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Process time distribution of driven polymer transport
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We discuss the temporal distribution of dynamic processes in driven polymer transport inherent to flexible
chains due to stochastic tension propagation. The stochasticity originates from the disordered initial configuration
of an equilibrium polymer coil, which results in random paths for tension propagation. We consider the process
time for when translocation occurs across a fixed pore and when stretching occurs by pulling the chain end.
A scaling argument for the mean and standard deviation of the process time is provided using the two-phase
picture for stochastic propagation. The two cases are found to differ remarkably. The process time distribution of
the translocation exhibits substantial spreading even in the long-chain limit, unlike that found for the dynamics
of polymer stretching. In addition, the process time distribution in the driven translocation is shown to have a
characteristic asymmetric shape.
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I. INTRODUCTION

Polymer transport is a ubiquitous and fundamental process
in biological science and technology. A good example is
polymer translocation, in which a polymer (e.g., DNA or
RNA) is driven across a small pore by a chemical or electric
potential difference. Individual translocation events can be
detected by applying an external force [1–7], allowing the
fundamental properties of polymer transport to be investi-
gated. In addition, many theoretical investigations have been
conducted [8–18]. Statistical results obtained in experiments
exhibit a wide distribution in translocation times (i.e., the time
taken for a polymer to pass through a pore) [5,6]. In addition,
numerical simulations have generated considerable insight
[13,14,18–26], which also indicated a broad distribution of the
translocation time [25,26]. Currently, the mean translocation
time is attracting a lot of interest, particularly its scaling
exponents with respect to chain length N0a (N0 is the segment
number with size a) and driving force f. However, fluctuations
in the translocation time need to be clarified to fully understand
the translocation process, but they have received less attention
to date.

As is well known, a polymeric chain in equilibrium
is a fluctuating coil whose configuration is mathematically
described by the trajectory of a random (or self-avoiding)
walk. It seems reasonable that when a force is suddenly
applied to a portion of the chain, the entire chain will not
immediately respond to the stimulus but only the portion of
the chain that is initially set in motion. The responding domain
gradually evolves over time with the propagation of tension
along the chain backbone. In domain growth, the propagation
front of the tension follows the disordered trajectory char-
acteristics of a random coil configuration. The present study
investigates the stochastic dynamics of tension propagation,
which affects the process time distribution of driven polymer
transport.

*saito@stat.phys.kyushu-u.ac.jp
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II. ORIGIN OF STOCHASTICITY

There are generally two sources of the stochasticity in
stochastic processes: noise (random forces) and uncertainty
in the initial distribution. In the case of polymer transport,
the former source is the Brownian force, which is thermal in
origin, while the latter source is reflected in the equilibrium
configuration when one end of the chain arrives at the pore
at time t = 0. To quantify the relative importance of these
two sources, we consider the time scale involved in polymer
transport over a distance X by an external force. Two time
scales can be identified: the diffusion time τD(X) � X2/D,
where D is the diffusion coefficient, which depends on the
chain conformation, and the convection time τf (X) � X/V ,
where V = f/� is the mean biased velocity and � is
the frictional coefficient, which is related to the diffusion
coefficient through the Einstein relation D = kBT/�. The
ratio Pe(X) ≡ τD(X)/τf (X) � fX/(kBT ) defines a Peclet
number. From the condition Pe(Req) > 1, where Req is the
equilibrium coil size, the condition for the driven transport
regime can be derived as fReq/(kBT ) � 1, where the effects
of thermal fluctuations become relatively unimportant. For
stronger forces Pe(a) > 1 ⇔ fa/(kBT ) � 1, the Brownian
force can be neglected even when considering the transport
of a single segment. On the other hand, there is inevitably
an uncertainty in the initial distribution, irrespective of the
driving force. This uncertainty is expected to be a major
cause of the wide translocation time distributions observed in
experiments.

Below, we neglect minor effects associated with the
stochasticity due to the Brownian force. We consider the trans-
port time distribution due to stochastic tension propagation
along a random backbone trajectory for two cases: driven
translocation across a pore for which the external force is
spatially fixed and stretching by suddenly pulling one chain
end, for which the forcing point is fixed. The stochastic
scenario allows higher cumulants (e.g., the standard deviation
and skewness) to be discussed in addition to the average of the
process time distribution.
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FIG. 1. (Color online) Schematic representation of driven poly-
mer translocation (in the trumpet [TP] regime). The tensed moving
domain is shaded. The propagation front of the tension is located at
x = −RN . The top and bottom snapshots depict stochastic evolution
along the initial disordered configuration during time interval �t .

