
PHYSICAL REVIEW E 85, 061709 (2012)

Enhanced Landau–de Gennes potential for nematic liquid crystals from a systematic
coarse-graining procedure
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The macroscopic theory of nematics is conveniently described in terms of the phenomenological Landau–
de Gennes free energy. Here we show how such an effective free energy can be obtained explicitly from a
microscopic model via the help of a systematic coarse-graining procedure. We test our approach for the two-
and three-dimensional Lebwohl-Lasher model of nematics. The effective free energy that we obtain is consistent
with the phenomenological Landau–de Gennes form for weak orientational ordering and the Maier-Saupe theory
of the isotropic-nematic transition. For strong orientational ordering, however, the effective free energy increases
rapidly and diverges logarithmically near the fully oriented state. The explicit form for the regularized Landau–de
Gennes potential proposed here restricts the order parameter to physical admissible values and reproduces our
numerical data accurately.
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I. INTRODUCTION

Nematic liquid crystals undergo a first-order isotropic-to-
nematic transition below a critical temperature or above a criti-
cal concentration, where orientational ordering spontaneously
breaks rotational symmetry [1]. External electromagnetic or
flow fields can reorient or induce their orientational order [2,3].
Therefore, liquid crystals are not only of great theoretical
interest but also of significant practical use in displays, as
well as for biological materials [4].

On a mean-field, macroscopic level, the system is conve-
niently described in terms of an orientational order parameter
tensor Q. Near the transition, de Gennes expanded the effective
free energy F(Q) up to fourth order in the tensorial invariants
of Q, in analogy to the Ginzburg-Landau theory of phase
transitions [1]. The resulting Landau–de Gennes free energy
F is now very widely used, even for flowing nematics (see,
e.g., Ref. [4,5] and references therein). From simulations
of a molecular model, it was found that fluctuations lead
to deviations from the Landau–de Gennes theory, especially
close to the transition [6]. In addition, since the orientational
order parameter is bounded, the validity of the fourth-order
expansion breaks down far from the transition and also in
nonequilibrium situations. This problem has already been
noted several times in the literature [7–9] and led to the conclu-
sion that the Landau–de Gennes theory “cannot make detailed
quantitative predictions” [10]. Therefore, an empirical penalty
function [7] or an amended potential [9,11] have been proposed
in order to improve on the original Landau–de Gennes
potential. The amended potential proposed in Ref. [9] was
motivated by the mesoscopic Hess-Doi kinetic model [12,13].
Starting with Onsager’s seminal work, different versions of
density functional theories for the isotropic-nematic transition
have been proposed and studied [14–17]. Alternatively, there
have been some approaches for a microscopic foundation and
derivation of the effective free energy F(Q) by field-theoretic
methods [18,19]. Unfortunately these approaches have not led
to an expression for F(Q) that is sufficiently simple in order
to be useful for further theoretical or numerical studies.

Here we approach this old problem in the light of recent
coarse-graining approaches that have been developed mainly

for polymer dynamics [20]. An important prerequisite for
a proper free energy is the choice of a corresponding,
representative ensemble that is relevant on a macroscopic
scale. Following common practice, we here choose the quasi-
equilibrium or generalized canonical distribution. Then, we
can interpret the effective free energy as the thermodynamic
potential corresponding to this ensemble for given values of
Q. We test the approach for the two- and three-dimensional
Lebwohl-Lasher model. We perform Monte Carlo simulations
of this model in the generalized canonical ensemble and calcu-
late numerically the effective free energy via thermodynamic
integration. With Eq. (11) an analytic, nonpolynomial form
of the effective free energy is proposed that describes the
numerical values very accurately. This expression for the free
energy can replace the usual Landau–de Gennes potential for
an enhanced macroscopic description of nematics.

The paper is organized as follows: In Sec. II we describe
the general approach to the effective free energy. In Sec. III
we specify the general approach to the specific case of
the Lebwohl-Lasher model. The mean-field free energy is
derived in Sec. III A, and the numerical procedure described in
Sec. III B. The numerical values from Monte Carlo simulations
are compared to the predictions of the macroscopic free
energy in Secs. III C–III F. Finally, as example applications,
we discuss the field-induced orientation in Sec. III G. Some
conclusions and outlook are presented in Sec. IV.

II. EFFECTIVE FREE ENERGY

The orientational ordering of nematics is described in terms
of an order parameter tensor Q, which is a symmetric, traceless
second-rank tensor. In the vicinity of the transition, it is
postulated that the system can be described in terms of a
Landau–de Gennes free energy L(Q) [1]. Frame invariance
requires that L depends only on tensorial invariants of Q. Since
the order parameter is small at the transition, it is assumed that
L(Q) can be expanded as [1]

L(Q) = 1
2Atr{Q · Q} + 1

3Btr{Q · Q · Q} + 1
4Ctr{Q · Q}2.

