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Using noise to determine cardiac restitution with memory
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Variation in cardiac pacing cycles, as seen, for example, in heart rate variability, has been observed for decades.
Contemporarily, various mathematical models have been constructed to investigate the electrical activity of paced
cardiac cells. Yet there has not been a study of these cardiac models when there is variation in the pacing cycles
such as noise. We present a method that uses the stochasticity of pacing cycles to determine approximate models
of the dynamics of cardiac cells, and use these models to detect bifurcations to alternans.
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I. INTRODUCTION

The mathematical study of the dynamics of the electrical
activity of cardiac cells has a long history. One of the primary
problems is to determine the response of a cardiac cell to
periodic stimuli and to identify and characterize bifurcations
in these behaviors. While detailed ionic models have been used
extensively for this study [1–6], mapping models, pioneered
by Nolasco et al. [7,8], have been introduced in past decades
to focus on the restitution, i.e., the dependence of and action
potential durations (APDs) on the preceding diastolic interval
(DI). In particular, period-doubling bifurcation occurs as the
exterior stimuli pace sufficiently fast and alternation of APDs,
which is called alternans, emerges, as illustrated in Fig. 1.
Recent mapping models involve memory variables in the
restitution, which are often related to the intracellular ion
(mostly calcium) concentrations in different compartments, to
explain more complicated restitutions [9–16]. The memories
in those models are usually hidden and difficult to detect in
experiments; hence, it is difficult to reconstruct the model
directly. The method we develop in this paper provides one
way to approximate the restitution by an alternative form,
using stochastic pacing cycles, and we assume only pacing
cycles and APDs are detectable.

The simple mapping model proposed in [7] suggests that
the preceding DI completely determined the APD; i.e.,

An = f (Dn−1) (1.1)

for some restitution function f , where An and Dn represent the
nth APD and DI, respectively. With a fixed basic cycle length
(BCL) with An + Dn = BCL ≡ μ, (1.1) becomes a simple
one-dimensional (1D) map. Typically, f is a nondecreasing
function of D, so there is a unique fixed point A∗ which is an
increasing function of μ. This is referred to as a 1:1 response.
A period-doubling bifurcation (2:2 response) occurs if f ′(D∗)
increases across 1 as μ decreases, where D∗ = μ − A∗, and
alternans emerges as a long-short alternation of APD.

Memories are introduced recently for more complicated
dynamics that are not explained by the simple 1D maps. We can
summarize the general form of a model involving J memory
variables as

An = f
(
Dn−1,M

(1)
n ,M (2)

n , . . . ,M (J )
n

)
,

M (i)
n = gi

(
An−1,M

(i)
n−1,Tn−1

)
, for i = 1,2, . . . ,J, (1.2)

Dn = Tn − An,

where An is the nth APD, Tn is the time between the nth
and (n + 1)th exterior stimuli, Dn is the DI following An, and
M (i)

n are the memory variables at the time that the nth stimulus
occurs. Figure 2 illustrates the variables in the model, with one
memory variable shown.

A given series of stimulus intervals {Tn} is called a
pacing cycle protocol. For typical memory models, when Tn’s
are constant μ (S1 protocol), the system (1.2) has a fixed
point (A∗,M (1)

∗ ,M
(2)
∗ , . . . ,M

(J )
∗ ) if μ is sufficiently large. The

fixed point may lose its stability through a period-doubling
bifurcation to alternans when μ is below some critical value
μc. The solid and dashed curves in Fig. 1 illustrate a typical
bifurcation diagram (only values of APDs are shown in the
graph).

In many situations, the pacing intervals Tn are nonconstant;
i.e., there is variation in the times between consecutive stimuli.
For example, in real hearts, heart rate variability is well known
[17–19]. Figure 3 shows an example of a series of natural
pacing cycles for a healthy human heart [20].

When the pacing intervals Tn are nonconstant, in the long
time run, we do not expect convergence to a fixed point or
alternans. However, if the variation in Tn’s is small enough,
it may be that in the long run the APDs are located in a
neighborhood of the fixed point or alternans, such as the shaded
region shown in Fig. 1. Thus, even in the presence of noise,
there is some information about bifurcations to be gleaned
from the APDs, but how much is not yet known.

