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Structural origin of enhanced translational diffusion in two-dimensional hard-ellipse fluids
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The static correlations and diffusive dynamics of hard ellipses are investigated in the isotropic and nematic
phases by Monte Carlo simulation. In particular, an enhancement of the translational diffusion with respect to
the rotational diffusion is observed at an onset concentration φon within the isotropic phase, which is explained in
terms of the formation of unstable nematic-like regions with a mean lifetime that exceeds the characteristic time
of diffusion at φon. The relevance to the onset of spatially heterogeneous dynamics in supercooled glass-forming
liquids is discussed.
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The diffusion of anisotropic molecules at membranes
and interfaces is of immense theoretical and technological
importance in biological sciences and industry. In particular,
the effect of confinement between two parallel flat walls on the
single-particle dynamics of anisotropic macromolecules such
as ellipsoids [1], carbon nanotubes [2], and actin filaments [3]
has been a subject of much experimental investigation. More
recently, the diffusive dynamics of a monolayer of colloidal
ellipsoids close to a flat wall has been studied systematically
using the video microscopy technique [4]. In this paper, we
investigate the orientational correlations and the diffusive
dynamics of elongate hard ellipses in two dimensions using
Monte Carlo (MC) simulations, paying particular attention to
the interplay between static structure and diffusive dynamics in
different phases exhibited by the system. In particular, the role
played by the local fluctuations in the onset of slow relaxation
dynamics characterized by an enhanced translational diffusion
in comparison with the rotational diffusion within the isotropic
liquid phase is discussed in detail, drawing attention to its
analogies with the onset of spatially heterogeneous dynamics
characteristic of fragile supercooled liquids [5,6].

For two-dimensional (2D) hard ellipses of aspect ratio
k > 4, three different phases have been identified: isotropic,
nematic, and a smectic-like solid phase [7]. The isotropic-
nematic transition is believed to be continuous via a Kosterlitz-
Thouless–type dislocation unbinding mechanism [8]. How-
ever, the nematic-solid transition at a higher concentration is
known to be first order [7,9]. The 2D nematic phase is charac-
terized by a vanishing order parameter in the thermodynamic
limit, but a power-law decay of the corresponding correlation
functions, which is generally referred to as quasi-long-range
order (quasi-LRO). Such a quasi-long-range orientational
order is generally expected in the 2D nematic phase [7,10]
if the free energy associated with variation of orientations of
molecules can be described by

F = 1

2

∫
K( �∇θ (�r))2d2r, (1)

where θ (�r) is a continuous variable denoting the local
molecular orientation with respect to an arbitrary fixed axis
and K is an elastic constant [8,11]. As a result of Eq. (1), it
can be shown that the orientational nematic order parameter

q ≡ 〈cos(2θ )〉 ∼ N−kBT /2πK (2)

and the corresponding angular correlation function

g2(r) ≡ 〈cos(2[θ (r) − θ (0)])〉 ∼ r−η2 (3)

decay algebraically, where the correlation decay exponent
is given by η2 = 2kBT /πK . The angular braces 〈·〉 denote
equilibrium ensemble average, and kB is the Boltzmann
constant. The isotropic-nematic transition is predicted to
occur at a critical value of the renormalized Frank’s constant
given by πKc/8kBT = 1 [8]. It must be noted that for our
athermal system of hard ellipses, the thermal energy kBT

can be considered the unit of energy. So without any loss
of generality we choose kBT = 1. Using the critical value of
the renormalized Frank’s constant Kc = 8/π , one finds the
value one-fourth for the correlation decay exponent η2 at the
isotropic-nematic transition point, which is the same as that in
the critical 2D Ising model. Thus, the critical area fraction φc

can be ascertained using the requirement η2 = 0.25.
Our hard ellipses are characterized by an aspect ratio k =

a/b = 9 in order to mimic the shape of the ellipsoids used in
the experiments of Ref. [4]. a and b are the semi-major and the
semi-minor axes of the ellipse, respectively. The shorter length
is chosen as the unit of length, thus b = 1, and time is measured
in units of Monte Carlo steps (MCS’s), which corresponds
to one attempted move per particle. For our athermal hard-
ellipse fluid, the area or packing fraction defined by φ = πabρ

serves as the control parameter, where ρ = N/A is the 2D
number density and A = 2002 is the area of the simulation
box. A typical run consisted of 105 MCS’s for equilibration
and another 105 MCS’s for data accumulation.

