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Solution of the Onsager model for the structure of rigid rods confined on a spherical surface
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We consider a free energy, within the framework of the Onsager approximation, for a spatially and
orientationally inhomogeneous distribution of hard rods confined on a spherical surface. These rods interact
with each other though the excluded-volume interaction, forming a textured nematic structure on the spherical
surface at high surface coverage. Our numerical solution to the model shows that the splay state, where on average
rods line up in parallel to the longitudes on the spherical surface, is the only stable state. Other types of textures
that have recently been suggested were also tested and all yield higher free energy than that of a ground splay
state. We also provide a study of the disorder-splay transition, which is shown to have first-order characteristics.
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I. INTRODUCTION

A nematic liquid confined on a closed surface forms a spa-
tially inhomogeneous nematic director field. At a theoretical
level, the interest in the coupled positional and orientational or-
dering can find a root in understanding the so-called hairy-ball
theorem—accompanying a vector field on the smooth, closed
surface are always some field singularities. The Poincaré-Hopf
theorem of differential geometry states that the sum of indexes
of all the topological defects must equal the Euler characteristic
of the closed surface—two for a spherical surface.

Consistent with this expectation, Nelson [1] suggested the
possibility of creating a four-fold tetravalent colloid particle
by coating it with a nematic shell, a sheet of anisotropic
objects such as nanorods, polymers, or gemini lipids. In this
case, the micron-sized particles would have four chemical
linkers similar to sp3 hybridized chemical bonds of carbon,
silicon, and germanium atoms and then are able to arrange
into a colloidal crystal with a diamond structure. Liquid-crystal
experiments have displayed the existence of these structures
[2,3], and proposals have been made to exploit these interesting
properties in materials [4–7].

The conformation consisting of Mermin’s boojums [8]—
the so-called splay conformation [Fig. 1(aI)]—is normally
thought of as the configuration for the nematic shell confined to
a spherical surface in a high density. The structure contains two
+1 defects at the north and south poles and is consistent with
the Poincaré-Hopf theorem. The possibility of the four-fold
tetrahedral symmetry of a nematic shell confined on a spherical
surface [Fig. 1(aII)] has been predicted by phenomenological
theories, such as the Frank continuum theory [1,9,10] and the
Landau-de Gennes model [11,12]. Such a tennis-ball confor-
mation contains four + 1/2 defects appearing at the vertices
of an equally sided tetrahedron on the spherical surface [1,9].

A good theoretical example of such a nematic field is the one
generated by rigid rods at high densities, confined on a sphere
of radius R. Generally, in a rod-on-surface model, the system
consists of N rodlike particles of length L, which interact
with each other through an excluded-volume interaction. The
orientational and positional entropies dominate at a low surface
rod coverage, giving rise to a system in an isotropic state
with no particular structural ordering. As the surface density
goes beyond a transition density, a nematic field starts to
develop in the system. An interesting question then becomes

the following: what type of defect configurations would this
system display? In this paper we focus on this well-defined
model system which contains no phenomenological constants
assumed in previous studies [1,9,11,12].

The competition between the entropic effects and the
excluded-volume interaction can be transparently reflected
by the main ingredients in an Onsager theory [13], which
has been used for describing nematic structure of rigid rods
in three dimensions [14]. In this work we generalize the
free-energy expression of Onsager, now suitable for a spatially
inhomogeneous system on a spherical surface, to study the
resulting nematic defect structure. As explained in our pre-
liminary report [15] and further detailed in this paper, the only
stable state we obtained was the splay configuration, within the
considered parameter range. This agrees with the observation
of recent Monte Carlo simulations of thin rods confined on
a spherical surface [16,17]. The result also agrees with the
general Frank-energy theory—rod systems have K1 � K3

[18,19], hence they only display the splay configuration [1].
Then, what drives the stability of the experimentally ob-

served nonsplay structures? Liquid-crystal molecules, which
are not exactly rigid, contain some semiflexibility. An inter-
esting real system is the liquid of 5CB molecules, which has
K1 ≈ K3 [20]. This falls into the range of Frank constants
where the tennis-ball structure can be stable. Indeed, a double
emulsion experiment indicates assorted defect structures in a
thin layer of 5CB liquid crystals [3].

Based on a Monte Carlo snapshot of rods on a spherical
surface, Bates [17] suggested a structure where the vector
joining the two defects near the north pole is parallel to
the vector joining the other pair near the south pole [17].
The defects show up at the four corners of a flat rectangle,
intersecting a great circle [(Fig. 1(aIII)]. By means of computer
simulations, Shin et al. [16] and Bates [17] also suggested
the existence of another interesting state that was called a
“cut-and-rotate” splay configuration—the pattern resembles
cutting a perfect splay state along the north-south pole plan and
then rotating one of the hemispheres by an angle [Fig. 1(aIV)].
We will assess the Onsager free energies of these possible
configurations in this paper to evaluate their instability.