In this paper we discuss the following question: Given a
(random) sequence of pacing times Tn and the corresponding
APDs An, to what extent can the restitution function f

and the resulting bifurcation structure and dynamics be

APD

 
μ c μ

FIG. 1. Typical bifurcation diagram for a cardiac mapping model
with constant cycle length μ, where period-doubling bifurcation
occurs at μ = μc. The shaded region indicates the range of APDs
when the cycle length has a small random fluctuation around μ.
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FIG. 2. Illustration of the cycle lengths Tn, action potential duration An, diastolic interval Dn, and memory variable Mn.

determined? To make initial progress, we assume that the
data are generated by some mapping model of the form (1.2).
Thus, we are provided with a series of Tn’s and corresponding
An’s; however, the memory terms M (i)

n in (1.2) are hidden
variables and cannot be detected. In what follows we develop
a regression algorithm with which we are able to obtain an
approximate equivalent form having dynamics similar to (1.2).
Furthermore, since the data are generated by a known model,
we have a check for how good our approximate restitution
function and bifurcation structure are.

The organization of the paper is as follows. In Sec. II we
introduce our ideas using a simple memory model proposed
by Tolkacheva et al. [21]. In Sec. III, we discuss a more
general mapping model with one memory variable, using a
model suggested by Fox et al. [22] as an example. In Sec. IV
we discuss the most general case of a mapping model with
multiple memory variables, as in (1.2). Section V is the
discussion, and Sec. VI is the conclusion.

II. APPROXIMATE TOLKACHEVA ET AL. MODEL

The mapping model proposed by Tolkacheva et al. [21] is
in the form

An = f (Dn−1,An−1), (2.1)

which is a special case of the general mapping model (1.2)
with J = 1 and M (1)

n = An−1. The details of the model are
given in the Appendix. If A∗ is a fixed point when the pacing
intervals are the constant μ, its stability is determined by the
derivative

f ′ = df

dA

∣∣∣∣
A∗

= − ∂f

∂D

∣∣∣∣
D∗

+ ∂f

∂A

∣∣∣∣
A∗

,

where D∗ = μ − A∗.
Previous analysis has shown that in the 1:1 response case,

one can estimate f ′ from experiments by the following process
(for more details see [21]). First, for a given BCL μ, the fixed

FIG. 3. Sequence of interbeat intervals (in seconds) for a healthy
individual [20].

point A∗ and associated D∗ satisfy

A∗ = f (D∗,A∗) = f (μ − A∗,A∗),

and we record the fixed points A∗ and associated D∗ for
different BCLs to obtain the dynamic restitution curve (RC).
The slope of the dynamic RC at a particular (A∗,D∗) that we
are interested in is estimated by

Sdyn = ∂A∗

∂D∗ = ∂f/∂Dn−1|An−1=A∗
1 − ∂f/∂Dn−1|An−1=A∗

.

Then, we use the S1-S2 stimulus protocol: a long series of
constant stimulus intervals, μS1 = μ, followed by a single
stimulus with a different interval μS2. The measured APD
AS1S2 is given by

AS1S2 = f (DS1S2,A
∗),

where A∗ is the fixed point corresponding to BCL μS1 = μ

and DS1S2 = μS2 − A∗, and the S1-S2 RC is the plot of AS1S2

versus DS1S2. The slope of the S1-S2 RC at D∗ = μ − A∗ is
given by

SS1S2 = dAS1S2

dDS1S2

∣∣∣∣
DS1S2=D∗

= ∂f

∂Dn−1

∣∣∣∣
An−1=A∗

. (2.2)

The two slopes Sdyn and SS1S2 can be estimated by the finite
difference method in experiments, and the value of f ′ follows
from the chain rule:

f ′ = 1 −
(

1 + 1

Sdyn

)
SS1S2. (2.3)

The method we implement below to approximate f is to make
the pacing cycles stochastic, which we call the “stochastic
protocol.” We show that we can approximate the dynamics
of the mapping model (2.1) in an interval [μa,μb] rather than
simply at a single point as in (2.3). Furthermore, we can include
cases when a period 2 bifurcation occurs and alternans appears
in the interval [μa,μb].