III. DRIVEN TRANSLOCATION

We first consider driven translocation. To analyze the
nonequilibrium response, we adopt the two-phase picture
[11,12,15,16] in which the chain separates on the cis side into
quiescent and moving domains. As illustrated in Fig. 1, the
coordinate x is taken to be perpendicular to the wall with the
pore. The driving force acts only at the pore site (x = 0) with
a constant force magnitude f in the x direction from the cis to
the trans side. The linear polymer consisting of N0 segments is
initially in x � 0. The polymer segments are numbered from
one end of the chain to the other end (N0th segment); the first
segment arrives at the pore at time t = 0. As time evolves, the
rear segments are gradually sucked and the moving domain on
the cis side grows in the negative x region. At time t , M(t) is
the number of the segment at the pore (x = 0) and N (t) is the
segment number at the tension-propagation front (x = −RN ).
The propagation front follows a random path sampled from
equilibrium coil configurations. Consequently, the dynamics
of a particular sample strongly depends on how the polymer
is brought to the pore. Below, the length, force, and time are
made dimensionless by employing units of the segment length
a, force kBT/a, and time ηa3/(kBT ), respectively (where kBT

is the thermal energy and η is the solvent viscosity).
Here, we introduce the relevant exponents. The Flory

exponent ν and the dynamical exponent z are associated with
the static and dynamic properties, respectively; the equilibrium
coil size is described by Req � Nν

0 and the hydrodynamic drag
force acting on the coil with moving velocity V is described
by ∼ Rz−2

eq V [27]. The exponents have the following values
in practical important cases: ν = 1/2 (for an ideal chain), ν =
ν3 � 0.5876... (for a three-dimensional self-avoiding chain),
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FIG. 2. (Color online) Illustration of the deformed shapes asso-
ciated with the different driving force magnitude. (a) Trumpet (f� <

f < f ∗); (b) stem-flower (f ∗ < f < f ∗∗); (c) strong-stretching
(f ∗∗ < f). (See Ref. [15] for more details.)

z = 3 (for nondraining case), and z = (1 + 2ν)/ν (for free-
draining case).

The moving domain is characterized by the dynamical
equations of state [11,12,15,28,29], which describe the global
polymer conformation in terms of the driving force f ,
the extension RN along the x axis, and the representative
velocity V :

N (t) − M(t) = σF (f )RN, (1)

RNV = Z(f), (2)

with

σF (f ) �
{

f − 1−ν
ν (f� < f < f ∗) · · · [TP]

1 (f ∗ < f) · · · [SF], [SS]
(3)

Z(f) �
{

f z−2 (f� < f < f ∗) · · · [TP]

f (f ∗ < f) · · · [SF], [SS],
(4)

where σF (f ) is the line segment density at the fore end (pore)
and f� � N−ν

0 , f ∗ � 1, and f ∗∗ � Nν
0 are the characteristic

forces separating different regimes. The derivation of these
forces and characteristic regimes with deformed shapes [TP],
[SF], and [SS] are described in Ref. [15]. The deformation
characteristics illustrated in Fig. 2 are briefly introduced below:
(a) in the trumpet [TP] regime, the nonuniform deformation is
analyzed in terms of the space-dependent blob model; (b) in
the stem-flower [SF] regime, the front end is almost fully
stretched, whereas the rear end retains a blob-like shape;
(c) all the tensed segments are almost completely stretched
in the strong-stretching [SS] regime. Checking the Peclet
number, we find that Pe(Req) � 1 ⇔ f � N−ν

0 , which covers
the deformed shape regimes.

A. Stochastic evolution of tension propagation

In this section, we discuss the stochastic time evolution
of tension propagation. By putting the segment flux at pore
dM/dt = σF (f )vF into the time derivative of Eq. (1), we
have

dN

dt
= σF vF + σF

dRN

dt
, (5)

where vF = v(x = 0) is the segment velocity at the pore. To
proceed, we apply the steady-state approximation by setting
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V ≡ vF :

dN

dt
= σF V + σF

dRN

dt
. (6)

Note that the adopted steady-state ansatz V ≡ vF is different
from that in our previous studies V ≡ vR = v(x = −RN ) [11,
12,15]. The reason for the present choice lies in the fact that it is
consistent with the iso-flux condition required for the moving
domain in the translocation process [16], while the previous
one is not (see Appendix A).