We aim at finding an exact solution of the free-energy model
[Sec. II A] using a multiple-variable approach [Sec. II C], so
that the free energy can be minimized with no ambiguous
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FIG. 1. (Color online) Four possible configurations considered
in this work: (aI) and (bI) splay, (aII) and (bII) tennis-ball, (aIII) and
(bIII) rectangle, and (aIV) and (bIV) cut-and-rotate splay. Plots (bI)–
(bIV) represent entropy field maps that are produced according to the
procedure explained in Sec. III D, from our numerical solution in this
work.

approximations. Incorporating the symmetric properties of the
splay, tennis-ball, rectangle, and cut-and-rotate splay config-
urations [Sec. II B], we can also enforce the system to search
for the possible existence of these different states. One of the
main results from this exercise is that the global minimum of
the free energy corresponds to only one state, namely, the splay
state. Within a wide range of the searched parameter space,
tennis-ball, rectangle, and cut-and-rotate splay configurations
do not correspond to a free-energy minimum [Secs. III A–
III D]. Furthermore we defined the orientational and positional
order parameters that can be used to characterize the physical
properties near the disorder-splay transition point [Sec. III E]
and found that the nature of the transition is first order, within
the current mean-field approach [Sec. III F]. Some results in
this paper were reported earlier [15].

II. MODEL

A. Free-energy functional

We consider a system of N rigid “rods” which are embedded
on the surface of a sphere of radius R. Because straight rods
cannot be completely confined on a curved surface, here we
use the model that each rod is a curved geodesic segment of
length L, which is a portion of the so-called great circle. These
rod particles interact with each other through the excluded-

volume interaction. Note that on a two-dimensional surface the
excluded volume actually manifests itself into the form of an
excluded area, which always exists even at an extremely small,
vanishing rod radius to length ratio. In this work we assume
that rods have no thickness D, which can be considered as an
approximation for actual systems having small D/L.

In his classical work [13], Onsager developed a free-energy
functional for the three-dimensional, spatially homogeneous
system of rigid rods interacting with each other through the
excluded-volume interaction, as a functional of the density
distribution. We can easily generalize his approach to write
down the free energy of the current system, now including
both spatial and orientational dependencies:

βF =
∫

�(r,u) ln[8π2R2�(r,u)] drdu

+ 1

2

∫
�(r,u)w(r,u,r′,u′)�(r′,u′) drdudr′du′. (1)

In the above, we have assumed a density distribution function
�(r,u), where r and u are the position vector and tangent unit
vector, respectively, of the center of mass of a rod. The first
term arises from both orientational and translational entropies,
where a linear term �(r,u) ln 8π2R2 has been added which
does not affect the structure of the current theory. The second
term contains a function w(r,u,r′,u′) that depends on variables
(r,u) and (r′,u′), which represent the coordinates of the centers
of mass of two rods; this function takes a value of 1 if any
parts of the two rods overlap and 0 otherwise. Although only
accurate at the level of the second-virial approximation, the
competition between the entropy and the excluded-volume
terms captures the important physics in most systems involving
rigid rods, such as the isotropic-nematic liquid-crystal phase
transition [13,21], the isotropic-nematic interface [22–28], and
nematic rods near a hard wall surface [29–31].

To proceed further we adopt a spherical-coordinate system
to specify the position of the center of mass of a rod by the
polar and azimuthal variables � and �, shown in Fig. 2. The
orientation of a rod is described by θ , the angle that u makes
with respect to the longitude passing through the center of
mass. The density distribution function �(�,�; θ ) satisfies

FIG. 2. Coordinate system used in this work. The location of a
rod is specified by the polar angle � and azimuthal angle �, and the
orientation of the rod is specified by the angle between the tangent
vector u and the local longitude.

061710-2



SOLUTION OF THE ONSAGER MODEL FOR THE . . . PHYSICAL REVIEW E 85, 061710 (2012)

the normalization condition

R2
∫

�(�,�; θ ) sin �d�d�dθ = N, (2)

where N is the total number of rods in the system. Furthermore,
we introduce the probability distribution function

f (�,�; θ ) ≡ R2�(�,�; θ )/N, (3)

which can be interpreted as the probability for finding the
center of mass of a rod at the position described by (�,�) and
with an orientation represented by θ . The function f (�,�; θ )
is now normalized to∫

f (�,�; θ ) sin �d�d�dθ = 1. (4)

As a functional of the probability distribution function
f (�,�; θ ), the free energy can be rewritten as

βF = N ln N + N

∫
f (�,�; θ ) ln[8π2f (�,�; θ )]

× sin �d�d�dθ + N2

2

∫
f (�,�; θ )

×w(�,�,θ,�′,�′,θ ′)f (�′,�′; θ ′)
× sin � sin �′d�d�dθd�′d�′dθ ′. (5)

The equilibrium state of the model can be found from a
minimization of F with respect to f (�,�; θ ).