We assume the pacing cycles Tn are randomly distributed
in [μa,μb], and the action potential durations An are generated
through (A1) with a random initial value. We define T̄ to be
the sample mean of the cycles Tn; i.e.,

T̄ = mean(Tn). (2.4)

If the variation of the cycles, i.e., the range of the interval
μb − μa , is small, we may regard all Tn’s as perturbations of
μ. For simplicity, we first consider the 1:1 response case. In
the case of constant pacing with cycle μ, there is a stable fixed
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FIG. 4. (Color online) (a) Sequence of pacing cycles, (b) sequence of corresponding APDs, and (c) histogram of all APDs.

point A∗, such that

A∗ = f (D∗,A∗), (2.5)

where D∗ = μ − A∗. Since Tn’s are perturbations of μ, we
naturally assume all An’s are small perturbations around A∗.
The leading order approximation is

an ∼ f1dn−1 + f2an−1 = f̃1an−1 + f̃2tn−1, (2.6)

where an = An − A∗, dn = Dn − D∗, and f1 and f2 are the
partial derivatives of f with respect to Dn−1 and An−1 at
the fixed point, and f̃1 = f2 − f1, f̃2 = f1. We take the
covariance of Eq. (2.6) with an and tn, respectively, to obtain
two approximating equations,

〈an,tn−1〉 ∼ f̃1〈an−1,tn−1〉 + f̃2〈tn−1,tn−1〉,
(2.7)

〈an,an−1〉 ∼ f̃1〈an−1,an−1〉 + f̃2〈tn−1,an−1〉.
Then the derivatives f̃1 and f̃2 may be determined directly by
solving the above two-dimensional linear system.

The above process is equivalent to using simple linear
regression to find the best least squares fit of Eqs. (2.6) with
two unknown coefficients. The method of fitting data in a least
squares sense has been applied widely in previous research
[13,23], in which some functional form of the restitution is
proposed and unknown parameters are then determined by
regression analysis, i.e., by minimizing the squared error of
the fit.

Here we do not assume a particular form for the restitution
function f ; i.e., f is completely unknown. We extend the
above case of a linear approximation (2.6) to higher orders,
i.e., by considering the Taylor polynomial expansion of f . In
general, we are looking for a polynomial H

p

1 (An−1,Tn−1) of
given order p in the following form:

An ∼ H
p

1 (An−1,Tn−1)

=
∑

0�α+β�p

fαβ(An−1 − Ā)α(Tn−1 − T̄ )β, (2.8)

which best fits the given data of Tn and An. Here T̄ and Ā are
the means of the pacing cycles Tn and APDs An, respectively.
The subscript 1 in H

p

1 indicates that the restitution function
f (Dn−1,An−1) depends only on the most recent previous beat.
The unknown coefficients fαβ are to be determined. We note
that Ā is not the fixed point solution A∗ corresponding to T̄ ;
however, we can compute A∗ from (2.8) once the coefficients
are found.

To carry out this procedure for a specific example, we
pick N = 1000 pseudorandom pacing cycles Tn, which are

uniformly distributed1 in the time interval [μa,μb] with
μa = 295 ms and μb = 305 ms. The theoretical bifurcation
point μc ≈ 301.40 ms is located in this interval. We record
the series of corresponding APDs An generated through the
original model (A1). To mimic the measurement error of APDs
in experiments, we add small noise to An, after the sequence
is generated,

An → An + εξn, (2.9)

where ε = 0.01 ms is the magnitude of error, and ξn’s
are independent and identically distributed standard normal
random variables. For convenience, we do not change the
notation for An. We assume the error in measuring pacing
cycles is negligible. The sequences of Tn and An are shown in
Fig. 4. We also plot a histogram of the APDs in Fig. 4, from
which we observe an apparent distribution involving alternans.

To obtain a period-doubling bifurcation from the approxi-
mating polynomial Hp

1 , it is required that p � 2. We use linear
regression to find the coefficients fαβ for each p of interest.
Table I shows a statistical analysis for the case p = 2, for
which there are six unknown coefficients fαβ .

We repeat the above process for various values of order p

using the same data set. After obtaining the coefficients fαβ , we
compare the approximate iterative function H

p

1 (An−1,Tn−1)
with the original model. In Fig. 5 we show their bifurcation
diagrams for p = 2,4,5, respectively. One can observe that

1Uniform distribution is used as an example. In fact our approach
does not depend on the distribution type of the pacing cycles. See the
discussion in Sec. V.

TABLE I. Statistical analysis for regression method for approx-
imating iteration map H

p

1 for p = 2. There are 1000 data points, 6
unknown coefficients fαβ , and 994 degrees of freedom. The residual
standard error is 0.04221. Robustness is ensured by the following
statistical criteria: multiple R squared is 1, adjusted R squared is 1,
the F -statistic value is 4.04 × 107 on 5 and 994 degrees of freedom,
and the p value is below 2.2 × 10−16.