Equation (6) can be arranged into a stochastic differential
equation that expresses the stochastic evolution of t as a
function of N

dt = A dN + B dRN (7)

A = 1/(σF V ) (8)

B = −1/V, (9)

where dRN is the noise originating from the initial random
configuration.

At first sight, Eq. (7) seems to consist of a deterministic
drift term and a noise term. However, this is not the case, since
V is also a stochastic variable. By substituting Eq. (2) into
Eq. (7), we obtain

dt = (RN/(σFZ)) dN − (RN/Z) dRN. (10)

Integrating this equation with respect to N yields

t = (σFZ)−1
∫ N

0
Rkdk − (2Z)−1R2

N, (11)

where we adopt a midpoint discretization scheme in the
definition of the stochastic integral.1 The second term
is obtained from

∫ N

0 RkdRk ≡ ∑N
i=1(1/2)(Rk + Rk−1)[Rk −

Rk−1] = (1/2)[R2
k − R2

0] and the initial condition R0(t = 0) =
0. This leads to the mean value:

〈t〉 = (σFZ)−1
∫ N

0
〈Rk〉dk − (2Z)−1

〈
R2

N

〉
(12)

� 	1(λ = 1)(σFZ)−1N1+ν − Z−1N2ν, (13)

where 〈· · ·〉 denotes the ensemble average over the initial
conditions. To derive Eq. (13), we assume that the spatial
distance from the pore site to the kth segment’s position at
the initial time (t = 0) has a normalized distribution function
[27,33]:

P1(Rk) = k−νψ1 (Rk/kν) . (14)

This gives the mean value of the positive power of Rk as

〈
Rλ

k

〉 =
∫ ∞

0
Rλ

k k
−νψ1

(
Rk

kν

)
dRk = 	1(λ)kλν, (15)

1We adopt the Stratonovich (midpoint discretization) scheme
because it is expected to be suitable for describing real physical
phenomena (random coil configuration) in terms of idealized δ-
correlated noise and because it is compatible with conventional
formulas in real analysis [30]. Note, however, that the scaling
exponents are not altered in this case, even if the Ito integral is
employed.

where the numerical coefficient 	1(λ) ≡ ∫ ∞
0 uλψ1 (u) du fol-

lows from the variable transformation u ≡ Rk/kν . The fact
that ψ1(u) is expected to decrease exponentially at the large u

guarantees the convergence of the above integral for positive λ.
We then substitute Eq. (15) into Eq. (12) because the exponents
of all terms in Eq. (12) are positive. For a strong force f > 1
or a long chain N 
 1, the first term in Eq. (13) is dominant,
so we obtain the following scaling for the mean translocation
time of the N th segment

〈t〉 � N1+ν

σF (f )Z(f )

�
{

N1+νf 1+ 1
ν
−z (f� < f < f ∗) · · · [TP]

N1+νf −1 (f ∗ < f) · · · [SF], [SS]
. (16)

The mean square time is given by

〈t2〉 = (σFZ)−2

〈 [∫ N

0
Rkdk

]2 〉
+ (2Z)−2

〈
R4

N

〉

−σ−1
F Z−2

〈 [∫ N

0
Rkdk

]
R2

N

〉
(17)

� 	2(1,1) σ−2
F Z−2N2+2ν + 	1(4)Z−2N4ν

+	2(1,2) σ−1
F Z−2N1+3ν, (18)

where, as before, we assume a normalized joint distribu-
tion function P2(Rm,Rn) = m−νn−νψ2(Rm/mν,Rn/nν) for
the spatial distances Rm and Rn at the initial time (t = 0).
This enables the mean value of the product of Rλ

m and R
μ
n to

be calculated: 〈
Rλ

mRμ
n

〉 = 	2(λ,μ)mλνnμν, (19)

where the numerical coefficient 	2(λ,μ) ≡∫ ∞
0 dum

∫ ∞
0 dun(um)λ(un)μψ2(um,un) follows from the

variable transformation um = Rm/mν and un = Rn/nν .
Combining Eqs. (13) and (17) gives the standard
deviation SD(t) =

√
〈t2〉 − 〈t〉2. Since the cross-correlation

〈�Rλ
m�Rλ

n〉 = [	2(λ,λ) − 	1(λ)2]mλνnλν > 0, where
�Rλ

m ≡ Rλ
m − 〈Rλ

m〉, we obtain the following scaling relation
for the standard deviation

SD(t) � N1+ν

σF (f )Z(f )
, (20)

which has the same scaling structure as that of the mean time;
i.e., SD(t) ∼ 〈t〉.