The function w(�1,�1,θ1,�2,�2,θ2) contains six variables
and can be defined by using basic relations between the
variables associated with two interacting rods. The orientation
vector ui and center-of-mass vector ri of rod i, where i = 1 and
2, can be written as ui = cos θi�̂i + sin θi�̂i and ri = RR̂i ,
where R̂, �̂, and �̂ are unit vectors of the spherical-coordinate
system. In this way we can define the normal to the great-circle
plane for a particle located at ri , ni = ri × ui . The direction
from the sphere’s center to the intersection point of two
great circles on the sphere’s surface is a vector that can be
represented by j = n1 × n2/ |n1 × n2|, as illustrated in Fig. 2.
Based on this vector relationship, the function w can be easily
accessed:

w(�1,�1,θ1,�2,�2,θ2) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, if j · R̂i > cos(L/2R)

for both i = 1 and 2,

1, if j · R̂i < − cos(L/2R)

for both i = 1 and 2,

0, otherwise.

(6)

The above is a function of L/R only for geodesic rods
considered here. The leading correction for rods of finite D/L

can also be written in a similar expression, but we focus on the
case of D/L = 0 in the current work.

B. Symmetry properties

In this paper, we are mainly concerned about four pos-
sible configurations of the model system—splay, tennis-ball,
rectangle, and cut-and-rotate splay. The density distribution
functions for these four configurations carry unique symmetry
properties, which are listed in Table I. The considered
symmetry operations are

f (�,�; θ ) = f (�,�; θ + π ), (7)

f (�,�; θ ) = f (�,� + π ; θ ), (8)

f (�,�; θ ) = f (�, − �; −θ ), (9)

f (�,�; θ ) = f (π − �,� + π/2; π − θ ), (10)

f (�,�; θ ) = f (π − �,�; π − θ ), (11)

f (�,�; θ ) = f (π − �,π − �; π + θ ), (12)

∂f (�,�; θ )/∂� = 0. (13)

Below we find useful representations of the symmetries
that define these configurations and simplify the numerical
procedure accordingly.

C. Numerical approach

In order to minimize the free energy, computationally we
could represent the function in question, f (�,�; θ ), by direct
discretization of all three involved variables. Such discretiza-
tion was considered previously for similar rod systems where
two or three variables were involved [26,27]. Because of the
large number of independent parameters needed to numerically
represent f (�,�; θ ) in high precision, other numerical tricks
were required. In this work we decided to take an expansion of
f (�,�; θ ) in terms of orthonormal basis functions, adjusting
expansion coefficients to minimize the free energy.

The basis functions,

ψlmn(�,�; θ ) = Ylm(�,�)Un(θ ), (14)

TABLE I. Symmetry properties of the distribution functions of the four considered configurations.

Configuration Eq. (7) Eq. (8) Eq. (9) Eq. (10) Eq. (11) Eq. (12) Eq. (13)

Splay
√ √ √ √ √ √ √

Tennis-ball
√ √ √ √

Rectangle
√ √ √ √

Cut-and-rotate splay
√ √ √
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are a combination of the spherical harmonics Ylm(�,�) and
Fourier bases Un(θ ). We adopt the real version:

Ylm(�,�) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

√
2
√

2l+1
4π

(l−m)!
(l+m)!P

m
l (cos �) cos(m�)

if m > 0,√
2l+1
4π

P 0
l (cos �) if m = 0,

√
2
√

2l+1
4π

(l+m)!
(l−m)!P

|m|
l (cos �) sin(|m|�)

if m < 0,

(15a)

Un(θ ) =

⎧⎪⎨
⎪⎩

1√
π

cos(nθ ) if n > 0,
1√
2π

if n = 0,

1√
π

sin(|n|θ ) if n < 0,

(15b)

where P m
l is the associate Legendre function of the lth and

mth rank [32]. The basis functions follow∫
ψlmn(�,�; θ )ψl′m′n′ (�,�; θ ) sin �d�d�dθ

= δll′δmm′δnn′ , (16)

where δij is the Kronecker delta.
The function w can be then expanded in terms of the

orthonormal bases:

w(�,�,θ,�′,�′,θ ′)

