Vi+
58)/201, By (Vi) = 1/{exp[—0.1(V; +28)] + 1}, an (Vi) =
0.01(V; +34)/{1 —exp[—0.1(V; +34)]}, and B, (Vi) =
0.125exp [—(V; +44)/80]. I;*" is the synaptic current of
neuron i due to the interactions with other neurons within
the network (also referred to as internal synaptic current
in this paper), and I/ is an externally applied current
representing the collective effect of inputs coming from
the outside of the network. In this work, we model the
externally applied current as I/ = Iy + o u;(t), where
Iy is the mean current, u;(¢) is an independent Gaussian
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FIG. 1. (Color online) Firing rate curve of the Wang-Buzsaki
model in dependence on the externally applied current /%P in the
absence of additional inputs.

white noise with zero mean and unit variance, and o is the
intensity of stochastic fluctuations. The parameters of the
Wang-Buzsaki model assume standard values [17]: C =1
,uF/cmz, gNa = 35 ms/cmz, Ena=55mV, gxk =9 ms/cmz,
Ex = —90mV, gL = 0.1 ms/cm?, EL. = —65mV,and ¢ = 5.
A spike is detected whenever the membrane potential exceeds
the threshold of Vi, = —10 mV. Figure 1 shows the firing rate
curve of the Wang-Buzsaki model when the later is driven
solely by the externally applied current (o = 0).

For each neuron, the internal synaptic current consists of
two terms, which are

1Y) = Zj w;jrij[Eion — Vil + Zk giklVi —Vil. (3

In this equation, the first and second outer sums run over
all inhibitory and electrical synapses onto neuron i, w;; is the
inhibitory synaptic strength from neuron j to neuron i, r;; is the
corresponding inhibitory synaptic variable, Ejp, = —80 mV is
the reversal potential for inhibitory synapses, and g;; is the
electrical synaptic strength from neuron k to neuron i. For
inhibitory synapses, once a presynaptic neuron emits a spike,
the corresponding r;; is updated after a fixed spike transmission
delay 7;;, according to r;; < r;; + 1. Otherwise r;; decays
exponentially with a fixed time constant 7,. For simplicity,
we set w;; = w, T;; = T, and g;x = g throughout this paper,
implying that the coupling is identical for the same type of
synapses.

To characterize the synchronization within the network,
a dimensionless synchronization measure S is introduced,
following [19]. We first compute the time fluctuations of the
average membrane potential according to

An = (An(t)*) — (AN@))7, “4)

where the sign (-); denotes the average over time and Ay (?) =
Zf\;l Vi(¢)/N 1is the average membrane potential at time ¢.
Subsequently, the population-averaged variance of the activity
of each individual neuron is determined according to

i
A= D0 (Vi) = (Vio))). ©)

N
=1

1
Finally, the synchronization measure is computed as

S .
A
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From this it follows that the larger the value of S the better the
synchronization in the network.

The described mathematical model is integrated numer-
ically using the fourth-order Runge-Kutta algorithm with
a fixed time step of h = 0.025 ms. This is sufficiently
small to ensure an accurate simulation of the Wang-Buzsaki
model [17]. For each set of parameters, the initial membrane
potentials of neurons are uniformly distributed between —70
and 30 mV. The network size is N = 300, while p. = 0.1 and
p. = 0.05. We always generate both types of synapses, but use
g = 0 to denote the network without the fast gap-junctional
coupling. The two parameters that determine the externally
applied current are Iy = 1.4 uA/cm? and o = 0.25 pA
ms!/2 / cm?. Under these conditions, the mean firing rate of the
Wang-Buzsaki model is approximately 80 Hz in the absence
of the internal synaptic current. We perform all simulations
up to 3000 ms and collect the data from 1000 to 3000 ms for
further statistical analysis. The reported results, except for the
spike raster diagrams, are averages over 30 independent runs.