There are two distinct stages in the driven translocation
process: tension propagation and post-propagation. The above-
mentioned scenario considers the tension-propagation stage
only. In the post-propagation stage, the moving domain
consists of the entire chain on the cis side [11,12,15]. The
total translocation time is then given by τ = τp + τpp, where
the first and second terms on the right-hand side, respectively,
correspond to the tension-propagation and post-propagation
periods. Equation (6) can be applied to the post-propagation
stage (N = N0 = const.) dynamics by using the trivial condi-
tion dN0/dt = 0. Combining it with Eq. (2) leads to

dt = −V −1dRN � −Z(f )−1RNdRN, (21)

where it is noted that the stochasticity in the tension prop-
agation pathway is no longer relevant; thus, Eq. (21) is a
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FIG. 3. (Color online) Numerical calculation of the stochastic
translocation process under the SF or SS regimes. Double logarithmic
plots of the mean and standard deviation against (a) the segment
number N and (b) the magnitude of the driving force f.

deterministic equation. Solving this, we find the post-
propagation time 〈τpp〉 = Z(f)−1〈RN (τp)2〉 � Z(f)−1N0

2ν .
This means that, at the scaling level, τpp is a correction
term, so that the translocation time is eventually written as
τ � τp [11,12,15]. In this study, we regard the translocation
time as τ � τp.

B. Discussion

We have argued that the scaling exponents of the mean
time are the same as those of the standard deviation in their
respective regimes. To test the above scaling predictions,
we numerically integrated the stochastic differential equation
[Eq. (10)] for a Rouse chain (i.e., no excluded volume ν = 1/2
and no hydrodynamic interactions z = 4). In this simplest case,
the apparent random force dRN/dN becomes white noise [32]
as 〈 dRN

dN
dRK

dK
〉 = δ(N − K), which enable us to treat the noise

term in the stochastic differential equation as the Wiener
process [31]. Such noise is generated by a reflecting boundary
(x = 0) that the propagation front cannot cross. Figures 3–5
show the corresponding numerical results in the SF or SS
regimes [Eq. (2) and bottom lines of Eqs. (3) and (4)]. The
triangles in Fig. 3 indicate the theoretical exponents; they show
that the slopes correspond very well with the numerical results.

The distribution function contains more information about
the translocation time. The profiles obtained in most numerical
studies are asymmetric, having a single left-skewed peak
[24–26]. Rapid translocation experiments have also typically
exhibited asymmetric profiles [5,6], although some have
given right-skewed or symmetric profiles [3,7]. Figure 4(a)

(a)
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FIG. 4. (Color online) (a) Frequency distribution of the process
(tension-propagation) time τp = t(N0,f)(� τ ) for translocation with
N0 = 500, f = 100. (b) Probability density function as a function
of normalized propagation time (τp − 〈τp〉)/SD(τp) for various con-
ditions. The SF or SS regimes are adopted and the sample number is
10,001.

demonstrates a histogram of the translocation time for the
chain length N0 = 500 obtained by our numerical integration.
A characteristic profile with a single left-skewed peak in
the time distribution is clearly observed. Similar asymmetry
was observed over a broad range of parameters, as shown
in Fig. 4(b) [where the translocation time is normalized
as (t − 〈t〉)/SD(t)]. To gain a better understanding of the
asymmetry, the following skewness (=third cumulant/SD

3)
was analyzed:

γ1 ≡
〈 [

t − 〈t〉
SD(t)

]3 〉

= 〈t3〉 − 3〈t2〉〈t〉 + 2〈t〉3

SD(t)3
. (22)

Introducing the normalized joint distribution for the three seg-
ments P3(Rk,Rm,Rn) = k−νm−νn−νψ3(uk,um,un) with uk =
Rk/kν , um = Rm/mν , and un = Rn/nν , we obtain 〈t3〉 ∼ 〈t〉3

through a similar discussion of the derivation of 〈t〉 and 〈t2〉.
Thus, the skewness γ1 is constant on the scaling level and the
profiles approximately overlap each other. According to recent
numerical result [25], the probability profiles for different
chain lengths converge well on the single curve through the
normalized time axis, which are consistent with the present
finding.