(1)

061709-11539-3755/2012/85(6)/061709(9) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.85.061709


PATRICK ILG PHYSICAL REVIEW E 85, 061709 (2012)

In the Landau–de Gennes theory, the isotropic state looses its
stability at the temperature T ′, which is easiest reflected in
A(T ) = a(T − T ′). The coefficients B,C are considered as
constants, where B < 0 is characteristic for first-order phase
transitions and C > 0 ensures stability. When B and C are
allowed to depend on temperature, an improved comparison
with experimental results can be achieved [21].

The simplicity and universality of the Landau–de Gennes
theory is remarkable and has led to its wide use in the
theoretical description of nematics. On the other hand, the
limitations of the Landau–de Gennes approach (1) are obvious
and have been pointed out repeatedly in the literature. The
validity of the fourth-order expansion is questionable even in
the vicinity of the transition [6], let alone in nonequilibrium
situations. Furthermore, the coefficients A,B, and C are phe-
nomenological and lack a molecular interpretation. For these
reasons, it would be highly desirable to a establish microscopic
foundation of the Landau–de Gennes theory. Several attempts
to achieve this have been done in the literature. One type
of approach aimed at establishing a connection with the
Maier-Saupe theory of nematics but essentially failed to do
so [6]. More successful have been approaches using density
functional theories [16,22]. It should be noted, however, that
by their very nature these approaches deal with free energy
functionals that are in general not easily expressed as Landau
free energies in terms of the order parameter Q only.

Consider a microscopic model for a liquid crystal with
Hamiltonian H at temperature T in canonical equilibrium. For-
mally, the Landau free energy can be defined via the restricted
partition function exp [−βL(Q)] = exp [−βF ]〈δ(Q − �)〉,
β = (kBT )−1 and F the thermodynamic free energy satisfying
exp [−βF ] = ∫

dQ exp [−βL(Q)] [23]. Averages with the
canonical equilibrium distribution function ρ0 are denoted by
〈•〉 = ∫

d� • ρ0(�). The average is taken over all microscopic
degrees of freedom �. The instantaneous order parameter
tensor is defined by � = N−1 ∑

j uj uj with Q = 〈�〉, and
the three-dimensional unit vector uj denotes the direction of
rotationally symmetric particle j . We use the notation a =
(1/2)[a + aT ] − (1/3)tr{a}1 for the symmetric and traceless
part of a tensor a. The restricted partition function and
the resulting effective potential became a frequently used
concept in recent coarse-graining approaches [20], and several
numerical methods for free energy calculations have been
developed [24].

An alternative approach employs the generalized canonical
distribution,

ρ�(�) = e−βH (�)−�:�(�)+βG(�), (2)

where only the average values of the chosen variables are fixed,
Q = 〈�〉� = ∫

d� ρ�(�)�(�). For � = 0, ρ� reduces to the
equilibrium distribution ρ0. The generating function is defined
by

e−βG(�) = e−βG(0)〈e−�:�〉, (3)

where the Lagrange multipliers � are the dual variables to Q,

Q = ∂(βG)

∂�
. (4)

From Eq. (2), one finds that the Lagrange multipliers as
dual variables act as an orienting field conjugate to the order

parameter. It is interesting to note that G and L are Laplace
transforms of each other. However, the thermodynamic poten-
tial that corresponds to the generalized canonical ensemble is
the Legendre transform of G,

F(Q) = G(�(Q)) − kBT �(Q) :Q, (5)

with ∂F/∂Q = −kBT �. Therefore, L and F are in general
not equivalent. We note that L does not have a strict ther-
modynamic interpretation except as some coarse-grained free
energy and is usually constructed phenomenologically [23].

In the following, we concentrate on the effective free
energy F(Q), which is the proper thermodynamic potential
for the chosen variables. The corresponding distribution (2)
not only appears as the stationary distribution in the presence
of an external magnetic or elongational flow field [25] but
has been found to provide a good approximation in various
nonequilibrium situations [26–28]. In addition, the generalized
canonical ensemble is often employed in projection operator
derivations of dynamical equations, where the gradient of F
appear as driving forces [29]. For these reasons, F can be used
within nonequilibrium thermodynamics to describe not only
the statics but also the dynamics of liquid crystals [30].

For small deviations of Q from its equilibrium value, a
cumulant expansion might be useful; see Sec. A. In order to
make further progress, we resort to Monte Carlo simulations in
the generalized canonical ensemble (2). The order parameter
is then calculated as ensemble average Q = 〈�〉� for chosen
values of �. Inverting this relation yields �(Q), so that the
effective free energy can then be obtained by thermodynamic
integration

F(Q) = F − kBT

∫ Q

0
�(Q′) : dQ′, (6)

where F = F(0) is the free energy in the equilibrium state (2)
for � = 0; see Eq. (A4). The final step is the reconstruction
of a functional form of F(Q) that then can be used for further
studies.

We have carried out a similar study very recently for the
case of low-molecular polymer melts and thereby found an
anharmonic entropic spring potential [31,32]. An important
difference for the case of liquid crystals is the presence of
the isotropic-nematic phase transition, which implies that the
effective potential must differ significantly between high-
and low-temperature phase, where it is no longer a convex
function. Contrary to the case of flexible polymers, the entropic
contribution to F from an ideal gas of orientational degrees of
freedom is not trivial. We have worked out this contribution
only very recently in Ref. [33].