Figure 1 shows the logarithmic plot of the angular correla-
tion function g2(r) for a range of packing fractions covering
both the isotropic and the 2D nematic phases. For the largest
area fractions simulated, i.e., φ = 0.59 and 0.68, the curves
asymptotically tend to straight lines indicating that the system
possesses quasi-LRO. The least squares straight line fits into
the topmost two curves give the values η2 = 0.24 and 0.15
for the highest area fractions considered, respectively. The 2D
nematic phase is characterized by decay exponents η2 � 0.25.
Thus, we conclude that the critical concentration for the
isotropic-nematic transition must be φc � 0.58. This result
is consistent with the previous numerical observations for
ellipses of aspect ratio k = 6, where the 2D nematic phase
was found to become stable against the dislocation unbinding
mechanism only for area fractions φ � 0.59 [7]. As expected,
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FIG. 1. The logarithmic plot of angular correlation function g2(r)
for different packing fractions.

there is a weak reduction in φc with increasing the aspect ratio
k [10].

The dynamic behavior of ellipses for a given degree of free-
dom can be characterized by the corresponding mean square
displacement (MSD), which for the translational motion is
defined by MSDT = 〈�r2(t)〉, where �r(t) = |�r(t) − �r(0)|
is the displacement of a (tagged) particle during the time t .
The expression for the rotational mean square displacement
MSDθ has a similar form. The subscripts T and θ denote
translation and rotation, respectively. In order to obtain
physically meaningful MSD’s, the maximum single-particle
displacements, both translation and rotation, were adjusted
such that approximately 50% of the moves were accepted in
the intermediate concentration range of our interest [12]. The
MSD curves for the translation and rotation of the molecules
are shown in Fig. 2. As can be seen from the figure, the
rotational diffusion of a particle can be characterized by two
diffusive time regimes, MSDθ ∼ tβ with β ≈ 1, separated by a
subdiffusive region (β < 1) due to the orientational cage effect
of the neighboring coordination shells, which approximately
occurs at a time t ∼ τθ = (2Dθ )−1, where τθ is the typical time
for a substantial diffusive rotation. In the long-time regime
t 
 τθ , the configurational changes become effective and
the particle diffuses out of its “orientational” cage with the
rotational motion becoming diffusive again, albeit at a slower
rate in comparison with the short-time regime t � τθ [4].
There is no discernible sign of caging in the translational
diffusive motion of the molecules, shown in Fig. 2(a), which
can be understood in terms of the absence of positional
order beyond short range as confirmed by the pair correlation
functions g0(r) (not shown) for the range of concentrations
investigated. In fact, the orientational cage effect observed in
Fig. 2(b) is a consequence of the medium-range orientational
order that develops in the isotropic liquid on approaching the
2D nematic phase, as discussed in detail later in this paper. We
did not observe any discernible orientational cage effect at low
concentrations, where the orientational order is short range.

FIG. 2. The translational mean square displacement MSDT (a)
and the rotational MSDθ (b). The solid lines in (b) are straight line
fits to the short- and long-time diffusive regimes.

The diffusion coefficients are given by the slope of the
corresponding MSD curves in the long-time regime. The
expression for the translational diffusion is

DT = �〈�r2(t)〉/(2d�t), (4)

where d = 2 is the dimension of space. The expression
for rotational diffusion Dθ has the same form but with
�r(t) replaced by �θ (t) = |θ (t) − θ (0)|. Figure 3 shows
the normalized (dimensionless) translational and rotational
diffusion coefficients DT,θ (φ)/DT,θ (0) as a function of the
packing fraction, where DT,θ (0) are the diffusion constants
in the infinite dilution limit [13]. The curves are third-order
polynomial fits to the data points. Clearly, the normalized
DT exceeds the normalized Dθ at a concentration that is
indistinguishable from the isotropic-nematic transition point
φc � 0.58, which underlines the adverse effect the quasi-
long-range orientational order has on the rotational motion
of the molecules. Thus, there is an intimate relation between
the static structure and the diffusive dynamics of the ellipses.
Furthermore, the system of elongated hard ellipses is known
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FIG. 3. The normalized translational and rotational diffusion
coefficients as functions of concentration. The curves are third-order
polynomial fits.

to undergo a first-order phase transition to a solid phase,
characterized by long-range positional order [7]. For ellipses
of aspect ratio k = 6, this melting point is believed to be φm �
0.79 [9]. As shown in Fig. 3, the extrapolated DT (φ)/DT (0),
tends to vanish at an area fraction φ � φm, thus underpinning
the influence the long-range translational order has on the
translational diffusion of the molecules. The extrapolated
Dθ (φ)/Dθ (0), however, appears to vanish within the 2D
nematic phase, thus underlining the effect the orientational
order has on the rotational diffusive motion of the molecules.
A further link between structure and dynamics, which is also
of considerable interest for the structural glass problem, is
discussed next.