III. RESULTS

We first show elementary simulation results that reveal how
the delayed inhibitory and fast gap-junctional coupling influ-
ence the synchronous behavior of the considered interneuronal
network. In Figs. 2(a) and 2(b), several typical spike raster
diagrams for different values of the inhibitory synaptic delay t,

(@ g=0 () g=001

300

150

1

300 ¥ - 300

150 k 150

3 3.

1 . 1

< x 300
[0} Q
° °
£ £

5 g 150
3 =]
Q Q

z z

300

150

1

300

150

1 - -
1000 1150 1300
time (ms) time (ms)

FIG. 2. (Color online) Spike raster diagrams for different values
of the inhibitory synaptic delay t: (a) without fast electrical synapses
(g = 0); (b) with fast electrical synapses (g = 0.01 ms/cm?). In all
cases we set w = 0.01 ms/cm? and 7, = 10 ms. From top to bottom,
T =0, 7,13, 18, and 30 ms. The red rectangle in the middle panel
of (a) illustrates that, without the fast gap-junctional coupling, the
synchronous firing of the last group in each periodic cycle is weak
when t is near the transition point. The black double arrow line in
the bottom panel of (b) denotes one periodic cycle for the mixed
oscillatory pattern.
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FIG. 3. (Color online) (a) Dependence of the synchronization
measure S on the delay t for different values of the inhibitory synaptic
strength w. Here g = 0. (b) Dependence of S on 7 for different values
of the electrical synaptic strength g. Here w = 0.01 ms/cm?. In all
cases we use 7, = 10 ms. The units of parameters w and g shown in
panels (a) and (b) are ms/cm?. The positions of the vertical dashed
lines are T = 12.5, 25, and 37.5 ms.

without (g = 0) and with (g # 0) the fast electrical synapses,
are plotted, respectively. Presented results show clearly that
delayed inhibitory as well as fast electrical synapses play
an important role by the synchronization of the network.
Without the fast gap-junctional coupling, the neuronal firings
at T = 0 are rather disordered. Essentially this is because the
considered network (p. = 0.1) is sparse; that is, there are
not many more links between the neurons (on average) than
there are neurons constituting the network, and hence they
cannot be easily synchronized in the absence of additional
mechanisms that promote the onset of synchronization. By
introducing inhibitory synaptic delays, an improvement in the
synchronization of the network can be observed. However,
it can also be observed that this depends significantly on the
length of the inhibitory synaptic delay. Only suitable delays can
help the network to maintain a high level of synchronization
[compare results obtained with =7, 18, and 30 ms, and
T = 13 ms in Fig. 2(a)]. We demonstrate this quantitatively
in Fig. 3(a), where also a near periodic oscillatory behavior
in S can be detected, which may be related to the matching
of the inherent neuronal time scales with the duration of
the delay, as proposed in [14] (we discuss this near-periodic
oscillatory behavior further shortly). Furthermore, the results
presented in Fig. 2(b) suggest that the fast electrical synapses
provide a strong mechanism for fostering synchronization.
With the fast gap-junctional coupling turned on, the high-
quality synchronization may be observed even at T = 0. As
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the strength of the electrical synaptic coupling (g) is increased,
the neuronal firings become more and more synchronized [see
Fig. 3(b)]. For sufficiently strong g, the measure S approaches
1, indicating that the synchronization is almost perfect. Indeed,
several previous studies have concluded that gap-junctional
coupling is more effective than chemical coupling in leading to
highly synchronized states [20]. One possible mechanism for
this is that chemical synapses act only while the presynaptic
neuron is spiking, whereas the electrical synapses are more
efficient and can transmit the membrane potentials of presy-
naptic neurons to the corresponding postsynaptic neurons at
all times.