III. LEBWOHL-LASHER MODEL

In order to test the approach outlined above, we apply the
proposed algorithm to a simple lattice model of a nematic
system proposed by Lebwohl and Lasher [34,35].

The Hamiltonian of the Lebwohl-Lasher model reads

H = −J

2

∑
〈i,j〉

uiui : uj uj , (7)

where 〈i,j 〉 denote nearest neighbor pairs i and j on a
given lattice. The spins uj are allowed to rotate on the
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three-dimensional unit sphere, u2
j = 1. The interaction energy

between spins i and j can also be written as −εP2(ui ·
uj ), where ε = (2/3)J and P2(x) = (3x2 − 1)/2 denotes the
second Legendre polynomial. In the planar Lebwohl-Lasher
model, these spins are arranged on a two-dimensional square
lattice, while a three-dimensional cubic lattice is employed for
the three-dimensional model.

The model shows a weak first-order transition from an
isotropic phase at high temperatures to a nematic state below
a critical temperature, which according to recent finite-size
scaling studies is around kBTc/J ≈ 0.37 for the planar model
on a square lattice [36]. In the three-dimensional case, the
reduced transition temperature was estimated as kBTc/J ≈
0.75 for a simple cubic lattice [37,38], the numerical data
being somewhat less accurate in this case.

A. Mean-field approximation

In the mean-field approximation, the Hamiltonian (7) is
replaced by

H MFA = −1

2
zJ

∑
j

uiuj :Q, (8)

where z is the coordination number of the lattice, i.e., z = 2D

for a cubic lattice in D space dimensions. In Eq. (8) the sum
over the neighboring spins in the original model (7) has been
approximated by the average

∑
innj uiui ≈ zQ, in analogy to

the case of ferromagnets [23]. Then, the generating function
G is given by Eq. (3) as G(�) = NGid(zβJQ − �/N), where
Gid(A) is the generating function for the ideal, noninteracting
system [33]. The mean-field approximation is identical to the
saddle-point approximation of the corresponding field theory;
see Appendix B. Using the results obtained in Ref. [33], we
obtain an expression for the Lagrange multiplier � as a series
expansion in the order parameter Q. See Appendix C and in
particular Eq. (C3) for details of the derivation.

Using the expression �(Q) from Eq. (C3) for thermody-
namic integration (5), we obtain the mean-field expression for
the effective free energy

FMFA(Q)/NkBT

= f0 + 1

2

(
15

2
− zβJ

)
tr{Q2} − 75

14
tr{Q3}

+ 3825

784
[tr{Q2}]2 + O(Q5) (9)

with f0 = F/NkBT . Thus, the fourth-order expansion of the
effective free energy is fully consistent with the classical
Landau–de Gennes theory (1): Only the terms with correct
tensorial structure appear in the expansion, and the coefficient
A in Eq. (1) is given by A(T )/N = 15

2 kB(T − T ′), indeed,
is proportional to T − T ′ as was already found in Ref. [39]
from pretransitional fluctuations. Finally, the coefficients B

and C are constant with B < 0 and C > 0. Further support
for the Landau–de Gennes theory comes from Monte Carlo
simulations, where the effective free energy is obtained via
Boltzmann inversion and shows the characteristic features
of a weak first-order phase transition [38]. Within simplest
mean-field approximation, the reduced temperatures where the
isotropic state looses its stability are predicted as kBT ′/J =

2z/15, which is 0.53 and 0.8 for a simple cubic lattice in
dimension D = 2 and D = 3, respectively.

By comparing Eq. (9) to the result of Ref. [33], one realizes
that the effective free energy FMFA can be written as the sum
of an entropic and a mean-field interaction term,

FMFA(Q) = EMFA(Q) − T S id(Q). (10)

The entropy S id is maximum for the isotropic state and
decreases as the orientational ordering increases. In the spirit
of the Lebwohl-Lasher model, S id includes only the ideal
entropy for the noninteracting system, while all interactions
are energetic in nature. The mean-field interaction term
is given by the average of the mean-field Hamiltonian,
Eq. (8), EMFA = 〈H MFA〉� = − 1

2NzJ tr{Q · Q}. We therefore
recover the characteristic features of the classical Maier-Saupe
theory for the isotropic-nematic transition [1]. This is not
surprising, since the Lebwohl-Lasher model was invented
as a finite-dimensional, lattice version of the Maier-Saupe
theory. Nevertheless, it is reassuring that the mean-field limit
is correctly recovered within this procedure. For general and
in particular off-lattice models, excluded volume interactions
lead to an additional contribution to the entropy (see, e.g.,
Refs. [11,13,40] and references therein) that should be in-
cluded in Eq. (10).