Coefficients Estimate Standard error t value Pr(>|t |)
f0,0 249.6 2.624 × 10−3 95096.64 <2 × 10−16

f1,0 −0.9889 7.132 × 10−5 −13865.51 <2 × 10−16

f0,1 1.074 4.593 × 10−4 2338.70 <2 × 10−16

f2,0 −6.566 × 10−3 4.676 × 10−6 −1404.23 <2 × 10−16

f1,1 1.148 × 10−2 2.410 × 10−5 476.27 <2 × 10−16

f0,2 −5.947 × 10−3 1.814 × 10−4 −32.79 <2 × 10−16
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FIG. 5. (Color online) Comparison of the bifurcation diagrams between the theoretical map (A1) (black) and the approximate form (2.8)
(red, light grey) for various orders of p. The solid curve indicates stability and the dashed curve indicates instability. Note that for all cases
the approximate fixed points are very close to the theory and they are not distinguishable in the graph. In addition, for the case p = 5, the
theoretical and approximate diagrams almost coincide.

with order p = 5, the dynamics of H
p

1 is very close to the
theoretical prediction.

It is obvious that for larger order p, the approximation
becomes more accurate. However, there are also more un-
determined coefficients fαβ in (2.8). Let � = �(k,p) be the
number of the undetermined coefficients fαβ in H

p

k in (2.8),
where k = 1 indicates dependence on only the most recent
stimulus interval Tn−1.

Two statistical values are significant to judge the accuracy
of the approximation: the residual sum of squares (RSS),

Rss =
∑ [

An − H
p

1 (Dn−1,An−1)
]2

, (2.10)

and the residual standard error (RSE),

rse =
√

Rss

N − �
. (2.11)

As we increase the order of the approximate function H
p

1 , the
RSS and RSE both decrease, but � increases. Table II shows the
values of �, RSS, and RSE for different orders p. Notice that as
p increases from 2 to 5, there is a significant decrease in both
RSS and RSE; however, there is very little improvement as
p is increased further, even though the number of parameters
increases substantially. Therefore, it appears that p = 5 is in
some heuristic sense “optimal.” In the next section, we provide
a less heuristic criterion to determine the “best” fit.

TABLE II. Values of �, residual sum of squares (RSS), and
residual standard error (RSE) for the approximate function H

p

1 of
different order p for Tolkacheva et al.’s model.

p � RSS RSE

2 6 1.771 0.04221
3 10 1.639 0.04069
4 15 0.2382 0.01555
5 21 0.1986 0.01424
6 28 0.1975 0.01425
7 36 0.1963 0.01427

III. APPROXIMATE FOX ET AL. MODEL: AN EXAMPLE
OF A MAPPING MODEL WITH ONE MEMORY

VARIABLE

The mapping model with one memory variable in the form

An = f (Dn−1,Mn),

Mn = g(An−1,Mn−1,Tn−1), (3.1)

Dn = Tn − An,

is regarded as a good approximation for the behavior of quite
a few ionic models [9,22,24,25]. A specific example of (3.1)
is the model by Fox et al. [22], which is described in detail
in (A5).

We start with the model (3.1). Some expanded forms
of (3.1) were considered by previous researchers. For instance,
in [26] the authors proposed that

An = f (Dn−1,An−1,Dn−2,An−2, . . .)
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FIG. 6. (Color online) Comparison of the bifurcation diagrams
between the theoretical map (3.1) (black) and the approximate
form (3.5) (red, light grey) for various values of k and p. The solid line
indicates stability and the dashed line indicates instability. We note
that in each of the two cases, (k,p) = (1,4) and (2,4), the dynamics
of theory and the approximation are very close and their bifurcation
diagrams almost coincide.
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TABLE III. RSS, RSE, and BIC values of the approximate function H
p

k for Fox et al.’s model for some significant cases of (k,p) pairs,
where k � 0, p � 2, and �(k,p) < N/2. The bold values correspond to the optimal selection which has the minimal BIC value.

k p �(k,p) RSS RSE BIC k p �(k,p) RSS RSE BIC

0 2 3 11.36 0.1067 −4457 3 2 15 8.317 0.09189 −4686
0 3 4 3.51 0.05936 −5625 3 3 35 1.426 0.03844 −6311
0 4 5 1.941 0.04417 −6210 3 4 70 0.1829 0.01402 −8123
0 5 6 1.937 0.04415 −6205 3 5 126 0.1631 0.01366 −7851
...