What factor is responsible for the asymmetric profile? An
equilibrium coil in free space retains a symmetric configura-
tion. However, this is not the case for the initial configuration
of a translocating polymer when a wall excludes the polymer,
one end of which is located at the pore. To clarify this point,
we check the initial segment-distribution function obtained as
follows:

Pini(N,x) =
√

2N/πe−x2/(2N), (23)

where x � 0 and
∫ 0
−∞ Pini(N,x)dx = N . This is ob-

tained by solving the diffusion equation ∂NPini(N,x) =
(1/2)∂2

xPini(N,x) with the reflecting boundary condition
∂xPini(N,x)|x=0 = 0. In Eq. (23), the reversal point xref ;
i.e., Pini(N,xref + x) = Pini(N,xref − x) for xref < 0 does not
hold. In other words, the configuration symmetry is violated;
this is the only source of the asymmetric translocation time
distribution in our model. Since the tension-propagation mech-
anism under a strong force has received strong support from
numerical studies [18,22,24], and, according to Fyta et al. [23],
the translocation time depends on the initial configuration,
it is reasonable to assume that stochastic evolution of the
tension propagation along the initial asymmetric configuration
gives rise to the left-skewed profiles observed in numerical
and experimental studies. Conversely, the detection of other
translocation time profiles (e.g., right-skewed and symmetric
profiles [3]) may be regarded as a good indicator that other
factors (such as specific interactions in the pore) dominate the
process.

Figures 5(a) and 5(b) show plots of the normalized standard
deviation (NSD) SD(t)/〈t〉. It is nearly constant against the
parameters f and N0(
 1). The experimental results in ref. [5]
collecting simple translocation events without folding show
that the NSD has values in the range � 0.1–0.2 independent
of the chain length; this is in qualitative agreement with our
prediction.
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IV. STRETCHING

In this section, we consider a different protocol for chain
transport in which one end of a linear polymer chain is pulled
suddenly, as shown in Fig. 6. If the linear polymer chain
is initially relaxed in solution and one end is pulled by a
constant force f in the x direction after t = 0, the chain
will be progressively deformed and will eventually settle in
a steady state [34]. Applying the two-phase picture and the
stochastic method in a similar manner as above, we analyze
the stretching dynamics and derive the mean time of the
transient process and its standard deviation. The segments
are numbered from the pulled segment (one chain end) to
the other end. The positions of the front and the rear ends in
the moving domain are x = l(t) and −RN (t), respectively; the
pulled segment is initially located at the origin. Here, again,
we utilize the dynamical equation of state to characterize the
global conformation [34]:

N = σF (f)L (24)

LV = Z(f), (25)

where the extension along the x-direction is L = l + RN (see
Fig. 6), and σF (f),Z(f) are given in Eqs. (3), (4), respectively.
Evidently, Eqs. (24) and (25) exactly correspond to Eqs. (1)
and (2), respectively.

x

f

l-R
N

N

0

R
eq

FIG. 6. (Color online) Schematic representation of the stretching
process (in the trumpet [TP] regime). The tensed moving domain is
shaded.

A. Stochastic evolution of tension propagation

Combining the boundary condition dl(t)/dt = vF (t) �
V (t) with the time derivative of l = L − RN , we obtain

dL

dt
= V + dRN

dt
. (26)

Combining Eqs. (24) and (25) with Eq. (26) gives the stochastic
equation

dt = A dN + B dRN, (27)

where dRN acts as an apparent random force with 〈dRN 〉 = 0,
and

A = σF (f )−2Z(f )−1N (28)

B = −σF (f )−1Z(f )−1N. (29)

In contrast to Eqs. (8) and (9) for the translocation dynamics,
Eqs. (28) and (29) contain only deterministic variables.
Integrating Eq. (27) with respect to the segment number leads
to

t = N2

2σ 2
FZ

− 1

σFZ

∫ N

0
k
dRk

dk
dk. (30)

We then take the ensemble average to give

〈t〉 = N2

2σF (f )2Z(f )

�
{

N2f
2
ν
−z (f� < f < f ∗) · · · [TP]

N2f −1 (f ∗ < f) · · · [SF], [SS]
. (31)