From our previous study [33], we know that S id is not a
low-order polynomial. When using the full expression for S id

in Eq. (10), we arrive at the following effective free energy,
which is valid not only for weak but also for strong ordering:

F(Q)/NkBT = − 1
2z∗βJ tr{Q · Q} − ln(

√
Q) − 2

3 (
√
Q − 1),

(11)

where Q = 1 + 9(I3 − I2) with the tensorial invariants I2 =
1
2 tr{Q · Q} and I3 = tr{Q · Q · Q} (I1 = tr{Q} = 0 by con-
struction). We here introduce the effective coordination
number z∗ and allow for deviations from the mean-field
value, which is 2D for D-dimensional simple cubic lattices.
Equation (11) should be compared to the expansion (9) and also
to the expression FD/NkBT = (1 − U/3)I2 − U

3 I3 + UI 2
2

proposed by Doi and Edwards in Ref. [13] and used frequently
since then. The dimensionless interaction strength U can be
related to the coupling strength J in the Lebwohl-Lasher model
via the mean energy giving U = (2/3)z∗βJ .

B. Numerical procedure

We want to test the theoretical predictions from mean-
field theory against numerical simulations. To this end, we
perform Monte Carlo simulations of the Lebwohl-Lasher
model in the generalized canonical ensemble with Hamiltonian
βH ′ = βH − � :�, where � = N−1 ∑

j uj uj . The standard
Metropolis algorithm with random rotations of individual
spins is employed with typically 5 × 106 Monte Carlo sweeps.
Averages are extracted after a stationary state has been reached
and error bars are estimated from block averages. For the planar
model, we study systems with a square lattice of 502 sites with
periodic boundary conditions. In addition, some studies are
also performed with lattice sizes of 202 and 802 in order to
estimate finite-size effects. As expected, system size effects are
generally weak except near the phase transition. For the three-
dimensional model, we mainly study a cubic lattice of size 203
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with some simulations performed for a system with 303. Since
the lattice geometry enters the macroscopic free energy (11)
only via the effective coordination number z∗, we performed
additional simulations on other two-dimensional lattices in
order to study the universality of the macroscopic expression.
These additional lattices are the honeycomb, semitriangular,
and hexagonal lattice, which have coordination numbers 3,5,
and 6, respectively. To the best of the author’s knowledge, the
Lebwohl-Lasher has so far not been studied on those lattices
and therefore the corresponding critical temperature of the
isotropic-nematic transition is unknown.

We use different choices for the Lagrange multipliers:
� = Nλezez, and � = Nλ(exex − eyey), which corresponds
to uniaxial and biaxial form, respectively, and eα , α = x,y,z

denote the unit vector parallel to the Cartesian axis. For each
value of �, we obtain the mean order parameter tensor Q(�)
from Monte Carlo simulations after the equilibrium state has
been reached. Error bars are estimated from block averages
and are typically smaller than the symbols if not indicated
otherwise.

C. Effective coordination number

Figure 1 shows the orientational order parameter for dif-
ferent temperatures. Increasing orientational order is obtained
for increasing strength of the Lagrange multipliers, which act
as an orienting field. The numerical data are well described by
the relation

�/N = z∗βJQ + 9

(
1

2Q + 1

3
√
Q

)
(3Q.Q − Q), (12)

obtained from −kBT � = ∂F/∂Q, where the effective free
energy is given by Eq. (11). For high temperatures βJ → 0,
Q(�) approaches the noninteracting limit, which is given by
the second term in Eq. (12). We determine the scalar suscep-
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Q
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k T / J

0

1

2

3

χ

FIG. 1. (Color online) The order parameter Q11 of the Lebwohl-
Lasher model on a square lattice as a function of the Lagrange
multiplier λ for βJ = 1.0 (top) and 0.125 (bottom). A uniaxial form
of the Lagrange multiplier is chosen. Symbols denote the numerical
values from Monte Carlo simulations, and the lines are obtained
from fits to Eq. (12). Inset: The susceptibility χ = 1/c1 between
Q and � [Eq. (C3)] as a function of temperature. The symbols
denote the numerical values obtained from linear regression, for
values |�/N | < 0.1. The broken line is the mean-field prediction
from Eq. (C7), and the full line is the fit mentioned in the text.

TABLE I. Coordination and effective coordination number z and
z∗, respectively, as well as estimates for the critical temperature T ∗

c =
kBTc/J for the different lattices investigated. Numbers in brackets
are the uncertainty in the last digit.

Lattice Honeycomb Square Semitriang. Hexagonal Cubic

z 3 4 5 6 6
z∗ 2.1(1) 3.4(1) 4.2(1) 5.4(2) 5.6(1)
T ∗

c 0.236(4) 0.375(5) 0.48(1) 0.653(6) 0.76(2)

tibility from the linear relation Q = χ�/N , Eq. (C3), valid
for small � in the isotropic regime. The result is shown in the
inset of Fig. 1, together with a fit to χ (T ) = −2/15 + b/(T ∗ −
T ∗

c ), where T ∗ = 1/(βJ ) is the dimensionless temperature.
From these fits, we obtain a rough estimate for the critical
temperature T ∗