= L2

4πR2

∑
lmn,l′m′n′

ψlmn(�,�; θ )Wlmn,l′m′n′

×ψl′m′n′ (�′,�′; θ ′). (17)

At a given value of L/R, the constant matrix, Wlmn,l′m′n′ , can
be evaluated according to

Wlmn,l′m′n′

= 4πR2

L2

∫
ψlmn(�,�; θ )w(�,�,θ,�′,�′,θ ′)

×ψl′m′n′(�′,�′; θ ′) sin � sin �′d�d�dθd�′d�′dθ ′.
(18)

A constant, 4πR2/L2, has been factored out in the above to
properly account for the magnitude of the excluded volume.
The integral part of Eq. (18) contains further L/R dependence
through the expression in Eq. (6). In this work, numerically the
integral was evaluated by means of Simpson’s approximation
[33], at an integration step L/36R for � and �, as well as
π/36 for θ ; the results were stored as a constant matrix before
further computation takes place.

The unknown function, f , can then be expressed in terms
of unknown coefficients φlmn in the expansion

f (�,�; θ ) =
∑
lmn

φlmnψlmn(�,�; θ ). (19)

The normalization condition, Eq. (4), can be directly used to
determine the coefficient of the leading basis function, labeled
(l,m,n) = (0,0,0):

ψ000 = 1
/√

8π2, (20)

which gives

φ000 = 1
/√

8π2. (21)

The free energy can then be treated as a function of multiple
variables, all φlmn other than φ000, in our search for the free-
energy minimum:

βF = N ln N + N

∫
f (�,�; θ ) ln[8π2f (�,�; θ )]

× sin �d�d�dθ + N2L2

8πR2

∑
lmn,l′m′n′

φlmnWlmn,l′m′n′φl′m′n′ .

(22)

The isotropic state is characterized by a constant density
distribution. The expansions considered here yield a free
energy for the isotropic state:

βF0 = N ln N + N2L2

8πR2
W000,000φ

2
000. (23)

We can then write the reduced free-energy difference per
particle:

f̃ = (βF − βF0)/N

=
∫

f (�,�; θ ) ln[8π2f (�,�; θ )] sin �d�d�dθ

+ ρL2

2

′∑
lmn,l′m′n′

φlmnWlmn,l′m′n′φl′m′n′ , (24)

where the summation
∑′ runs over all (l,m,n) and (l′,m′,n′)

except for the (l,m,n) = (l′,m′,n′) = (0,0,0) terms. Beyond
φlmn, the system contains two parameters, the length/radius
ratio L/R through the W matrix and the reduced density

ρL2 = NL2

4πR2
(25)

as the coefficient of the second term in Eq. (24). For each
set of specified parameters, L/R and ρL2, we attack the
minimization problem, treating f̃ as a multivariable function
of φlmn, where (l,m,n) �= (0,0,0).

In the actual computation, we took advantage of the
symmetry properties listed in Sec. II B to reduce the number
of unknown variables, φlmn. We approximated the expansion
by neglecting terms having indexes l = 8 n = 8 and higher.
This means that there are 16, 46, 49, and 91 bases needed to
describe the splay, tennis-ball, rectangle, and cut-and-rotate
splay configurations, respectively. The numerical error of
ignoring higher-order terms is negligible, within the precision
of required calculation.

The computational task for conducting the search of
the free-energy minimum relied on an implementation of
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm ex-
plained in Ref. [34]. BFGS is a quasi-Newton method, which
iteratively searches for a stationary point of a multivariable
function starting from an initial guess. At each step, BFGS
determines a search direction from the gradient and uses the
approximation of the Hessian matrix to find the next point.
The stationary point is considered stable until the mean-square
magnitude of the gradient converges to a number less than a
pre-specified tolerance. At every search step, the value of the
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function to be minimized, Eq. (24), and its gradient,

Glmn ≡ ∂f̃

∂φlmn

=
∫

{1 + ln[8π2f (�,�; θ )]}ψlmn(�,�; θ )

× sin �d�d�dθ + ρL2
∑
l′m′n′

Wlmn,l′m′n′φl′m′n′ , (26)

must be provided.
While the computational task of the W -related terms

in both Eqs. (24) and (26) can be performed efficiently
by taking summations, the integration in terms related to
ln f (�,�; θ ) in both expressions is not straightforward and is
most numerically expensive. For a given set φlmn, we evaluated
the entire function f (�,�; θ ) from the expansion, Eq. (19),
and treated these integrations involving logarithmic terms
taking a numerical integration based on Simpson’s rule [33].