The mean square of the process time is calculated to be

〈t2〉 = N4(
2σ 2

FZ
)2 + 1

σ 2
FZ2

∫ N

0
dm

∫ N

0
dnmn

〈
dRm

dm

dRn

dn

〉

= (
2σ 2

FZ
)−2

N4 + c(σFZ)−2N2+2ν, (32)

where c is a numerical coefficient of order unity. Note that
〈 dRm

dm

dRn

dn
〉 = δ(m − n) and 〈 dRm

dm

dRn

dn
〉 � (m − n)2ν−2 for ideal

and self-avoiding chains, respectively. We then obtain the
standard deviation

SD(t) � N1+ν

σF (f )Z(f )
,

�
{

N1+νf 1+ 1
ν
−z (f� < f < f ∗) · · · [TP]

N1+νf −1 (f ∗ < f) · · · [SF], [SS]
, (33)

and the NSD

SD(t)

〈t〉 � σF (f)N−1+ν . (34)

B. “Stretching” versus “translocation”

Comparison of Eqs. (16) and (20) with Eqs. (31) and (33)
reveals that the process distributions for “translocation and
“stretching” differ remarkably. In the former case, the scaling
exponents of the mean and the standard deviation are identical
so that SD(t)/〈t〉 → const. > 0 in the limit N → ∞. In the
latter case, Eq. (34) indicates SD(t)/〈t〉 → 0 in the limit N →
∞. To determine the cause for this difference between the
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two cases, we compare the relevant equations by listing them
again:

Translocation ⇔ Stretching

N − M = σF (f )L
LV = Z(f )

(N − M)V = σF (f )Z(f )

}
⇔

{
N = σF (f )L
LV = Z(f )
NV = σF (f )Z(f )

(35)

L = RN ⇔ L = RN + l. (36)

Equations (35) are a set of different forms in the dynamical
equations of state, Eqs. (36) give the chain extension in the
moving domain. The scaling forms of σF (f ) and Z(f ) are
given in Eqs. (3) and (4). As is clear from this comparison,
the essential difference is found in Eqs. (36), i.e., in the
translocation process, the segments with their label smaller
than M(t), which are in the trans side, are already free from the
driving tension, thus, are not relevant to the moving domain.

First, this leads to the so-called iso-flux condition N (t) �
M(t) to leading order [16]. One can indeed check N (t) 

σF 〈RN (t)〉 using the first moment relation 〈RN (t)〉 � N (t)ν

[Eq. (15)].
Second, this causes the qualitative difference in the

stochastic effect in two processes. In the stretching dynamics,
the evolution of the moving domain has two components
[Fig. 6; the right equation in Eqs. (36)]. One component
is the pulled-out part of size ≈ l and the other component
is the rear part of size ≈ |RN | due to the tension spreading.
The former dominates the process (l 
 |RN |), giving rise to
the deterministic term in the stochastic differential equations
[Eqs. (27) and (28)], while the latter acts as a small noise
term [Eqs. (27) and (29)]. In contrast, in the translocation
dynamics, the moving domain has only a stochastic com-
ponent RN [Fig. 1; the left equation in Eqs. (36)], which
results in the nonvanishing NSD, even in the long-chain
limit.

V. REMARKS AND SUMMARY

Before concluding, let us make some comments concerning
the relation between the present study and other theoretical
studies of polymer translocation.

First, we have focused on the “driven regime” (i.e., f >

f� � N−ν
0 ) for which the chain deformation dynamics are

important alongside tension propagation. In particular, as
noted in Sec. II, we expect that our approach can accurately
calculate the process time distribution in the strong force
regime Pe(a) > 1 ⇔ f > f ∗ � 1. In such situations, the
retardation effect due to segment accumulation on the trans
side provides only a weak perturbation so that it can be
neglected for asymptotic scaling. However, it is essential to
appropriately treat the trans side to describe the translocation
process in the weak-force “near-equilibrium” regime f <

f�, as has been done in several studies [8,13,14]. In this
regime, the Brownian force also greatly influences the process
time distribution. It is interesting to determine the scaling
structure of the standard deviation in such a weak-force
regime.

Second, the pore has been assumed to be only geometric
constrictions. We have restricted ourselves to this simplest
situation to get a clear-cut impact of the initial polymer

configuration on the process time distribution. However,
elucidating the case with functionalized pores with friction,
confinement, or specific interactions with polymers is an
important problem.