...
...

...
...

... 3 6 210 0.151 0.01383 −7348

1 2 6 8.615 0.0931 −4713
...

...
...

...
...

...
1 3 10 1.635 0.04064 −6347 4 2 21 8.176 0.09139 −4662
1 4 15 0.242 0.01568 −8223 4 3 56 1.342 0.0377 −6227
1 5 21 0.2247 0.01515 −8256 4 4 126 0.1734 0.01409 −7790
1 6 28 0.2225 0.01513 −8217 4 5 252 0.1453 0.01394 −7096
...

...
...

...
...

...
...

...
...

...
...

...
2 2 10 8.491 0.09261 −4700 5 2 28 7.887 0.09008 −4649
2 3 20 1.523 0.03942 −6349 5 3 84 1.278 0.03735 −6082
2 4 35 0.1906 0.01405 −8323 5 4 210 0.1587 0.01418 −7298
2 5 56 0.1734 0.01355 −8273 5 5 462 0.1077 0.01415 −5945

2 6 84 0.1678 0.01354 −8112
...

...
...

...
...

...
...

...
...

...
...

... 10 2 78 7.058 0.08749 −4415
10 3 364 0.8494 0.03655 −4557

and analyzed the different restitution curves in the restitution
portrait [27]. However, to best apply our method, we need a
different form which is more “compact.” If we substitute the
memory terms Mk of the second equation into the first equation
in (3.1) for k = n,n − 1, . . . , we may write

An = Fn(A0,M0; An−1,An−2, . . . ,A1; Tn−1,Tn−2, . . . ,T0),

(3.2)

using that Dn = Tn − An. The function Fn in (3.2) is some
combination of compositions of f and g, and A0 and M0

are initial values. We note that the functions Fn are different
for each n. We call (3.2) the expansion form of the mapping
model (3.1). If we substitute Eq. (3.2) for An−2, An−3, . . . into
the equation for An, we may rewrite (3.2) as

An = F̃n(A0,M0,An−1; Tn−1,Tn−2, . . . ,T0), (3.3)

for some function F̃n, which also depends on n.

In the long time run, one would expect that the information
of the distant past should have little impact on the current APD,
which suggests that we make the following approximation: for
sufficiently large n, there are iterative maps Hk in the following
form, for k = 1,2, . . .:

An ∼ Hk(An−1; Tn−1,Tn−2, . . . ,Tn−k), (3.4)

which approximates the dynamics of (1.2); i.e., the function
Hk is some approximation which only includes the most
recent k memories. That this approximation is valid remains
a conjecture, although a rigorous proof can be given for
some particular models, for example, the model proposed by
Schaeffer et al. [25], in which the memory Mn only depends on
An−1 and Tn−1. It is obvious that for larger k, the approximation
cannot be less accurate.

The analytical form of the function Hk is unknown in gen-
eral; however, Hk may be approximated by some polynomial
H

p

k (An−1; Tn−1,Tn−2, . . . ,Tn−k) for k � 0 and p � 2 in the
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FIG. 7. (Color online) Approximate the model of Fox et al.: RSE and BIC values of each polynomial H
p

k vs p for k = 0,1,2,3.
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TABLE IV. RSS, RSE and BIC values of the approximate function
H

p

k for Tolkacheva et al.’s model for some significant cases of (k,p)
pairs. The best choice of (k,p) is (1,5). The best choice of (k,p) is
(1,5), which has the minimal BIC value, as shown bold in the table.

k p �(k,p) RSS RSE BIC

0 3 4 65.78 0.257 −2694
0 4 5 63.34 0.2523 −2725
...

...
...

...
...

1 3 10 1.639 0.04069 −6344
1 4 15 0.2382 0.01555 −8239
1 5 21 0.1986 0.01424 −8379
1 6 28 0.1975 0.01425 −8337
...

...
...

...
...

