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Separation of long linear polymers in gel electrophoresis with alternating electric fields:
A theoretical study using the necklace model
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The necklace model, which mimics the reptation of a chain of N beads in a square lattice, is used to study
the drift velocity of charged linear polymers in gels under an applied electric field that periodically changes its
direction. The characteristics of the model allow us to determine the effects of the alternating electric field on
the chains’ dynamics. We explain why chains of different N can be made to move in opposite directions with a
nonuniform electric field with certain values of intensity and frequency. The key point is that, when alternating
electric fields are applied, longer chains spend more time out of the steady-state regime than lower chains.
Numerical results are obtained by means of Monte Carlo simulations and they are qualitatively in agreement
with experiments of DNA migration in gel electrophoresis.
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I. INTRODUCTION

Separation of DNA by size is a subject of great importance
in biophysics due to its wide applications in genetics. In
this area, the gel electrophoresis is one of the most studied
techniques. At present, the basic physics mechanisms involved
are not completely understood. Even today, with the help of
numerical models, the problem remains controversial.

It is well known that the drift velocity of charged linear
polymers in a gel, under a constant electric field, is independent
of size for large chains making impossible their separation.
However, for nonuniform electric fields, longer chains can be
separated. Also, chains of different sizes can be made to move
in opposite directions.

The pulsed-field electrophoresis technique, which exploits
the relation between mobility and orientation of the chains
in an external pulsed field, was independently proposed by
Schwartz and Cantor and by Carle and Olson [1]. After
that, different ways of applying variable electric fields in gel
electrophoresis of linear chains have been proposed [2–6]. An
excellent review was written by Viovy a few years ago [7].

The key step to the theoretical understanding of the
dynamics of entangled polymer melts was made by de Gennes
[8]. Afterwards, Doi and Edwards promoted the same idea [9].
de Gennes proposed that reptation is the main mechanism in
the dynamics of polymers in a medium with a high density
of obstacles, such as a gel or an entangled polymer melt.
According to this idea, the chain cannot move sideways due
to the surrounding obstacles that confine its motion to a
one-dimensional diffusion along a tube. Therefore, the chain
progresses by leaving part of the initial tube and creating a
new part as it moves. Rubinstein introduced the first discrete
model to study the dynamic of linear polymers in a medium
with dense obstacles [10]. Later, Duke adapted the Rubinstein
model to study gel electrophoresis of DNA [11].
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In this work, we study the drift of linear chains in a gel
under the presence of a changing external force. With the help
of the necklace model [12–14], we obtain numerical results
for an external force that changes its strength and direction
periodically. From these results, we explain in detail why in
experiments [6] the drift velocity of very large chains depends
on size whereas this does not occur under a constant electric
field.

II. THE MODEL

The linear chain, consisting of N beads, is represented by a
string of particles and holes and is placed in a square lattice of
constant a. The gel fibers (or other polymers), which play the
role of obstacles, are represented by crosses [see Fig. 1(a)].
The distance between two consecutive particles of the chain
can be a or, in the case that there is a hole between the particles,
21/2a or 2a. No more than one site can be empty between two
consecutive beads. A given lattice site can be occupied by more
than a particle or a hole only when the chain crosses itself. The
chain has two end particles and N–2 inner particles. Each end
particle only has one pre-end particle, that is, the consecutive
particle of this end particle along the chain. The number of
holes can vary from 0 to N–1.

At each Monte Carlo step, one of the N particles of the
chain is randomly chosen in order to jump and the time t is
increased by 1/N so that, at a time interval equal to 1, every
particle has, on average, one chance to be selected.