III. RESULTS AND DISCUSSION

A. Free-energy minimum

The model system that we are considering can be char-
acterized by the length of the rod L, the radius of the
confining sphere R, and the number of particles N . Out of
these parameters, from a scaling point of view, only two
reduced parameters are important, L/R, and the reduced
surface density, ρL2 in Eq. (25). Indeed, the reduced free

energy, Eq. (24), contains these two reduced parameters only.
The results discussed in this section are presented as a function
of ρL2, with selected L/R in the range [0.1,1].

As reported previously [15], within this range of L/R,
from the current model we only found one type of ordered
ground state, splay, regardless of various attempts in setting
up an initial configuration that breaks the splay symmetry. The
minimized splay free energies obtained from the numerical
minimization for L/R = 0.1, 0.5, and 1 are displayed by
solid curves in Fig. 3. The number of independent φlmn in
the expansion Eq. (24) varies according to the underlying
symmetry properties listed in Table I. Because the splay
configuration has a higher symmetry than the other three, splay
terms which exist in a splay configuration are also common in
the expansions of the free energies for the other three types of
configurations. For every given system, we have employed four
different processes of conducting the minimization search.
Each process corresponds to a study of a particular type of
conformation; we directly search for the free-energy minimum
of this conformation by varying the undetermined coefficients
of all relevant terms and removing all other terms that violate
the symmetry properties of such a state. By the end of the
search, all four processes converge to one single result: φlmn of
the splay terms are significantly present and φlmn of nonsplay
terms vanish.

From the symmetry of the expansion, we see that every
nonsplay configuration is characterized by a leading nonsplay
term in the free-energy expansion, tennis-ball by the (l,m,n) =

-3
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I
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~ Splay
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Cut-and-rotate splay
Cut-and-rotate splay Cut-and-rotate splay

Rectangle Rectangle Rectangle

FIG. 3. (Color online) Minimized free energy plotted as a function of reduced density ρL2 for (a) L/R = 0.1, (b) L/R = 0.5, and (c)
L/R = 1.0. Plots (aI), (bI), and (cI) show the free energies of the splay states (solid curve) and the tennis-ball states (dashed curves) with the
leading term coefficient fixed at −0.1, −0.08, −0.06, −0.04, and −0.02, from the top to bottom curves. Plots (aII), (bII), and (cII) show the free
energies of the splay states (solid curve) and the rectangle states (dashed curves) with the leading term coefficient fixed at 0.1, 0.08, 0.06, 0.04,
and 0.02, from the top to bottom curves. Plots (aIII), (bIII), and (cIII) show the free energies of the splay states (solid curve) and the cut-and-rotate
splay states (dashed curves) with the leading term coefficient fixed at 0.1, 0.08, 0.06, 0.04, and 0.02, from the top to bottom curves.
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(3,2,0) term, rectangle by (2,2,0), and cut-and-rotate splay
by (3, − 2,0), as the result of the symmetry operation in
Table I. In another analysis, we fixed one of these φlmn and
numerically searched for the free-energy minima by varying
other coefficients. The fixed φlmn was set at small increments,
covering a significant range to ensure a thorough search.
Examples of such a minimization procedure are displayed in
Fig. 3 as well. The dashed curves in Figs. 3(aI), 3(bI), and 3(cI)
show the resulting free energies by keeping the tennis-ball
order parameter φ3,2,0 fixed at −0.1, − 0.08, − 0.06, − 0.04,
and −0.02, from the top to bottom. The dashed curves in
Figs. 3(aII), 3(bII), and 3(cII) show the resulting free energies
by keeping the rectangle order parameter φ2,2,0 fixed at 0.1,
0.08, 0.06, 0.04, and 0.02, from the top to bottom. The dashed
curves in Figs. 3(aIII), 3(bIII), and 3(cIII) show the resulting free
energies by keeping the cut-and-rotate splay order parameter
φ3,−2,0 fixed at 0.1, 0.08, 0.06, 0.04, and 0.02, from the top
to bottom. Note the highest curves in all these plots have free
energies far exceeding the free energy of the isotropic state
(i.e., f̃ is significantly positive) at a wide range of ρL2. Most
importantly, f̃ as a function of φlmn for a considered ρL2

changes monotonically. Within the parameter range searched
in this work, we can rule out the existence of stable nonsplay
configurations. As well, these plots demonstrate how other
possible conformations converge to a splay ground state, as
the relevant φlmn decreases.

B. Onsager model and the Frank energy

The coupled positional and orientational dependencies of
the considered structure can be described by a nematic director
field n(r); corresponding spatial derivatives ∇ · n, n · (∇ × n),
and n × (∇ × n) characterize splay, twist, and bend distortions
of the director field, respectively. The Frank elastic energy
is written as a sum of quadratic powers of the derivatives,
with the corresponding phenomenological splay, twist, and
bend coefficients, K1, K2, and K3 [35]. On a two-dimensional
surface, K2 = 0, and we are left with only splay and bend
distortions,

FFrank = 1

2

∫ [
K1(∇ · n)2 + K3(∇ × n)2

]
sin �d�d�.