2 4 35 0.2284 0.01538 −8143
2 5 56 0.1889 0.01415 −8188
2 6 84 0.1857 0.01424 −8011

following form:

An ∼ H
p

k (An−1; Tn−1,Tn−2, . . . ,Tn−k)

=
∑

hαβ1β2···βk
(An−1 − Ā)α(Tn−1 − T̄ )β1

× (Tn−2 − T̄ )β2 · · · (Tn−k − T̄ )βk , (3.5)

where k denotes that the approximation involves information
from previous k beats, p is the order of the approximate
polynomial, and the summation is taken over the nonnegative
indices α + β1 + · · · + βk � p.

Now to approximate H
p

k we assume that the pacing cycles
Tn are random and, with some random initial value, we
generate N = 1000 data points for the sequence of An’s
using Fox et al.’s model (A5). We also add a noise term
εξn to each An as in (2.9) to mimic the error in measuring
APDs, with ε = 0.01 ms. Then, given a set of data groups
(An,An−1,Tn−1, . . . ,Tn−k), we use the regression method to
estimate the best choice of the unknown coefficients hαβ1β2···βk

to obtain the approximate form (3.5). We then compare the
bifurcation diagrams of the original Fox et al. model (A5) and
of the approximate form (3.5), shown in Fig. 6 for several
values of k and p.

Notice that for larger k and p, the approximation is increas-
ingly accurate (as expected). However, the total number of
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imate polynomial H

p

k vs the order p for various k, and bifurcation
diagrams of H

p

k at optimal choice of (k,p) for different measurement
error ε = 10−4 (a, c, e) and ε = 0.1 (b, d, f), respectively, for Fox
et al.’s model. In (e) and (f), the theoretical bifurcation diagram
(black) and the approximation (red, light grey) are drawn for
comparison, and in (e) the theory and approximation almost coincide.

unknown coefficients, �(k,p), also becomes larger. Therefore,
the “optimal” parameter choice should in some way minimize
the error as well as the number of unknown coefficients. One
useful way to determine the best parameter set is to minimize
the Bayesian information criterion (BIC) function [28],

B(k,p) = N ln

(
Rss

N

)
+ �(k,p) ln(N ), (3.6)

where Rss is the RSS defined in (2.10).
In Table III we show RSS, RSE, and BIC values for several

cases of (k,p), and Fig. 7 shows the RSE and BIC versus p for
different values of k. Once again, we see that the RSE decreases
rapidly until p = 4, but there is very little improvement for
larger values of p. Also, the BIC decreases as p increases to
4, but then increases for larger values of p due to the fact that
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1 2 3 4 5 6 7 8 9
0.01
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(b) h1,1,0,..

order p order p

h1,0,0...

FIG. 8. (Color online) (a) The value of h1,0,0,..., the coefficient for (An−1 − Ā) vs the order p for different values of k, and (b) the value of
h1,1,0,..., the coefficient for (An−1 − Ā)(Tn−1 − T̄ ) vs the order p for different values of k.
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TABLE V. Optimal choice of (k,p) and corresponding RSE vs different number of data points N and measurement error ε. We are able to
detect earlier memory and achieve better accuracy if we have more data points or lower measurement error.

ε = 10−4 ε = 0.01 ε = 0.1

N optimal (k,p) RSE optimal (k,p) RSE optimal (k,p) RSE

30 (1,4) 0.005963 (1,3) 0.01691 (0,2) 0.1299
100 (1,5) 0.006378 (1,4) 0.01644 (0,3) 0.1389
300 (3,5) 0.000235 (1,5) 0.01642 (0,4) 0.1385
1000 (3,7) 0.000225 (2,4) 0.01405 (1,4) 0.1372
3000 (3,7) 0.000228 (2,5) 0.01419 (1,4) 0.1414

RSE is decreasing slowly while �(k,p) is increasing rapidly
as a function of p. Since the BIC is minimized at k = 2 and
p = 4, we take the polynomial H2,4(An−1; Tn−1,Tn−2), i.e.,

An ∼ H2,4(An−1; Tn−1,Tn−2)

=
∑

0�α+β1+β2�4

hαβ1β2 (An−1 − Ā)α

× (Tn−1 − T̄ )β1 (Tn−2 − T̄ )β2 , (3.7)

where the coefficients hαβ1β2 are determined by the regression
method to be the “best” approximation of Fox et al.’s model.

Now we come back to the model by Tolkacheva et al.
discussed in Sec. II. We assume that the model is in the general

form (3.1), and we repeat the previous process for different
values of (k,p). We show the results for some significant cases
of (k,p) in Table IV. Notice that the choice of (k,p) that
minimizes the BIC is (1,5).