c . The susceptibility for a weak ordering field
near the transition has already been evaluated numerically in
Refs. [37,41]. The effect of interactions is described by the
first term therein, where z∗ is the only unknown parameter.
Fitting the numerical values to c1 = 1/χ = z∗βJ − 15/2, we
obtain the effective coordination number z∗. For temperatures
above the transition, we find z∗ ≈ 3.4 ± 0.1 for the square
lattice in two dimensions, somewhat lower than the mean-
field value z = 4. A reduction of the mean-field value is
expected due to fluctuation corrections which reduce the
mean molecular field acting on each spin [19]. Similarly,
we also find a value of z∗ ≈ 5.6 ± 0.1 lower than 6 for the
three-dimensional model on a cubic lattice. A constant value
of z∗ leads to a temperature-independent prefactor A0 in Eq. (1)
and therefore agrees with the classical Landau–de Gennes
theory. Deviation from a constant, temperature-independent
value appears near the transition. This finding is in line with
Ref. [37], which observed disagreement in the orientational
correlation function between the Lebwohl-Lasher model and
Landau–de Gennes theory near the transition. We note that a
method for calculating the effective coordination number is
provided by the cluster variational approximation [42]. The
values of the effective coordination numbers and estimates for
the critical temperature for the different lattices investigated
are summarized in Table I. Further studies are certainly
needed in order to determine the critical temperature for
the honeycomb, semitriangular, and hexagonal lattice more
accurately. We refrain here from pursuing this further, since the
aim of the present paper is an expression for the macroscopic
free energy of these systems, for which the precise value of T ∗

c

is not crucial.

D. Universal form of ideal entropy

From the numerical data of Q(�), we perform thermody-
namic integration using Eq. (6) to arrive at the effective free
energy F(Q). Due to frame invariance, the resulting effective
free energy F can depend on tensorial invariants of Q only. In
order to test the form of the macroscopic free energy (11), we
subtract from F(Q) the effective mean-field interaction term,
�f ≡ F(Q)/NkBT + (1/2)z∗βJ tr{Q · Q}. In the uniaxially
ordered state around the director n, the order parameter tensor
can be written as Q = S2nn, where the Maier-Saupe order
parameter S2 is defined as S2 = 〈P2(u · n)〉�. The director
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FIG. 2. (Color online) Dimensionless difference �f = �F/kBT

between the effective free energy (6) and the mean effective
interaction energy defined in the text as a function of the Maier-Saupe
order parameter S2. Different symbols correspond to different lattice
symmetries. The data nicely collapse onto a single master curve.
The thick solid line represents the scaled ideal orientational entropy
−S id/NkB, which describes the numerically obtained master curve
very well.

n is given by the eigenvector of Q that corresponds to the
largest eigenvalue. In the uniaxial state, the tensorial invariants
simplify to I2 = S2

2/3,I3 = 2S3
2/9, and Q = 1 + 2S3

2 − 3S2
2 .

Figure 2 shows �f as a function of S2 for different
strengths of the ordering field. As predicted by Eq. (11), all
the data for different lattices collapse onto a single master
curve, which is given by the ideal entropy �f = −S id/NkB =
− ln(

√
Q) − (2/3)[

√
Q − 1]. This result nicely demonstrates

the universality of the ideal entropic contribution to the free
energy.

E. Enhanced Landau–de Gennes free energy

Now that the ideal part of the free energy has been verified,
we include also the interaction part. In Fig. 3 we show
the effective free energy as a function of the Maier-Saupe
order parameter S2. We find very good agreement between
the numerical data from thermodynamic integration and the
analytical formula (11). It should be noted that the weak
ordering as well as the divergence for perfectly ordered states is
captured correctly by our effective free energy (11). Below the
transition, one would need to modify Eq. (6) as the reference
state is no longer isotropic. Instead, we test predictions that
the free energy (11) makes for the nematic state below. For
comparison, the inset of Fig. 3 shows the effective potential
when obtained from equilibrium fluctuations β(L(Q) − F ) =
−N ln[p(Q)], where p is the probability p(Q) = 〈δ(Q − �)〉.
This quantity has been studied in Ref. [38] close to the phase
transition. Even taking into account that the thermodynamic
free energy F is a function of temperature, L and F are
certainly quite different. Since equilibrium fluctuations of S2

are small except near the phase transition, the potential L

is rather stiff and the state space is not fully explored. In
the generalized canonical ensemble, instead, the Lagrange
multipliers force the system into a manifold of partially ordered

0 0.2 0.4 0.6 0.8 1
order parameter S2

0

1

2

3

4

F 
/ k

T

0 0.2 0.4 0.6 0.8
S2

0

5

-ln
[p

]

FIG. 3. (Color online) The dimensionless effective free energy
F/NkBT as a function of the Maier-Saupe order parameter S2 for
the planar Lebwohl-Lasher model on a square lattice. The reduced
temperature kBT/J is decreasing from top to bottom as 8.0, 1.0,
0.7, 0.566. Symbols denote the numerical values while the lines are
obtained from Eq. (11). Inset: The quantity − ln p(Q) defined in the
text is shown as a function of S2 for reduced temperatures, from left
to right, 8.0, 0.566, 0.45, 0.40, 0.38, 0.35, 0.30.

states. Thus, F can be defined for practically all values of S2

in the isotropic state.