When external forces are not applied, the jumping rules of
the model are as follows [see Fig. 1(b) with δ = 0]:

(i) If the particle is located at the end of the chain and its
nearest site is occupied by its corresponding pre-end particle,
the end particle jumps with a probability per unit time pa/3,
to each of the three nearest sites that are not occupied by the
pre-end particle [see Figs. 1(b) or 1(c) with δ = 0]. Then, the
total jumping probability per unit time is pa . If the jump takes
place, a hole is created.
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FIG. 1. Schematic representation of the two-dimensional neck-
lace model. (a) Chains in a melt of other polymer chains or in a gel.
Filled circles represent particles of the chain, open circles represent
holes, and crosses represent the gel or other polymers that act as
obstacles. (b) Jumping rates for end and middle particles when a
forward external force is applied (δ > 0). (c) Jumping rates for end
and middle particles when a backward force is applied. In (b) and
(c) the jumping rates for particles that can jump in the direction of
the force are shown with black arrows; gray arrows correspond to
jumps in the opposite direction. Moreover, the applied force to every
particle is shown for each case.

(ii) If the particle is located at the end of the chain and its
nearest site is empty (i.e., there is a hole between this particle
and its pre-end particle), the end particle jumps to the hole
with a probability per unit time pb. If the jump takes place, a
hole is annihilated.

(iii) If the particle is not an end particle (i.e., it is a middle
particle) and one of its nearest sites along the chain is occupied
and the other one is empty, the middle particle jumps towards
the hole with a probability per unit time pc.

(iv) A middle particle with both nearest sites along the chain,
occupied or empty, cannot jump and remains at its original
position [see the only particle without arrows in Figs. 1(b) and
1(c)].

Hence, pa , pb, and pc are the free parameters in the necklace
model (0 � pa , pb, pc � 1). In the following, without loss of
generality, we will adopt that the distance a between adjacent
sites of the square lattice and the unit time are equal to 1. In this
work, the Monte Carlo results were obtained using pa = pb

= 0.25 and pc = 0.5. With these values of the parameters, the
hole distribution is uniform along the chain and, for N � 1,
the chain length l is proportional to N (see Ref. [13]).

If there is an applied external field, implying a force to the
right, the jumping rates of a particle to the right and to the left
will be considered to be (1 + δ)k and k/(1 + δ), respectively.
If the external field is reversed, the jumping rates of a particle
to the right will be k/(1 + δ) and to the left (1 + δ)k. k is the
jumping frequency when no force is applied, k = pa/3,k =
pb, or k = pc, and δ � 0. In what follows, in a general sense,
we will refer to δ as the applied force to a particle of the chain.
However, the external force applied to a particle has a net
horizontal component of magnitude 2δ and another vertical
component of the same magnitude. Thus, the net force applied
to every particle is 2 × 21/2δ; see Fig. 1(b) and 1(c).

We can also refer to the external force in terms of
a dimensionless applied electric field E. Indeed, 1 + δ =
exp(Ex /2) = exp(Ey /2), where Ex = Ey = E/(21/2) =
qeE

′
xa/kBT = qeE

′
ya/kBT , where E′

x and E′
y are the actual

electric field in the x direction and y direction, respectively. qe

is the electric charge of every particle and kB is the Boltzmann
constant. Note that for δ � 1, δ ≈ E.

In the following sections we report results for small forces,
i.e., δ � 1. Mainly, we focus our study on the effects that a
nonuniform external field produces on the drift velocity of the
center of mass of the chains when δ � 1 and N � 1. As is
demonstrated in [15], under these conditions, the drift velocity
is independent of N for a constant field.

III. RESULTS AND DISCUSSIONS

In this section we present and analyze in detail the effects
of alternate electric fields on the drift velocity of the chains.
During a time interval t1, a forward force δ1 is applied; next, a
backward force δ2 is applied in the opposite direction during
the other time interval t2. Figure 2 shows the external force
as a function of time. Thus, the external force has a period
T = t1 + t2. The values of the forces used in our Monte Carlo
simulations were δ1 = 0.005 and δ2 = –0.01. The parameter q

is defined as the ratio between t1 and t2, i.e., q = t1/t2.
We observed different behaviors for the mobility of the

chains that depends on the way that the external force is

FIG. 2. Scheme representing the external force δ versus time t . In
this work δ1 = 0.005 and δ2 = –0.01. t1 represents the time interval
in which the force acts “forward” and t2 the time interval in which
force acts “backward.” The period of the force, T , is T = t1 + t2 and
the parameter q is q = t1/t2.
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FIG. 3. Drift velocity of the center of mass of chains consisting
of N beads for different periods of the external force. These data and
their error bars were calculated from the values of Table I. The full
square symbols can be seen as the limit T → ∞. These results were
obtained using q = t1/t2 = 7/3 and the same behavior was observed
for other values of q. Monte Carlo results for cases T = 1.5 × 106, T
= 3.0 × 106, and T = 4.5 × 106 were obtained averaging over 500
samples. The error bars for each point cannot be seen in the graph
because they are of a size similar to the symbols.