Results presented in Fig. 2 reveal also that the oscillatory
pattern is largely influenced by the inhibitory synaptic delay.
For suitably short values of t a regular oscillatory pattern
can be observed. Interestingly, however, if the delay t is
sufficiently long, we can observe the emergence of a mixed
oscillatory pattern, which implies that there are two main
oscillation frequencies present in the network. One is the
low frequency of the whole mixed oscillatory pattern and the
other is the high frequency of the fast oscillations within each
periodic cycle (see Fig. 2). Theoretically, the mixed oscillatory
pattern appears only for sufficiently long inhibitory synaptic
delay. Under this condition, neurons in the synchronized or
near-synchronized network have enough time to fire more
than once during a whole periodic cycle, before the inhibitory
synaptic currents caused by the first synchronous spiking
group within the same periodic cycle start to suppress their
firing. Obviously, the longer the inhibitory synaptic delay r,
the more groups of synchronous spikes might be contained
in each periodic cycle [see T = 18 and 30 ms in Figs. 2(a)
and 2(b)]. Moreover, once the inhibitory synaptic currents
caused by the first synchronous spiking group start to have
effect, these currents tend to decrease the membrane potentials
of neurons and prolong their firing period. In this case, the
following inhibitory synaptic bombardments due to one or
more synchronous spiking groups from the same periodic
cycle will further suppress neuronal firings, and therefore the
neurons in the network can fire again only after these inhibitory
effects wear down or become fully absent. This provides a
viable mechanism for the emergence of the low-frequency
component in the mixed oscillatory pattern. While performing
additional simulations, we have discovered that without the
long delayed inhibitory synapses, networks of interneurons
cannot generate the mixed oscillatory pattern even if we
consider the nonphysiological case of long electrical synaptic
delays (data not shown). The above results thus indicate that
the inhibitory synaptic delay serves as an important control
parameter for the selection of the oscillatory pattern in the
network and that long inhibitory synaptic delays provide a
stable mechanism for the emergence of the mixed oscillatory
pattern in interneuronal networks.

We now return to Fig. 3(a) and further discuss the near-
periodic oscillatory behavior in S. It can be determined that
the frequency of this near-periodic behavior matches with the
oscillation frequency of the high-frequency component quite
well. Note that we will show later that the oscillation frequency
of the high-frequency component is mainly influenced by the
parameter 7. In the narrow regions of ¢ where the minima
of S appear (note that these regions also correspond to the
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FIG. 4. (Color online) Dependence of the synchronization mea-
sure S on the inhibitory synaptic time constant t, for different values
of the inhibitory synaptic strength: (a) without the fast electrical
synapses (g = 0); (b) with the fast electrical synapses (g = 0.005
ms/cm?). In all cases we set T = 8 ms. The values of the inhibitory

synaptic strength considered here are w = 0.01, 0.02, and 0.05
ms/cm?.

transition points for the number of synchronously spiking
groups contained in each periodic cycle), only a limited amount
of neurons will participate in the last group of synchronous
firings within each periodic cycle [see the red rectangle in
the middle panel of Fig. 3(a)]. This can be attributed to the
matching between the synaptic delay t and the high-frequency
component, which ultimately causes the near-periodic behav-
ior in the synchronization measure S. We have also performed
additional numerical simulations by using other models of
neuronal dynamics, such as the model by Izhikevich with
fast-spiking dynamics [21] and the standard Hodgkin-Huxley
model [11,18], and we have observed qualitatively identical
results, thus confirming the generality of this phenomenon (see
also [14]). On the other hand, our results also reveal that the
fast gap-junctional coupling tends to suppress the occurrence
of such near-periodic oscillations, which may be attributed
to the overall promotion of synchronization [see Figs. 3(b)].
Indeed, if the electrical coupling is sufficiently strong this
phenomenon disappears altogether because then the neurons
in the network are perfectly synchronized.