F. Isotropic-nematic transition

Next, we want to test the predictions that the effective
free energy F(Q) makes against simulations of the original
Lebwohl-Lasher model. The most direct prediction of F is the
isotropic-nematic phase transition.

Although the temperature dependence of the first term
in Eq. (1) near the transition is more complicated than in
the Landau–de Gennes theory, the isotropic-nematic phase
transition can be discussed very much in the same way. The
orientationally ordered phase is characterized by a nontrivial
solution Q 
= 0 for the equilibrium state ∂F/∂Q = 0. Con-
tracting Eq. (12) with Q, one arrives at the implicit equation

z∗βJ = 9

(
1

2Q + 1

3
√
Q

)
(1 − S2). (13)

The solution of Eq. (13) is shown in Fig. 4, where the
isotropic-nematic transition occurs through a saddle-node
bifurcation. For the order parameter at the transition, we find
S2(Tc) ≈ 0.3433, independent of dimension and symmetry of
the lattice. This value is close to the theoretical result S2(Tc) =
0.32 obtained from effective action in the hopping expansion
(see Ref. [19] and references therein). It is interesting to
note that these values are close to the experimental one
Sc = 0.312 for MBBA [6]. Figure 4 also shows the results
of our Monte Carlo simulations. Within numerical precision,
the data indeed collapse onto a single master curve as predicted
by Eq. (13). The functional form given in Eq. (13) provides a
good description of the data. Upon closer inspection, however,
the theoretical result seems to be slightly but systematically
overpredicting the order parameters for the two-dimensional
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FIG. 4. (Color online) Bifurcation diagram shows the Maier-
Saupe order parameter S2 as a function of Tc/T . Solid lines are
the solution of Eq. (13). Symbols denote the results of Monte Carlo
simulations for different lattice symmetries.

systems. Better agreement might be obtained by a more careful
consideration of the temperature dependence of z∗.

Monte Carlo simulations of the three-dimensional
Lebwohl-Lasher model on a cubic lattice close to the transition
have been performed in Ref. [37]. In these simulations,
the orientational order parameter S2 = 〈P2(u · n)〉 has been
evaluated as an ensemble average over instantaneous preferred
directions. Alternatively, we determine S2 here from our Monte
Carlo simulations in the generalized canonical ensemble (2)
via the linear-response formula (A3) in the limit of vanishing
�. In full analogy to the method of an infinitesimal biasing
field in ferromagnets [23], spontaneous symmetry breaking
due to the phase transition is replaced by a weak ordering field
that breaks the symmetry in a controlled way. Figure 5 shows

0 0.2 0.4 0.6 0.8 1 1.2
T / Tc

0

0.2

0.4

0.6

0.8

1

S 2

Ref. [12]
this work

FIG. 5. (Color online) The Maier-Saupe orientational order pa-
rameter S2 as a function of the scaled temperature T/Tc for the
three-dimensional Lebwohl-Lasher model. Circles are the result of
extensive, but standard Monte Carlo simulations [37], and squares
denote the result of our Monte Carlo simulations in the generalized
canonical ensemble (2), extrapolated for � → 0. The solid line is the
theoretical prediction from the solution to Eq. (13), and the broken
line is SD

2 from Ref. [13] defined in the text.

that the theoretical description is very accurate and performs
better than the popular result SD

2 = 1
4 + 3

4 [1 − T/Tc]1/2 given
in Ref. [13]. The critical exponent of S2(T ) ∼ (Tc − T )β is
β = 1/2, not only for SD

2 but also for result derived here,
since both are mean-field theories. The exponent β = 1/2 does
not seem to agree well with experimental observations [1]. It
should be noted, however, that SD

2 predicts the scaling relation
all the way to T = 0, while the scaling relation holds in our
result only near the transition and crosses over to a weaker
temperature dependence at lower temperatures.

G. Ordering in an external field

As a further application of the effective free energy, we
briefly discuss the induced orientational ordering due to
external fields. In particular, we consider magnetic fields [2]
and potential flows [3]. In both cases the stationary distribution
is of the form (2) with K = − 3

4�χHH and K = − 1
2τD

playing the role of � for magnetic and flow fields, respectively.
Therefore, the effective free energy (11) also needs to be
extended by a term −NQ : K. We denote the magnetic field
by H and �χ the anisotropy in the magnetic susceptibility. For
potential (e.g., elongational) flows, the velocity gradient tensor
D is symmetric. Finally, we have introduced the rotational
relaxation time τ , which is related to the rotational diffusion
of the rodlike particles [12].