(27)

For a nematic director field on a spherical surface, analysis
showed [1,9,36] that the tennis-ball configuration has a lower
elastic energy if the two coefficients have the same magnitude,
K1 ∼ K3.

The relationship between an Onsager model and the Frank
energy was explored previously for nematic textures [18,37].
The basic idea in this comparison is to assume a distribution
function �(r,u) in terms of u and n(r) and integrate out the
u dependence so that the free energy is now dependent on
n(r) only. As the next step, an expansion on r, accurate to
the square of the first-order derivatives, is carried out, leaving
leading quadratic terms in the same structure as in the Frank
energy. This way, one can pin down the Frank coefficients for
nematic rods, without the phenomenological assumptions of
the magnitude of K1, K2, and K3. According to Refs. [18,19],
such a comparison gives rise to K1 	 0.06 � K3 	 0.4 [18]
in a system containing thin rods [16,17]. This estimate can be

contrasted with the K1 ∼ K3 requirement for the stabilization
of a tennis-ball configuration discussed in Refs. [1,9] and
is the reason why nematic, rigid rods do not display the
tennis-ball configuration on a spherical surface. For the same
reason, the rectangle configuration also requires a substantial
component of bending of the overall texture and therefore is not
preferred in a hard-rod system. Another related system, though
theoretical, is a long self-avoiding semiflexible polymer chain
confined on a spherical surface. Because of the flexibility along
the chain, K3 now becomes comparable to K1. Using Monte
Carlo simulations, our group recently concluded that this
system displays a disorder-order transition, where the ordered
state always accompanies the tennis-ball symmetry [38].

Monte Carlo simulations of nematic rods on a spherical
surface agree with our results here [17]. It should be noted,
however, that the analysis in Refs. [18,37] was conducted by
assuming a specific distribution form in �(r,u) and was done
in three-dimensional space. A similar analysis of K1 and K3

for nematic rods embedded on a curved surface would reveal
the nature of the Frank constants further and would be useful.

C. Cut-and-rotate splay

In a Monte Carlo simulation, Shin et al. recently suggested
the existence of the so-called cut-and-rotate splay confor-
mation in closely packed hard rods [16], where L/R ≈ 0.4
and ρL2 ≈ 14. The hard rods were modeled by straight lines
and confined to the tangent plane of the sphere, each rod
having a nonzero diameter D = L/15. The excluded-volume
interaction of this particular thickness-to-length ratio has the
same effects as the excluded-area interaction of geodesic rods
considered in this work. The cut-and-rotate splay configuration
can be visualized as if it is made from a perfect splay by cutting
the plane containing the north and south poles, rotating one of
the hemispheres by an angle, and then reforming the structure
by combining two hemispheres [Fig. 1(aIV)].

In the above we have already calculated the free energy
of an enforced cut-and-rotate splay symmetry shown in
Fig. 3, from a numerical solution of Eq. (24), by fixing a
leading cut-and-rotate splay term, φ3,2,0. Here we take yet
another approach to examine this state by actually exercising
a “cut-and-rotate” process. We took the density distribution
fspl(�,θ ) of the splay conformation, which was obtained
from the free-energy minimization, and cut it through the
x-z plane. Then the distribution on the hemisphere containing
the positive y axis was rotated by an α/2 angle about the y

axis, and the distribution on the other hemisphere is rotated
by a −α/2 angle. With the aid of the addition theorem of
spherical harmonics, the new distribution could be easily
obtained, which was substituted into Eq. (5) for evaluation
of the free energy. In Fig. 4, we display the cut-and-rotate
splay free energy per rod, as a function of the rotation angle
α, for L/R = 0.1, 0.5, and 1.0. From the plots, we can see
that the cut-and-rotate splay state always has a higher free
energy in comparison with that of the splay state (α = 0 or π ).
This is particularly so in large-L/R systems compared with
small-L/R systems.

According to Shin et al., based on the Frank free-energy
model, there is no free-energy cost for cutting and rotating [16].
This fact was used as a verification of their observations.
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FIG. 4. Cut-and-rotate-splay free energy plotted as a function of
the rotation angle α at various densities ρL2 = 7.96 (circles), 11.94
(squares), 15.92 (diamonds), and 19.90 (triangles) for (a) L/R = 1.0,
(b) L/R = 0.5, and (c) L/R = 1.0, based on the solution of Eq. (5).