In addition to the time delay 7, we also find that the
synchronization depends significantly on the other two im-
portant inhibitory synaptic parameters, which are the strength
w and the time constant 7;. Figures 4(a) and 4(b) depict
the synchronization measure S as a function of 7y for
different values of w, without (g = 0) and with (g # 0) the
fast electrical synapses, respectively. In the absence of fast
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gap-junctional coupling, there exists an optimal region of 7, in
each depicted dependence of S, which implies that the network
can support synchronization optimally only for intermediate
values of 7, (see also [18] for related results). In this case,
a strong inhibitory synaptic strength can drive the network
toward a high level of synchronization at the corresponding
optimal value of 7;,. However, with the increasing of w, it can
also be observed that the top plateau region of the S curve
becomes narrower and shifts to the left (the direction of short
7,). An explanation for why longer t; can no longer produce
high values of S is as follows. Due to the heterogeneity of
connectivity, some neurons in the considered network will
have more inhibitory synaptic inputs than others. For long
7y, the slowly decaying synaptic inhibition accumulates in
time and thus may lead to a tonic level of hyperpolarizing
currents that cancel the external depolarizing currents by
neurons with more inhibitory inputs [18]. This will suppress
or even fully disable the firing of such neurons, which in
turn means that if the synaptic time constant is too long,
the synchronization will deteriorate significantly. At a fixed
T, a large value of w will introduce more inhibition to the
network, and thus a relatively shorter t; will be needed to
impair synchronization. As a result, although strong w can
enhance the synchronization in the corresponding optimal
region, it may also reduce the size of this region. On the
other hand, adding the fast gap-junctional coupling to the
network, as expected, will enhance the synchronous firing of
neurons. This enhancement is quite remarkable, even if the
gap-junctional coupling is rather weak, as shown in Fig. 4(b).
Further increasing the strength of gap-junctional coupling
can lead to the perfect synchronization (data not shown).
Several previous experiments have shown that some of the
inhibitory synapses between interneurons can have rather slow
synaptic kinetics [9]. Therefore, to some extent, our results
suggest that the fast electrical synapses might be essential for
taming desynchronization if an interneuronal network contains
a considerable number of slow inhibitory synapses.

Figure 5 shows how the oscillation frequency depends on
the inhibitory synaptic delay for different levels of inhibition.
As can be observed, the oscillation frequency of the considered
interneuronal network is determined by both the inhibitory
synaptic delay as well as the inhibition. In the short 7 region,
the oscillations are characterized by a single frequency. In this
case, increasing w and t,; can reduce the oscillation frequency
from the y band to the 6 band (see Fig. 5). Once 7 exceeds a
critical time delay t., we observe that the network oscillations
transit from the one-frequency state to the two-frequency state,
indicating the emergence of the mixed oscillatory pattern. This
transition is rapid and stable with the aid of fast gap-junctional
coupling. For the mixed oscillatory pattern, our results show
that both w and 7, influence the low-frequency component,
but only 7, has a significant effect on the high-frequency
component. When 7 is short, the inhibitory synaptic currents
from one periodic cycle decay fast, so that they may completely
vanish before the firing of neurons enters into the next periodic
cycle and almost do not influence the neuronal firing in the
next periodic cycle. Thus, in this case, the critical time delay
7. is approximately 12.5 ms, and based on the same reason,
the number of synchronous spiking groups contained in each
periodic cycle is also increased once about every 12.5 ms. The
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FIG. 5. (Color online) Dependence of the oscillation frequency
on the delay 7 for different levels of inhibition. In all cases we set
g = 0.03 ms/cm?. The units of parameters w and 7, shown here are
ms/cm? and ms, respectively. The oscillation frequency is divided
into three bands: theta band (8, 4-12 Hz), beta band (8, 12-25 Hz),
and gamma band (y, 25-100 Hz). Different colors (shades of gray)
refer to different numbers of synchronously spiking groups contained
in each periodic cycle.