To summarize, we have discussed the process time dis-
tribution for driven polymer transport inherent in a flexible
molecular chain. The tension propagates with time along
random paths following the initial configuration and the
stochastic propagation mechanism is introduced as the dis-
tribution origin. We give the formulation for the two cases of
translocation and stretching, which involve different forcing
points. The forcing point of the former process is fixed
in the rest frame, whereas that of the latter process is fixed
to the chain end. Our analysis predicts the scaling exponents
of the first and second cumulants (mean, variance) in the
process time. In translocation dynamics, the probability
distribution of the process time has a characteristic asymmetric
shape, which may reflect the initial shapes, and fluctuation
effects remain substantial even in the long-chain limit. On
the other hand, the broadness of the distribution in stretching
dynamics becomes unnoticeable in the long-chain limit.
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APPENDIX A: STEADY-STATE ANSATZ AND ISO-FLUX
CONDITION

Recently, Rowghanian and Grosberg pointed out a unique
property inherent to the moving domain in the translocation
process; that is to say, the segment flux is almost constant
everywhere in the moving domain [16]. This leads to the
balance of the fluxes into and out of the moving domain, i.e.,
σF vF � σRvR , where vR = v(x = −RN ) and σR = σ (x =
−RN ). The subscript “R” indicates the rear part of the moving
domain, where the last tensed blob of size ξR � gν

R � v
1/(1−z)
R

is located (for f > f ∗∗, ξR � gR � 1). In the appendix, we
shall make a connection between the iso-flux condition and
our steady-state ansatz.

The steady-state approximation would be valid under the
condition; τrelaxγ̇ � 1 ⇔ δv � V with the representative (or
average) velocity V (t) = v(x,t) with ∃x ∈ [−RN,0], the re-
laxation time τrelax � RN/V and the shear rate γ̇ � δv/RN =
(vF − vR)/RN . For the concreteness, we focus on the TP
regime and investigate the velocity difference inside the mov-
ing domain under iso-flux condition. By using Eqs. (2), (3),
and (4), the flux balance σF vF � σRvR is transformed as

vF /vR = σR/σF � (1 − δvR/V )−q(f RN )q, (A1)
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where vF = V + δvF , vR = V − δvR , and σR � gR/ξR �
v

−q

R , with q = (1 − ν)/[(z − 1)ν]. Then, we find

1 + δvF

V
= (f RN )q

(
1 − δvR

V

)1−q

. (A2)

Note that (f RN )q > 1 holds under the deformed shape
regimes.

(i) If we assume V (t) = vR , the iso-flux condition Eq. (A2)
becomes δv/V = (f RN )q − 1, which might not satisfy the
condition for the steady-state approximation.

(ii) If V (t) = vF , the iso-flux condition Eq. (A2) be-
comes δv/V = 1 − (f RN )−

q

1−q < 1; thus, the condition for
the steady-state approximation is satisfied. In a similar way,
the validity of the steady-state approximation with V = vF is
verified in the SF regime, too, while the iso-flux condition is
trivially realized under the SS regime.

In addition, we can check the correspondence at the level
of the dynamical equation. The local force balance under TP
regime is generally given by

1

ξ (x,t)
=

∫ 0

−RN

v(x,t)ξ (x,t)z−2dx. (A3)

Its spatial derivative leads to −∂xξ (x,t) = v(x,t)ξ (x,t)z−1. We
find its solution as

ξ (x,t) =
[∫ x

−RN

v(x,t)dx

] 1
2−z

. (A4)

Putting the force balance at pore f = 1/ξF = 1/ξ (x = 0,t)
leads to

RN

[
1

RN

∫ 0

−RN

v(x,t)dx

]
= Z(f ). (A5)

This is the dynamical equation of state [Eq. (2)] with the
“average velocity” V (t) ≡ 1

RN

∫ 0
−RN

v(x,t)dx.
In evaluating the average velocity V (t), the fore end

has the dominant weight under the iso-flux J (t) condition,
since v(x,t) = J (t)/σ (x,t) increases toward the fore part
given the nonuniform spatial segment profile. Thus, V (t) =
[ 1
RN

∫ 0
−RN

v(x,t)dx] � v(x = 0,t) = J (t)/σ (x = 0,t) is ex-
pected so that the reasonable correspondence between the
steady-state approximation with the ansatz V (t) = vF (t) and
the iso-flux model [16] is found. By multiplying σF to both
sides of Eq. (2), we obtain the dynamical equation of state in
terms of the flux J (t) as RNJ = σF (f )Z(f ), which coincides
with the result based on the iso-flux model [16].
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