However, the angular distribution about the director field
of this conformation contains a sharp change at the cutting
circle. While the quadratic terms of the first derivative in
Eq. (27) can be indeed recovered from the Onsager free
energy, there are higher-order terms, both in higher powers
of the first derivatives and higher-order derivatives of n(r).
These higher-order derivatives, hence the unexpanded version
of the Onsager free energy, disfavor such sharp changes by
raising the free energy of the system. This effect rules out the
cut-and-rotate splay in the current system.

The difference between the observation of Shin et al. and
our results here remains unresolved. This could be attributed
to the slow Monte Carlo dynamics normally seen in a highly
packed system or the difference in the initial setups of these
two studies.

D. Nematic director field, local entropy field, and defect
visualization

As discussed above, all four possible configurations consid-
ered here contain coupled orientational and spatial ordering. In
this subsection, we discuss an entropy field that can be defined
from our numerical solution of the model in Eq. (5).

The left panels in Fig. 1 are idealized texture illustrations
where the local nematic directors are indicated by unit vectors
forming a director field. The important information on the
local orientational entropy is not clearly represented in these

plots. On the basis of the distribution function containing �,�,
and θ as variables, here we consider a scalar orientational
entropy field σ (�,�), represented by a local orientational
order parameter defined by the following procedure. First, a
2 × 2 matrix S was constructed:

S = 〈2uu − I〉 =
(〈cos 2θ〉 〈sin 2θ〉

〈sin 2θ〉 −〈cos 2θ〉
)

. (28)

The average 〈· · · 〉 is performed over the orientational distribu-
tion locally:

〈cos 2θ〉 =
∫

cos 2θf (�,�; θ )dθ∫
f (�,�; θ )dθ

, (29a)

〈sin 2θ〉 =
∫

sin 2θf (�,�; θ )dθ∫
f (�,�; θ )dθ

. (29b)

We then select the positive eigenvalue of the matrix S as a
measure for the orientational entropy field:

σ (�,�) =
√

〈cos 2θ〉2 + 〈sin 2θ〉2. (30)

Figures 1(bI)–1(bIV) are illustrations of σ (�,�) for L/R =
0.5 and ρL2 = 12, based on f (�,�; θ ) determined from the
present work, which was obtained for splay (all expansion
coefficients free in minimization), tennis-ball (φ3,2,0 fixed at
0.1), rectangle (φ2,2,0 fixed at 0.1), and cut-and-rotate splay
(φ3,−2,0 fixed at 0.1) configurations. A color scheme is used
in the plot, where red, yellow, green, cyan, and blue are used
to represent σ values ranging from high to low. These plots
show that the structural defects can be visualized not only by
the director field but also by an analysis of the orientational
entropy field. In the splay configuration, two low-σ (high-
entropy) defects are located at north and south poles. In a
tennis-ball state, four low-σ defects occupy the vertices of a
tetrahedron, which is a similar picture as the one displayed
for the result of a Landau-de Gennes model under one-Frank
constant approximation [12]. In a rectangle configuration, four
low-σ defects can be seen along a great circle cutting through
the x-z plane, where the pattern in a low-σ region is greatly
distorted; in a cut-and-rotate splay configuration, four low-σ
defects follow the same symmetry of the director-field defects;
however, the locations of the lowest σ (off the x-z plane) do not
completely overlap with the locations of the proposed defects
(on the x-z plane) in the director field [16].

E. Splay order parameters

Next we examine two order parameters that characterize the
overall orientational and positional ordering of the isotropic-
splay phase transition. The global orientational order,

� =
∫

cos 2θf (�,�; θ ) sin �d�d�dθ

= 2πφ002, (31)

yields a 0 value in the isotropic phase, a positive value in the
splay phase where rods line up along the longitudes (observed
here), and a negative value in the helicoidal phase where rods
line up along the latitudes. The fact that we only see a positive
� for rigid rods verifies K1 � K3 discussed in Sec. III B; this
was noted by Nelson in Ref. [1].
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The global spatial order parameter,

� =
∫

P2 (cos �) f (�,�; θ ) sin �d�d�dθ

=
√

8

5
πφ200, (32)

yields a 0 value in the isotropic phase, a positive value in a
spatially ordered state where the pole regions are more dense,
and a negative value in a spatially ordered state where the
equator region is more dense.

At a few selected L/R, Fig. 5 shows � and � as functions
of ρL2. The initial guess of f (�,�; θ ) in the numerical search
was taken from the optimized function determined earlier at
a slightly higher value of ρL2. This way, in the region where
a disorder state is stable (reflected by significantly nonzero
� and �), the minimized results closely adhered to a splay
configuration. As ρL2 is lowered passing a transition region,
an isotropic state is reached in the low density region, where
� = � = 0. Comparing � of the case L/R = 0.1 with those
of the systems, L/R = 0.5 and 1.0, we can also see that
the spatial ordering is weakened as L/R becomes smaller.
This is consistent with the expectation that our model system
becomes spatially disordered approaching the asymptotic limit
of a flat two-dimensional system, L/R � 1, while keeping an
orientational order (a nematic state).