applied. For certain values of q and T , some chains can move
in one direction and other chains in the opposite direction.
Even if the average value of the external force is null [i.e.,
〈δ〉 = (t1δ1 + t2δ2)/(t1 + t2) = 0], the drift velocity can be
different from zero. With the values of forces used in this work
(δ1 and δ2), when q > 2, 〈δ〉 is positive (forward direction).

In previous works (see Ref. [16]), chains are assumed to
travel with the steady-state velocity. However, as we will
show below, chains in the necklace model do not travel with
this velocity immediately after changing the direction of the
external force.

Figure 3 shows numerical results for the drift velocity of
the center of mass of chains when forces of different periods,
but the same value of q (q = 7/3 > 2), are applied. These
numerical results and the mean velocities that the chains would
have if they moved with the steady-state velocities (forward
during a time t1 and backward during a time t2) are shown. The
steady-state velocity is defined as the drift velocity when the
external force is constant. These values are shown in Table I;

TABLE I. Drift velocities of the center of mass of chains for
the case in which the external force is constant. They are the same
velocity values given in Fig. 2 of Ref. [15]. The steady-state drift
velocities were calculated using these values (square full symbols
of Fig. 3). Note that, considering the error bars, velocities for chains
with N � 150 do not dependon N .

Drift velocities under constant electric field
N 105vδ=0.005 105vδ=0.01

50 2.89 ± 0.1 6.90 ± 0.1
100 1.80 ± 0.1 5.30 ± 0.1
150 1.40 ± 0.1 5.10 ± 0.1
200 1.35 ± 0.1 5.20 ± 0.1
400 1.34 ± 0.1 5.20 ± 0.1

they correspond to the data of Fig. 2 in Ref. [15]. When external
forces are not applied, these velocities are null.

The aim of using nonuniform electric fields in gel elec-
trophoresis is to separate chains that cannot be separated
with a uniform electric field. Within the model, for the used
parameters, this occurs for chains with N�150 (Table I).
From Fig. 3, it is clear that, with increasing period, the drift
velocity tends to the value of the velocity that the chains would
have if they moved with the steady-state velocity (full square
symbols). These results reveal that the mean velocity, due
to the non-steady-state movement of the chains, decreases
gradually with increasing the period of external force. This
can be understood as follows. Let us call τ the time interval
that a chain of N beads needs to reach the steady-state velocity
after changing the direction of the external field. If the period
T is small, let us suppose T ≈ τ , the chain does not move
with the steady-state velocity because steady state is not
reached. Conversely, for a large enough period T , T � τ ,
the time interval τ for which the chain does not move with the
steady-state velocity becomes negligible in comparison to the
time the chain moves with the steady-state velocity. For this
reason, with increasing T (T → ∞), the mean velocity of the
center of mass of the chains tends to the curve of square
symbols in Fig. 3. Note that for a value of T ≈ τ corresponding
to a large chain, smaller chains can move most of the time with
the steady-state velocity because the interval time τ decreases
with the chains’ size.

Using the steady-state velocities, the mean velocity (full
square symbols in Fig. 3) for N�50 is negative even when the
mean force 〈δ〉 is positive (q > 2). The reason is the following.
For a given value of N , the steady-state velocity for a constant
force has a nonlinear dependence with the external field δ. For
example, for N�150 (see Table I) the behavior of v is close to
δ2. In general, v∼δ/N for Nδ � 1 and v∼δ2 for δ � 1 and
N � 1 (see, for example, [15] and reference cited therein).