IV. GENERAL MAPPING MODEL WITH MULTIPLE
MEMORY VARIABLES

For the most general mapping model with multiple memory
variables (1.2), i.e., J > 1, the approach is similar to the case
with only one memory variable. For each memory variable
M

(j )
n , we substitute the second equation into the first equation

of (1.2) recursively for n − 1, n − 2, ..., 2, 1, to obtain the
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FIG. 10. (Color online) Bifurcation diagrams of the optimal approximate H
p

k (red, light grey) compared to the exact result (black) for
various values of ε and N . In some of the graphs the approximate and exact diagrams almost coincide. The corresponding optimal choice of
(k,p) is shown in the bottom right corner of each graph.
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relationship

An = Fn

(
A0; M (1)

0 ,M
(2)
0 , . . . ,M

(J )
0 ; An−1,An−2, . . . ,

A1; Tn−1,Tn−2, . . . ,T0
)
.

Following a similar argument as above, we assume that in the
long time run, i.e., when n is sufficiently large, this function
can be approximated by a polynomial H

p

k in the same form
as (3.5), with k memories and polynomial of degree p. We
apply the same methodology as in Sec. III: we determine the
unknown coefficients hαβ1β2···βk

using regression and compute
the RSS, RSE, and BIC values for each (k,p). We then obtain
the optimal choice of (k,p) by minimizing the BIC value.

V. DISCUSSION

For a general mapping model (1.2), we assume there are
iterative maps Hk in (3.4) and we approximate each Hk by
the polynomial H

p

k in (3.5) for various orders p. A necessary
condition for the existence of Hk’s is that the coefficients of
H

p

k ’s obtained by the regression method have the following
consistency property: the coefficient for the same term is close
in each H

p

k , or it has some tendency of convergence as k

and p become larger. For example, we expect that h1,0,...,0, the
coefficient of (An−1 − Ā) in each H

p

k , should not vary much as
k,p → ∞. In Fig. 8, we show the values of the coefficients of
(An−1 − Ā) and (An−1 − Ā)(Tn−1 − T̄ ) versus p for different
values of k for the Fox et al. model described in Sec. III.
Consistency can be observed in each coefficient.

The role of ε in (2.9) is important. When ε is small, earlier
memories are able to be detected and higher order accuracy

can be obtained; when ε is large, the noise in the measurement
may mask the memory so that it cannot be detected. For the
model of Fox et al. discussed in Sec. III, if ε = 10−4, we find
that k = 3 and p = 6 is optimal, while if ε = 0.1, we find
that k = 1 and p = 4 is optimal. In Figs. 9(a)–9(d) we show
the RSE and BIC values versus p for various k for each case,
respectively. We also show bifurcation diagrams at the optimal
choice of (k,p) for each case in Figs. 9(e) and 9(f), compared
to the theoretical bifurcation diagrams. It is not surprising that
a better approximation can be obtained with less noise.

The number of data points, N , is also important. Roughly
speaking, if there are more data points for a fixed time
interval, we can obtain better accuracy of the approximate
dynamics. Table V shows the optimal choice of (k,p) and the
corresponding RSE for a variety of N . In Fig. 10 we show
the bifurcation diagrams of the optimal approximate H

p

k for
various ε and N . Clearly, for larger measurement error (ε),
more data points (N ) are needed in order to ensure a good
approximate bifurcation curve.

The method we described here does not require any
particular distribution for the stochastic pacing cycles Tn,
although in Secs. II and III, we used the uniform distribution as
an example. We tested some other distributions. In Fig. 11 we
show the results for some other distributions of pacing cycles,
where we use the Fox et al. model with testing time interval
[μa,μb] = [175,185], number of data points N = 1000, and
ε = 0.01. We find that in each case our method gives reliable
results, although the best choice of k and p can differ.