above analysis suggests that the oscillation frequency of the
high-frequency component is around 80 Hz (in the y band) for
short 7, (see 7, = 8 ms in Fig. 5), corresponding to the firing
rate of a single Wang-Buzsaki neuron that is driven solely by
the considered externally applied current. If , is sufficiently
long, the inhibitory synaptic currents from one periodic cycle
can persist to a certain extent even after the neuronal firing
enters into the next periodic cycle. These remaining inhibitory
synaptic currents will suppress the neuronal firing in the next
periodic cycle and thus increase the firing interval between
the first and the second synchronous spiking groups in the
next periodic cycle. Therefore, the firing intervals of the
high-frequency component are not perfectly identical; that is,
the first firing interval is slightly larger than the other firing
intervals. This, in turn, yields a relatively smaller average
frequency of the high-frequency component. As a result, for
long 7, the system needs a relatively longer t to generate the
mixed oscillatory pattern, and it also exhibits a slightly smaller
frequency in the high-frequency component of its output (see
7, = 20 ms in Fig. 5). Moreover, our results also show that
the frequency of the whole mixed oscillatory pattern is quite
low, even in the case of weak inhibition (small g and short
values of 7). For sufficiently long values of 7 this oscillation
frequency can be maintained in the 8 band quite efficiently. The
mixed 6 and y rhythm is believed to play an important role
in brain cognitive functions [22]. The traditional viewpoint
is that interneuronal networks with fast and slow inhibitory
synaptic dynamics are the basic neural circuits to generate this
special type of neural oscillations [9]. Our results provide a new
insight related to this, which is that long transmission delays of
inhibitory synapses may also lead to the mixed 6 and y rhythm
in interneuronal networks. We note that this mechanism is still
functional even if only some (not all) of the inhibitory synapses
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are considered to have long transmission delays, provided only
that the delayed inhibitory synaptic currents are strong enough.

Finally, we examine how the unreliability of inhibitory
synapses influences the synchronization and oscillatory pat-
terns in the studied interneuronal network. This investigation
is carried out because the synaptic transmission through real
chemical synapses is indeed to a degree unreliable [23] and also
because several previous studies have advocated that the unre-
liable synapses may play important functional roles in neural
computation [24]. In principle, the unreliability of chemical
synapses can be explained by the phenomenon of probabilistic
transmitter release, which has been confirmed by biological
experiments [25]. Typically, the synaptic unreliability is asso-
ciated with synaptic depression, which can be simulated by
a well-established phenomenological model proposed in [26].
In this model, three parameters, x;;, y;;, and z;;, which denote
the fractions of synaptic resources in the recovered, active, and
inactive states, respectively, are employed and their dynamical
equations are given by X;; = z;;j/Trec — Uo - Xij - 6(t — tj.‘ - 1),
Vij = =¥ij/Tin + U0 - Xij - 8t — 1§ —T), and zij = yij/Tin —
Zij/Trec- Here 8(1) is the Dirac delta function, t}‘ gives the
timing of presynaptic spikes, t;, is the time constant of the
inactive variable, t,.. is the time constant of the recovered
variable, and u describes the utilization of synaptic efficacy.
Here we apply this model to modulate the updating of synaptic
conductance as follows: Whenever a presynaptic neuron j
fires a spike, the corresponding postsynaptic conductances
are increased instantaneously after a fixed spike transmission
delay 7, according to r;; < r;; + y;;(t); otherwise, r;; decays
exponentially with a fixed time constant t,. In the following
simulations, we set 7;,, = 3 ms and u, = 0.2, and change the
variable 7,.. to control the synaptic depression. A longer 7,..
corresponds to a stronger synaptic depression and therefore
denotes a lower level of synaptic reliability.