It is interesting to note in Fig. 3 that there are chains that
move in the same direction of the average external force while
other chains move in the opposite direction. Furthermore, some
chains have an average velocity equal to zero (i.e., the center
of mass of these chains oscillates around a fixed point). The
value of N for having a null average velocity depends on T

and q.
At this point, one wants to know how the chains react to the

variable external force that makes them move so differently.
To explain this interesting behavior, in Fig. 4 we compare
the Monte Carlo numerical results for the displacement x,
the velocity of the center of mass v, and the end-to-end
distance of the chains r , versus time for N = 150 (left)
and N = 200 (right). Parameters were chosen so that chains
move in opposite directions. The direction of the external field
is schemed at the top of the graphs and the gaps between
dashed vertical gray lines correspond to each period of the
field.

Results of Fig. 4 correspond to the steady-state chains’
displacements under the applied alternate field. Specifically,
chains were moved during a time of 50 × 106 before making
measurements to guarantee that steady state was established.
We checked that this was the case by assessing the chains and
their movements. After that, chains were allowed to move for
another 10 periods of 1.5 × 106, the interval in which the
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FIG. 4. Displacement x, velocity of the center of mass of the
chains v, and end-to-end distance r versus time for chains with N =
150 (left) and N = 200 (right). Results were obtained using T =
1.5 × 106 and q = 2.125. In the top, the time dependence of the
external force is schemed. The gaps between dashed vertical lines
correspond to periods of external force. In both upper graphs, the
average displacements of the center of mass of the chains are indicated
with straight lines. The slopes of these straight lines represent the
average drift velocity of the chains along ten periods, 〈vN 〉 [〈vN=150〉
= (–4.0 ± 0.4) × 10−7 and 〈vN=200〉 = (3.0 ± 0.4) × 10−7]. In both
middle graphs, the instant velocity was calculated from the derivatives
of the upper graphs. The values of the velocities that the chains would
have if they moved with the steady-state velocity are indicated with
horizontal lines [v(δ1) and v(δ2)]. In both lower graphs, the values
of the end-to-end distances of the chains, for the case of uniform
external force, are indicated with horizontal straight lines [r(δ1) and
r(δ2)].

average drift velocity was determined with the slope of the
center of mass displacement.

In both upper graphs of Fig. 4, displacements of the
center of mass of the chains are shown. With straight lines,
the mean displacements of the center of mass of the chains are
indicated. Note that, on average, for N = 200 the chains move
forward and for N = 150 they move backward. In both middle
graphs, which show the instant drift velocities, the values of
the velocities that the chains would have if they moved with
the steady-state velocity are indicated with horizontal straight
lines [v(δ1) and v(δ2)]. In both lower graphs, the values of
the end-to-end distance of the chains are plotted; horizontal
straight lines correspond to results for the case of uniform
external force [r(δ1) and r(δ2)].

Note that the second graph of Fig. 4 is the instant velocity
of the center of mass of the chains determined as the derivative
of the displacements shown in the first graph. Instant velocities
to the right and to the left are on the order of 10−5. The average
velocity of the center of mass is a consequence of the difference
between the displacements during the chain movement to the

right and to the left. For the values of the parameters adopted,
the average velocity is on the order of 10−7, positive for N =
200 and negative for N = 150.

During the time interval t1, in which the force δ1 is applied
to the right, the end-to-end distance diminishes until reaching
the steady-state value (lower horizontal straight line). After the
time interval t1, the direction of the external force is changed
to the left for a time interval t2. Consequently, the end-to-end
distance increases until reaching its corresponding steady-state
value or until the direction of the external force is switched
again to the right. It is important to note at this point that the
stronger the external force, the larger the chains’ stretching
[15].

From graphs of instant velocity (middle graphs of Fig. 4),
it stands out that chains need a time of about τ to reach
the steady-state velocity after reversing the direction of the
external field. Sometimes chains never reach the steady-state
velocity (observed in Fig. 4 when the field is backward).
However, an appreciable difference between velocities for
N = 150 and N = 200, which explains why chains of different
size can move in opposite directions, is not easily detected.