The stationary state in the presence of external fields obeys
β ∂F

∂Q − NK = 0. This condition is identical to Eq. (12) with
� replaced by NK. For illustration purposes, we choose
uniaxial elongational flow with elongation rate ε̇, D = ε̇nn.
Note that the tensorial form of K is identical in the case of
an applied magnetic field. The condition of stationarity (D2)
with k = 1

2τ ε̇ provides the implicit equation ε̇(S2) from which
we obtain S2(ε̇) numerically. Figure 6 shows the Maier-Saupe
order parameter S2 as a function of the dimensionless applied
elongational rate τ ε̇ (Weissenberg number). We observe that

0 2 4 6 8 10
 τ ε

0

0.2

0.4

0.6

0.8

1

S 2

z*βJ = 0
z*βJ = 2
z*βJ = 4
z*βJ = 6

FIG. 6. (Color online) The Maier-Saupe orientational order
parameter S2 as a function of the dimensionless elongation rate
τ ε̇. From bottom to top, the interaction strength is increasing as
z∗βJ = 0,2,4,6. Solid lines show the prediction of Eq. (D2), and
broken lines correspond to the Doi-Edwards form (D4). Open and
full symbols denote the result of Monte Carlo simulations of the two-
and three-dimensional Lebwohl-Lasher model, respectively.
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S2(ε̇) is a monotonically increasing function, linear for small
τ ε̇ and approaching the maximum value S2 = 1 for infinitely
strong flow. We find that the theoretical prediction (D2) is in
very good agreement with Monte Carlo simulations, except for
weak flows close to the phase transition. The range of validity
of the fourth-order expansion (D3) shrinks from τ ε̇ � 3 for
z∗βJ = 0 down to τ ε̇ � 0.1 for z∗βJ = 6.

IV. CONCLUSIONS

We here present a systematic approach for calculating the
effective free energy for nematics starting from a microscopic
model system. The method we propose and test uses thermody-
namic integration within the generalized canonical ensemble
and therefore fits well into recent coarse-graining approaches.

We test the proposed method for the two- and three-
dimensional Lebwohl-Lasher model. With Eq. (11), we find
a new form of the effective free energy F for nematics.
Compared to the standard Landau–de Gennes expansion (1),
the new expression has several advantages: (1) It is well
founded microscopically, so that the coefficients and their
temperature-dependence can be calculated for a given model
system. (2) Energetic and entropic effects are clearly separated,
and their interpretation is evident. (3) The entropic penalty
for orientational ordering leads to a logarithmically diverging
barrier that prevents unphysical values of the order parameter.
Therefore, F is not limited to the near-transition region.
(4) Finally, for weak orientational ordering, the Landau–de
Gennes expansion is recovered.

The explicit expression for the effective free energy that we
derive here can directly be used to replace the usual fourth-
order expansion. On the macroscopic level, the relaxational
dynamics reads [12,13],

d

dt
Q = − 1

NτkBT

∂F
∂Q

= 1

Nτ
�, (14)

where the Lagrange multiplier � for the Lebwohl-Lasher
model is given by Eq. (12) with Q defined after Eq. (11). The
description of transient dynamics of nematics in a flow field is
beyond the scope of this manuscript. The clear separation of F
into energetic and entropic contributions, however, facilitates
the formulation of the corresponding time evolution equations
for Q within the GENERIC framework of nonequilibrium
thermodynamics [29].
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APPENDIX A: CUMULANT EXPANSION

From Eq. (3), the generating function G(�) can be
expressed as a cumulant expansion

G(�) = G(0) − kBT ln〈e−�:�〉

= G(0) − kBT

∞∑
n=1

(−1)n

n!
〈(� :�)n〉c, (A1)

where 〈•〉 denotes equilibrium averages with � = 0 and 〈•〉c
are cumulants. Inserting the cumulant expansion into in Eq. (4),
the order parameter is given by

Q(�) =
∞∑

n=0

(−1)n

n!
〈(� :�)n�〉c. (A2)

Unfortunately, this equation cannot be inverted in general to
give an explicit relation for �(Q).

Expanding G to second order in �, we obtain

Q = Q0 − C0 :�/N + O(�2), (A3)

where Q0 = 〈�〉 is the equilibrium order parameter for � = 0
and C0 = 〈��〉c the equilibrium fluctuations of the order
parameter. Solving for � and inserting the result into Eq. (5),
we obtain the effective free energy as a quadratic form:

F(Q) = F + 1
2NkBT (Q − Q0) : C−1

0 : (Q − Q0) + · · · .

(A4)

Such an effective free energy forms the basis of Einstein’s
fluctuation theory [29]. In the fully isotropic state Q0 = 0,
Q = −(2/15)� and F = F + (15/4)NkBT tr{Q2}.

APPENDIX B: SADDLE-POINT APPROXIMATION

Start with the Hamiltonian of the Lebwohl-Lasher
model (7),

H ′ = −1

2

∑
ij

Jij uiui : uj uj + 1

Nβ
� :

∑
j

uj uj , (B1)

where Jij = J if i and j are nearest neighbors and zero
otherwise. As usual, we invoke the Hubbard-Stratonovich
transformation [23],

1 = (detβJ )1/2
∫
Dφ e−β/2

∑
ij Jij (φi−uiui ):(φj −uj uj ), (B2)

with
∫
Dφ = ∏N

k=1

∫ ∞
−∞

dφk√
2π

, in order to rewrite the generating
function (3) as

e−βG(�) =
∫
Dφ e−S�[φ] (B3)

with the effective action

S�[φ] = −1

2
ln det(βJ ) + β

2

∑
ij

Jijφi :φj

−
∑

j

Gid

(
β

∑
i

Jijφi − �/N

)
, (B4)

where Gid(A) is the generating function for the ideal, nonin-
teracting system [33].