Figure 4 shows a parametric plot DT (φ) vs Dθ (φ). It is a
matter of considerable interest to note that the plot deviates
from a straight line characteristic of homogeneous simple liq-
uids at a concentration φ � 0.48, which signals the deviation
of the transport coefficients from the Stokes-Einstein relation,
characterized by an enhancement of the translational diffusion
with respect to the rotational diffusion, as can be seen in
Fig. 4. This “enhanced translational diffusion,” or breakdown
of the Stokes-Einstein relation, is also a characteristic feature
of viscous liquids with heterogeneous dynamics [5,6]. In
the context of fragile supercooled liquids, the heterogeneity
of dynamics means that dynamics in a nanoscopic region
of a deeply supercooled liquid can be orders of magnitude
faster or slower than dynamics in another region just a
few nanometers away [14]. Such dynamically heterogeneous
regions are believed to be the main reason behind the slow
relaxation dynamics, which is characterized by the stretched-
exponential relaxation functions, as well as the deviation
from the Stokes-Einstein relation DT = kBT /6πηR∗ ∼ T/η

of the transport coefficients, characterized by an enhancement
of the translational diffusion DT over what may be expected
from the shear viscosity η (∼T/Dθ ) or the rotational diffusion
Dθ . The structural origin of this spatial heterogeneity of
dynamics in supercooled glass-forming liquids, however, is
not very clear from the experimental point of view, although

FIG. 4. The translational diffusion DT vs the rotational diffusion
Dθ . The points from top to bottom correspond to φ = 0.11, 0.28,
0.35, 0.49, 0.59, and 0.68. The solid line is fit to the dilute regime.
The enhancement of DT with respect to Dθ occurs at a concentration
φon � 0.49.

it is sometimes attributed to the so-called frustration limited
domains [15] that arise from competition between the en-
ergetically favored local structures (local orientational bond
ordering) and the global density ordering or crystallization
[16].

In the case of our hard-ellipse fluid, however, the structural
origin of the dynamic heterogeneity that is reflected in the
enhanced translational diffusion is easier to comprehend,
which is one of its advantages, and can be assigned to the
unstable nematic-like regions characterized by medium-range
orientational order with a characteristic length ξ that increases
rather exponentially on approaching φc [8]:

ξ = ξ0 exp(1.5ε−1/2). (5)

In Eq. (5), ε = 1 − (φ/φc) is the reduced distance from the
critical point and ξ0 is a microscopic length scale at infinite
dilution, which must be set equal to the shortest length in
the system: ξ0 = b = 1. However, it should be borne in mind
that the diverging characteristic length ξ corresponds to the
largest of such regions [17,18]. Indeed, the formation of
nematic-like fluctuations of all sizes up to ξ is highly probable.
This broadening of the distribution of sizes of the unstable
nematic-like regions as φ → φ−

c gives rise to a broadening
of the distribution of their lifetimes t such that the bigger
nematic-like regions tend to have longer lifetimes. Indeed the
lifetime of the largest nematic-like regions is expected to vary
as τ ∼ ξz, where the theoretical value of the dynamic exponent
is z = 2 [19]. Thus from Eq. (5), the lifetime of the largest
nematic-like regions at a given packing fraction is given by

τ = τ0 exp(3ε−1/2), (6)

where τ0 is a microscopic infinite dilution time scale that must
be equated to the shortest time in the system, thus τ0 = 1 MCS.
From Eq. (6), therefore, as φ increases, τ also increases
with it, which leads to a broadening of the distribution
of the lifetimes (1 < t < τ ) for the unstable nematic-like
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FIG. 5. A comparison of the behaviors of the four different
structural and dynamical time scales as a function of concentration.
The crossover point 〈t〉 = τθ at φon = 0.48 signals the onset of slow
relaxation.

regions in the isotropic liquid. In this way, the rapidly or
exponentially growing correlation time results in dynamic
heterogeneity [18]. It must be noted that a similar exponential
increase for the structural relaxation times characterized by
the Vogel-Fulcher-Tamman equation has been found for the
fragile supercooled liquids [5].