Although our method is based on a discussion of small
variation in pacing cycles, exciting results are obtained when
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FIG. 11. (Color online) Probability density function and histogram of the applied pacing cycles, and bifurcation diagram of the optimal
approximate H

p

k (red, light grey) compared to the exact curve (black) for three different distributions of pacing cycles, where N = 1000
and ε = 0.01. The optimal choice of (k,p) is labeled in each graph of the bifurcation diagram. We note that the approximate and the exact
bifurcation diagrams are very close and hard to distinguish in all the graphs.
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FIG. 12. (Color online) Bifurcation diagrams of the optimal approximate H
p

k (red, light grey) compared to the exact result (black) for
various testing time intervals, for ε = 0.01 (a, b, c) and 0.1 (d, e, f), respectively, and in all cases N = 1000. In some graphs the approximate
and exact diagrams almost coincide. The optimal choice of (k,p) is shown in the bottom right corner of each graph.

the method is applied to larger regions of pacing cycles.
In Fig. 12 we show the results for different time intervals
[μa,μb] = [160,200],[130,170],[90,190] for ε = 0.01 and
0.1, respectively, and the approximation matches the theory
quite well in each case.

VI. CONCLUSION

In this paper, we provide an approach to investigate APD
restitution and bifurcations when there is memory. We use
stochastic pacing cycles to simulate the model to obtain the
data (a series of APDs) and we find an approximate polynomial
using a regression method. We are then able to produce bifur-
cation diagrams corresponding to the approximate restitution
function. We demonstrate the process with data generated by
the models of Tolkacheva et al. and Fox et al. The procedure is
summarized as follows: (1) Generate a random series of pacing
cycles in a time interval of interest from some distribution.
(2) Apply stimuli with this pacing protocol and record the
corresponding APDs. (3) Compute T̄ and Ā, the sample mean
of the pacing cycles and APDs, respectively, and then for each
(k,p) find a polynomial in the form (3.5) by regression and
obtain the RSS and RSE values. (4) Compute the BIC value
for each approximation and determine the optimal (k,p) which
has minimal BIC value. (5) Use the corresponding polynomial
H

p

k to approximate the dynamics and determine the bifurcation
structure.

The method of stochastic pacing we introduce here has
several advantages over previous protocols: (1) The pacing
protocol is simple, as we only need to generate a few hundred
pacing cycles; (2) the approximate dynamics is obtained in an
entire time interval of interest, not merely at a single point; (3)
we are able to deal with cases when the fixed point is unstable
and alternans appears, thereby detecting bifurcations; and (4)
we have a high order of accuracy.

While we illustrated this method using data from specific
models, one could also generate the data using full ionic
models, or directly from in vitro experiments. We also expect
that this method can be used to analyze data from in vivo

experiments. In vivo, the pacing protocol is not externally
generated but, because it is variable, the same ideas can be
applied. In future work, we will use this method to study
several important ionic models.
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APPENDIX

1. Tolkacheva et al.’s model

The mapping model of Tolkacheva et al. [21] is in the form

Ãn+1 = f (Ãn,D̃n) = C1 − rcur

P (Ãn,D̃n)

+
√

1 − C2

P (Ãn,D̃n)
+

[
rcur

P (Ãn,D̃n)

]2

, (A1)

where Ãn = An/τsclose and D̃n = Dn/τsclose are dimensionless
variables, and

P (Ã,D̃) = 1 − (1 − G(Ã)e−Ã)e−Drgate , (A2)

G(Ã) = rcurÃ − (1 − vcrit)rmix

1 − exp[−Ã + rmix(vsig − vcrit)/rcur]
, (A3)

with the constants

C1 = 1 + rmix

rcur
(vsig − vcrit), C2 = 2[rcur + rmix(vsig − 1)].

(A4)

Typical values of the parameters are listed in Table VI.
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TABLE VI. Typical parameter values in Tolkacheva et al.’s model.

Value Value
Parameter (ms) Parameter (dimensionless)

τsclose 1000 vcrit 0.13
τslow 127 vsig 0.85
τung 130 κ 40
τsopen 50 vvout 0.1
τfopen 18
τfclose 10
τfast 0.25

2. Fox et al.’s model

The mapping model by Fox et al. [22] is in the following
form:

An = f (Dn−1,Mn),

Mn = g(Mn−1,Dn−1,An−1), (A5)

Dn = Tn − An,

TABLE VII. Typical parameter values in Fox et al.’s model.

Parameter Value Units

c0 0.9 dimensionless
c1 88 ms
c2 122 ms
c3 40 ms
c4 23 ms
τ 160 ms

where

f (D,M) = (1 − c0M)

(
c1 + c2

1 + e−(D−c3)/c4

)
, (A6)

g(M,D,A) = e−D/τ [1 + (M − 1)e−A/τ ]. (A7)

Typical values for the parameters are given in
Table VII.
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