Equations (B3) and (B4) can be used as starting point for
perturbation theories [19]. The saddle-point approximation is
given by

∂S�[φ]

∂φi

∣∣∣∣
φ̄

= 0 = β
∑

j

Jij φ̄ − zβJ
∂Gid(A)

∂A

∣∣∣∣
zβJQ−�

, (B5)

from which φ̄ = Q follows. In this approximation, the gener-
ating function is given by

G(�) ≈ S�[φ̄] = S0 − NGid(zβJQ − �/N), (B6)
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where S0 is independent of � and therefore irrelevant in G.
Nevertheless, it is interesting to observe the occurrence of the
mean-field interaction energy term 1

2NzβJQ :Q that appears
in S0 upon inserting φ̄ = Q in (B4).

APPENDIX C: MEAN-FIELD FREE ENERGY OF THE
LEBWOHL-LASHER MODEL

In mean-field approximation, the generating function (3)
for the Lebwohl-Lasher model is given by

GMFA
LL (N,T ,�) = −NkBT ln

∫
du exp [(zβJQ − �/N ) : uu]

= −NGid(zβJQ − �/N ) − NkBT ln(4π ),

(C1)

where Gid(A) =1F1(1/2,3/2,A) is the generating function
of the ideal, noninteracting system and 1F1 the confluent
hypergeometric function of matrix argument [33]. From Q =
(NkBT )−1∂GMFA

LL /∂� find [33],

Q = 2

15
A + 4

105
A.A − 4

1575
tr{A2}A + O(A4) (C2)

with A = zβJQ − �/N . Use the following ansatz for the
unknown function �(A),

�/N = c1Q + c2Q.Q + c3Q.Q.Q + c′
3tr{Q2}Q + O(Q4)

(C3)

with some coefficients ck . This leads to

A = c̄1Q − c2Q.Q − c3Q.Q.Q − c′
3tr{Q2}Q + O(Q4) (C4)

with c̄1 = zβJ − c1 and

A · A = c̄2
1Q · Q − 2c̄1c2Q · Q · Q

+ 2
3 c̄1c2tr{Q2}Q + O(Q4). (C5)

Inserting these expressions into Eq. (C2), find

0 =
(

2

15
c̄1 − 1

)
Q +

(
− 2

15
c2 + 4

105
c̄2

1

)
Q · Q

+
(

− 2

15
c′

3 + 8

315
c̄1c2 − 4

1575
c̄3

1

)
tr{Q2}Q

+
(

− 2

15
c3 − 8

105
c̄1c2

)
Q.Q.Q + O(Q4). (C6)

Requiring this equality to hold to all orders in Q, we find that
the coefficients are given by

c1 = zβJ − 15

2
, c2 = 225

14
, c3 = −3375

49
, c′

3 = 2925

196
.

(C7)

APPENDIX D: FIELD-INDUCED ORIENTATION

An external field leads to an additional energetic contribu-
tion to the effective free energy, F → F ′ = F + Nβ−1K :Q.
Stable stationary states correspond to minima of F ′,

K = z∗βJQ + 9s ′[3Q.Q − Q], (D1)

where s ′ = (2Q)−1 + (9Q)−1/2. For the special case of uni-
axial symmetry K = knn, Q = S2nn, Eq. (D1) simplifies to

−k = zβJS2 + 9s ′S2(S2 − 1), (D2)

with Q = 1 + 2S3
2 − 3S2

2 . Equation (D2) determines the func-
tion S2(k) implicitly. For weak ordering, we can solve the
equation perturbatively via the ansatz S2 = ∑

n αnk
n and

requiring Eq. (D2) to hold to all orders in k. Up to fourth
order, the expansion reads

S2 = −χk − 15

2
χ3k2 − 18

(
z∗βJ − 5

4

)
χ5k3

−30

(
[z∗βJ ]2 + 15

2
z∗βJ − 675

16

)
χ7k4 + O(k5),

(D3)

where χ = c−1
1 and the coefficient c1 has already been defined

in Eq. (C7).
For comparison, we remind the reader that the stationary

state for the Doi-Edwards free energy FD is determined from
the cubic equation

k =
(

1 − U

3

)
S2 − 1

3
US2

2 + 2

3
US3

2 . (D4)

It is apparent from this expression that S2 grows unbounded
as the strength of the ordering field increases. This artifact
can be traced back to the simple quadratic form of the free
energy for the noninteracting case. Note that increasing the
interaction strength U does not prevent the solution to exceed
the maximum value S2 = 1, as all curves coincide at k = 2,
irrespective of the value of U .
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