F. Isotropic-splay phase transition

To further study the characteristics of the isotropic-splay
transition, we used splay-relevant, undetermined φl0n and
substituted them into Eq. (24), to produce an expansion of
the free energy. In comparison with the Landau expansion
in the phase-transition theory, one important feature in our
expansion is the existence of third-order terms coupling �

with � and other φl0n factors. This can be understood from the
symmetry of the problem without actually expanding the free
energy. For example, making the transformation of � → −�

implies the change from splay to latitudinal helicoidal or
vice versa; these are two different physical states, hence the
corresponding free energies cannot be identical. Moreover,
the change in the free energies cannot be compensated by
the transformation of other coefficients φl0n. An immediate
implication is that in a Landau expansion odd-power terms
exist, so that the associated phase transition is discontinuous.
Using the numerical data presented above, we clarify the
properties of the transition in this subsection.

The method used here is similar to the determination of the
first-order isotropic-nematic phase transition in the lyotropic
liquid-crystal theory, although there is no spatial disorder in the
latter [13,14]. To determine the transition density, conceptually
we consider two systems: one is in an isotropic phase with a
number density ρiso and the other is in a splay state with ρspl.
These two systems are in phase equilibrium at the transition
densities, in such a way that the chemical potentials,

μ = (∂F/∂N )A, (33)
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are the same in the two systems. We also equate the osmotic
pressures,

� = (μN − F )/A, (34)

in two systems, where A = 4πR2 is the surface area,. The
transition densities are determined from solving two nonlinear
equations:

μiso(ρiso) = μspl(ρspl), (35a)

�iso(ρiso) = �spl(ρspl). (35b)

The free energy βF is already given in Eq. (22) for the splay
branch and Eq. (23) for the isotropic branch. The derivatives
of the free energy of the isotropic branch can be obtained
analytically from Eq. (23), while those of the splay branch
were obtained in this work by a numerical difference with
respect to ρ.

The transition densities ρisoL
2 and ρsplL

2 are plotted in
Fig. 6(a) by down and up triangles, respectively. The first-order
transition gap is wider in larger L/R systems and converges to
zero in the limit of a flat two-dimensional system (L/R → 0).
This fact implies that the first-order disorder-splay transition
reduces to a continuous isotropic-nematic transition in flat two

dimensions as L/R → 0, within the validity of the Onsager
model; the asymptotic reduced transition density at L/R = 0,
4.71, is consistent with the value found earlier, ρcL

2 = 3π/2
[21,39]. The first-order nature of the disorder-splay transition
in finite L/R systems can be compared to the first-order nature
of the isotropic-nematic transition in a three-dimensional
lyotropic system [14,40–42].

Instead of the hypothetical phase-equilibrium physical
picture, we are, however, dealing with a finite system where N

(therefore ρL2) is fixed. In a typical plot shown in Fig. 5 where
ρ continually changes, we can divide ρ into three regions.
In the ρ � ρiso or ρ � ρspl region, the system is either in
a disorder or splay state. In the ρiso < ρ < ρspl region, the
system is actually in a crossover state between the disorder and
splay states. Both � and � are different in this region from the
splay branch plotted in Fig. 6(b). For an isotropic-nematic
transition in the thermodynamic limit, this density region
normally corresponds to a isotropic-nematic interface [26,27].
Because of the finite L/R ratio in the current model, such an
interface cannot be clearly defined.

IV. CONCLUSIONS

In this paper, we demonstrated that the Onsager treatment
for rigid rods can be generalized to study the system of curved
rigid rods confined on the spherical surface. The excluded-
volume interaction in the system can be approximated by
a free-energy term that depends on both orientational and
positional variables. We developed a numerical method which
allows us to minimize the free energy within a controlled pre-
cision. We found that the free-energy minimum corresponds
to a stable splay state and that the tennis-ball, rectangle, and
cut-and-rotate splay configurations are all not stable, within a
significantly wide parameter region searched computationally.

Experimentally accessible systems contain molecules that
might have some degree of semiflexibility; the fact that
K1 ∼ K3 was estimated for 5CB molecules [20], a signal of
the importance of molecular semiflexibility in influencing the
splay and bend energy [37], makes it desirable to generalize
the model presented in this paper to a semiflexible polymer
system. The formalism is already available and was applied to
the isotropic-nematic interface problem previously [27,43].
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