Hence the increasing τ , or more precisely the mean
lifetime of the unstable nematic-like regions 〈t〉, changes
the rotational behavior of the ellipses significantly as the
unstable nematic-like regions are characterized by medium-
range orientational order, thus resisting the rotational diffusive
motion of the molecules, but having less bearing on their
translational motion. The above qualitative consideration can
be quantified more precisely in terms of different structural
and dynamic time scales and a crossover concentration φon

defined by 〈t〉 � (2Dθ )−1, which signals the onset of slow
relaxation dynamics, as follows. As shown in Fig. 4, the
enhanced translational diffusion characterizing slow relaxation
dynamics begins at a concentration φon � 0.48 that is at a
distance ε = 0.172 from the 2D nematic transition. Thus,
the length of the largest nematic-like regions, according to
Eq. (5), is ξ = 37, and their lifetime is given by Eq. (6)
as τ = ξ 2 = 1370 MCS’s. Assuming that the formation of
nematic-like regions of all sizes up to ξ is equally probable
[17], we can approximate the distribution of the lifetimes
G(t) in the range 1 < t < τ by a constant and zero for
t > τ . Therefore, these nematic-like regions have a mean
lifetime 〈t〉 ≈ τ−1

∫ τ

1 tdt = τ/2 = 680 MCS’s at the onset
concentration φon = 0.48. This approximate value of the mean
lifetime for nematic-like regions at φon, can be compared
with the rotational diffusion time τθ = (2Dθ )−1 = 500 MCS’s,
where we have used Dθ = 0.001 at φon, as it appears in Fig. 4.
τθ is the typical time required for a molecule to undergo
a diffusive rotation of one radian. Thus, in our system the
onset concentration corresponds to the crossing of two time
scales, 〈t〉 � τθ , one of structural origin, 〈t〉, and the other
dynamic in nature, τθ . Another moment of the distribution of

the lifetimes G(t) that is assumed to be of some interest for
the translational diffusive motion of the molecules [14,15] is
〈t−1〉 ≈ τ−1

∫ τ

1 dt/t = ln τ/τ . The reciprocal of this moment
has a value 〈t−1〉−1 = τ/ ln τ = 100 MCS’s at the onset
concentration while the translational diffusion time at φon is
τT = ab/(2DT ) = 180 MCS’s, where we have used ab = 9
and DT = 0.025 (Fig. 4). τT is the typical time required for
an ellipse to translate a distance comparable to its linear size√

ab = 3. Figure 5 shows the different dynamic and structural
time scales as functions of the concentration, where we have
used τT = 9/(2DT ), τθ = (2Dθ )−1, 〈t〉 = τ/2, and 〈t−1〉−1 =
τ/ ln τ . τ as a function of φ, is given by Eq. (6). As the figure
shows for dilute systems, the mean lifetime of the nematic-like
regions 〈t〉 is shorter than any of the characteristic diffusion
times τθ and τT . At the crossover concentration φon � 0.48,
the mean lifetime of the nematic-like regions 〈t〉 exceeds τθ ,
as well as τT , at a lower concentration, and diverges at the 2D
nematic transition point φc � 0.58. Therefore, the crossover
point φon to slow, activated, or heterogeneous dynamics, can
be defined by

〈t〉(φon) = τθ (φon). (7)

Furthermore, Fig. 5 shows that the various time scales have
very different concentration behaviors, and there is no simple
relation between 〈t〉 and τθ , or between 〈t−1〉−1 and τT as
expected in Refs. [14,15].

The result obtained here for the enhanced translational
diffusion starting at an onset concentration φon defined by
Eq. (7) may well find direct analogy and pave the way for a
better understanding of the observed dynamic heterogeneity
in supercooled glass-forming liquids, based on the formation
of local structures characterized by amorphous bond order
that grow in linear size ξ̂ with lowering the temperature, but
lifetimes that increase rather exponentially as τ̂ ∼ exp(Dξ̂ )
due to the key role played by the activated processes in deeply
supercooled liquids [16,18,20]. We note that an exponentially
growing correlation time is also a characteristic feature of
our system. Thus, we have a definition that identifies the
crossover concentration (temperature) to activated transport,
given by Eq. (7) and supported by numerical results of Fig. 5,
which may also apply to the viscous liquids approaching their
glass transition. The applicability to the fragile supercooled
liquids approaching their glass transition stems from the
thermodynamic theories of the structural glass transition (for
a recent review, see Ref. [20]) that invoke a growing static cor-
relation length to explain the glass transition phenomenology
characterized by superArrhenius relaxation times, stretched-
exponential relaxation functions, enhanced translational dif-
fusion, and dynamic heterogeneity. However, it should be
borne in mind that for our system of monodisperse ellipses,
the dynamic heterogeneity in the isotropic liquid arises from
unstable nematic-like regions that have geometric symmetries
consistent with those in the ensuing 2D nematic phase. But in
the supercooled liquids as well as monolayers of polydisperse
colloidal ellipsoids that undergo a glass transition [4,21],
the local structures in general have symmetries inconsistent
with the ordered global phase (crystal) and cannot tile space
efficiently, thus leading to geometrical frustration and glass
transition.
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