In the lower graphs of Fig. 4, which represent the end-to-
end distance of the chains, one can appreciate a significant
difference between numerical results for N = 150 and
N = 200. Similarly to the results for instant velocities, after
switching the direction of the external field, the chains need
a time τ ′ to reach the end-to-end distance corresponding to
steady state.

Note that τ and τ ′ have different magnitudes; τ corresponds
to the velocity and τ ′ to the end-to-end distance of the
chains. For chains of N = 150, when the external force is
applied during a time t2 to the left, the chains reach the
steady-state value of the end-to-end distance approximately
when the external force changes again. From this, we can
say that τ ′

N=150 ≈ t2. As expected, for longer chains (N =
200) the time required to stretch them to the steady-state
value is greater because of the larger number of particles that
form the chains (i.e., τ ′

N=200 > τ ′
N=150). As it occurs in the

absence of obstacles, longer chains are also easier to stretch
when obstacles are present. This can be observed in Fig. 3 of
Ref. [15]; for longer chains under a given small external field,
the stretching per bead increases with N . Thus, beads of longer
chains have to overcome a larger number of obstacles after
applying or changing the external field before chains reach the
steady-state configuration. For this reason, chains of N = 200
cannot stretch completely when the force is applied backward
during a time t2. In other words, when the direction of the
external force is switched, longer chains are further away from
the steady-state configuration. This means that larger chains
remain more coiled than shorter chains, which directly affects
their movement. It has been shown that the drift velocity is
favored in stretched chains [15]; hence, chains of N = 150
move faster than chains of N = 200 during t2. It is interesting
to note that stretching mainly takes place along the direction
of the applied field, with the stretching in the perpendicular
direction being only a few percent of that in the direction of
the field.

In brief, the basic mechanism responsible for the observed
results is the following. During the time interval t2, when the
external force is applied backward, chains of N = 200 are not in
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steady state for a longer time (more coiled) than shorter chains.
Accordingly, the difference between the backward velocity and
the steady-state velocity is greater for chains with N = 200
than for chains with N = 150. Thus, longer chains present a
net forward drift velocity. Now, we can understand the results
shown in Fig. 3, where q = 2.33 (in Fig. 4, q = 2.125). For
example, results corresponding to T = 1.5 × 106 indicate that
the end-to-end distances of the chains reach the corresponding
steady-state value for N < 50. For this reason the velocity
decreases with N (longer chains have lower velocity). Instead,
for N�100, longer chains do not reach the steady state when
the force is backward. Thus, long chains can have velocities
that, on average, are positive.

The numerical results shown here explain why chains of
different sizes can move in opposite directions. If our goal
is to separate those chains, we must know the dispersion of
the center of mass as a function of time, σ (t), compared to
the distance between mean positions of the center of mass
of the chains. We observed that the dispersion grows as the
square root of time (i.e., σ ≈ t1/2). Conversely, the distance
between the center of mass of the chains increases linearly with
time. Therefore, chains of different sizes can be separated as
dispersions grow slower with time than the distance between
mean positions.

IV. CONCLUSIONS

In recent years, the applications of various fields have been
very useful in extending the size limit of DNA molecules in
gels that can be separated. In many works, the drift velocity

in the presence of a force that changes its direction has been
studied. However, the effects that this kind of external force
causes in the dynamics of linear chains are not well explained.

In this paper, as a natural extension of our previous work
with the repton model, we studied in detail the effects of a
variable force on chains with different sizes. We saw that
chains, which cannot be separated by size with a uniform force,
can be separated for certain values of intensity and frequency
of an external field. To explain this result, which is experimen-
tally observed [6], we proposed a straightforward argument
developed by analyzing the dynamics of the chains when the
direction of external force is reversed. We observed that, after
inverting the direction of the external field, the chains do not
move with the steady-state drift velocity. This is the “key” to
explaining the separation of chains with nonuniform external
fields.

In summary, it is well known that experimentally long
chains cannot be separated with uniform external fields but
they can be separated with alternating electric fields. As shown
in this paper a possible mechanism, which emerges naturally
in the necklace model, arises as a result of the chains moving
out of steady state.
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