In Figs. 6(a) and 6(b), we present several typical spike raster
diagrams for different values of t,.., without (g = 0) and with
(g # 0) the fast electrical synapses, respectively. We choose
the inhibitory synaptic delay to equal v = 18 ms, ensuring
that the network will be in the mixed oscillatory pattern when
Trec — 0 ms. Results presented in Fig. 6 demonstrate that the
unreliability of inhibitory synapses has a great impact on both
the network synchronization and the emergence of oscillatory
patterns. In the absence of fast gap-junctional coupling, the
synchronization reduces markedly with increasing ... In this
case, high synaptic unreliability (long 7,..) leads to insufficient
synaptic information interaction, which largely deteriorates
network synchronization and causes the neural oscillations
to disappear completely [see 7,.. =400 ms in Fig. 6(a)].
With the fast gap-junctional coupling incorporated, we find
that the network synchronization can be maintained in the
majority of the 7,.. region. Again, this is because the gap-
junctional coupling itself can provide an effective mechanism
for network synchronization. However, our results also show
that the considered network needs a certain level of inhibitory
synaptic reliability for the mixed oscillatory pattern to be
preserved. For sufficiently long t,.., it can be observed that the
mixed oscillatory pattern transforms to the regular oscillatory
pattern due to the lack of inhibition [see 7,. = 600 ms in
Fig. 6(b)]. The transitions in the oscillatory patterns can be
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FIG. 6. (Color online) Effects of the time constant of the
recovered variable t,.. on the synchronization and the emergence
of oscillatory pattern in the interneuronal network: (a) without the
fast electrical synapses (g = 0); (b) with the fast electrical synapses
(g = 0.02ms/cm?). Inall cases we set T = 18 ms, w = 0.05 ms/cm?,
7, = 10 ms, 7;, = 3 ms, and uy = 0.2. (Left) From top to bottom,
Tree = 35,120, 250, and 400 ms. (Right) From top to bottom, 7,.. = 5,
150, 320, and 600 ms.

observed more clearly from the data presented in Fig. 7. These
findings suggest that the unreliability of inhibitory synapses
might also provide a flexible mechanism for controlling the
switch between different oscillatory patterns in interneuronal
networks.
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FIG. 7. (Color online) Dependence of the oscillation frequency
on T, for different values of 7,. In all cases we set g = 0.02 ms/cm?,
w = 0.05ms/cm?, T = 15 ms, 7;, = 3 ms, and uy = 0.2. The values
of 7, considered here are 7, = 8, 15, and 25 ms, respectively.
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IV. DISCUSSION

In summary, we have employed a computational approach
with the aim of investigating the complex synchronous
behavior in interneuronal networks that are coupled by delayed
inhibitory and fast electrical synapses. We have shown that
these two types of synaptic coupling play an important role
in warranting network synchronization. In particular, the
considered network can achieve a high level of synchronization
either by means of a suitable tuning of the inhibitory synaptic
delay, by enhancing the strength of electrical synapses, or
by means of both. On the other hand, our simulations have
revealed that only delayed inhibition significantly influences
the emergence of oscillatory patterns, while electrical synapses
play at most a side role by this phenomenon. In particular,
we have shown that short inhibitory delays evoke regular
oscillatory patterns, while sufficiently long delays can lead
to an abrupt emergence of mixed oscillatory pattern. By
analyzing the oscillation frequencies, we found that the
considered interneuronal network can generate both types of
oscillations in physiologically relevant frequency bands, such
as the y rhythm and the mixed 6 and y rhythm. This fact
might have biological implications as these rhythmic activities
are frequently associated with fast-spiking interneurons and
are also believed to play prominent functional roles in cognitive
tasks [7,9,22]. Last, we have also demonstrated that the
unreliability of inhibitory synapses plays an important role by

PHYSICAL REVIEW E 85, 061905 (2012)

the synchronization of the network as well as by the emergence
of oscillatory patterns. More precisely, we have shown that
high levels of unreliability destroy synchronization and that a
minimal level of reliability is needed for the emergence and
stability of the mixed oscillatory pattern.

We hope that the presented results will improve our
understanding of the synaptic mechanisms that are responsible
for the generation of synchronous oscillations in the neural
tissue. Indeed, our findings suggest that delayed inhibitory
synapses are a viable candidate for controlling the emergence
of oscillatory patterns. Depending on the actual biological
circumstances, the same interneuronal ensembles may produce
neural oscillations with different patterns in an adaptive way
through the modulation of synaptic transmission. We also
hope that this study will inspire further research on this topic,
in particular by taking into account additional physiological
properties of neuronal networks, such as the anatomical
connectivity and distance-dependent synaptic information
transmission delays.
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