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Surface and bulk contributions to nematic order reconstruction
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Nematic molecules confined in an asymmetric π cell and subjected to strong electric fields exhibit textural
distortions involving nematic order variations, described by the Landau-de Gennes Q-tensor theory. We
investigated the evolution of order variations as function of the applied electric pulse amplitude and of the
nematic surface pretilt anchoring angles by implementing a Q-tensor model with a moving mesh finite element
method. The proposed technique is able to clearly distinguish the bulk and the surface order reconstruction which
occur in the cell.
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I. INTRODUCTION

Isotropic liquids are ergodic systems for which a time
average is equivalent to a space average, entailing a random
molecular orientation [1]. Conversely, molecules in a solid
crystalline phase are forced by the intermolecular interactions
to lie, on average, in a lattice structure. Thermotropic liquid
crystals (LCs) in the nematic phase, instead, consist of
calamitic (i.e., rod-shaped) molecules, which, in a temperature
range between the isotropic liquid and the crystalline state,
exhibit long-range orientational order. Classically, the nematic
phase is described by the Frank-Oseen theory [2], where,
usually, the director n, pointing out the average molecular
orientation, varies in space, and the degree of orientational
order, described by the scalar order parameter S, is considered
practically constant everywhere. This theory is able to describe
elastic monostable transitions, as in the case of Freedericks
phenomena, where the starting nematic texture, prescribed by
suitable boundary conditions, is elastically distorted by an
external electric or magnetic field, and the induced distortion
always relaxes back to its initial equilibrium texture when the
external perturbation is removed.

Some physical phenomena occurring in highly frustrated
LC systems deserve particular interest and cannot be fully
explained by this simplified classical description, such as LC
confined by means of topographic patterns [3], LC emulsions
[4], LC confined in porous materials [5], topological defects
[6–8], or self-organized colloidal dispersions in LC [9–11].
In fact, in all these cases, the nematic distortion occurs over
a length scale comparable with the biaxial coherence length
ξb [12], the nematic order varies, and biaxial domains arise
inside the nematic phase, resulting in the relaxation of the
strong distortion. Consequently, the more sophisticated theory
based on the Landau de Gennes order tensor Q [13] needs to
be defined in order to obtain reliable results: In this frame,
domains having uniaxial order present a cylindrical symmetry
with respect to the director and a unique optical axis, while
in biaxial ordered domains such symmetry is broken and
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the system presents two distinct optical axes. However, most
nematogenic molecules are intrinsically biaxial, even if they
give rise to a uniaxial phase, which usually is a consequence
of the rotational disorder around the long molecular axis. If
the rotational disorder is hampered, non-uniaxial features may
appear and biaxial order could arise [14].

Biaxial domains can grow within uniaxial LC systems in the
bulk as well at the LC interface [15–18], and, recently, much
effort has gone into understating their theoretical foundation.
Recent experiments on LC frustrated systems show that local
and transient bulk biaxial order can be induced inside a nematic
phase, suggesting that biaxiality plays a fundamental role in LC
phenomena which take place on a nanometric scale [19–24].
In particular, the biaxial order reconstruction in nematics
has been proposed as a new tool capable of connecting two
competing uniaxial nematic textures by means of transient
biaxial states [19]. In fact, applying a strong electric field inside
a symmetric π cell, it is possible to transform the initial splay
texture into the topological different bend one by changing
the local order of the nematic phase without any macroscopic
director rotation. Moreover, it has been experimentally and
theoretically demonstrated that, by nanoconfining a nematic
topological defect, the nematic phase undergoes a structural
transition with predominant biaxial order [24]. Such phenom-
ena are mathematically described by the order tensor Q, where
the eigenvectors point out the preferred molecular orientation
while the associated eigenvalues measure the degree of
order [25,26].

Very recently, electrically induced nematic order recon-
struction has been investigated experimentally as well as the-
oretically within an asymmetric π cell with strong anchoring
energy [27,28]. As the starting splay texture is not symmetric
with respect to the midplane of the cell, the electrically
induced biaxial wall occurs near a confining surface layer
and the π -bend texture grows at the expense of the starting
splay texture, overcoming the topological barrier. With the
electro-optical as well as the electric threshold observations
comparable with the corresponding of the surface anchoring
breaking phenomenon [29], the mechanism governing the
real process allowing us to overcome the topological barrier
between the splay-bend textures needs further studies, and a
more sophisticated numerical technique is required in order
to thoroughly investigate what happens when the induced
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distortion occurs close to a confining surface of a π cell, as
new effects could arise [30].

In this work, we use the finite element method (FEM)
in order to solve the time-dependent Q tensor governing
equations inside an asymmetric π cell submitted to high
electric fields, implementing a moving mesh partial differential
equations (MMPDE) numerical technique. The MMPDE
technique, belonging to the class of r-type adaptive grid
techniques, ensures no waste of computational effort in areas
where there is no need for finer grids: The nodal connectivity
and the number of mesh points inside the domain are kept
constant while the mesh points themselves are moved into
regions where more detail is required [31]. This peculiarity
is fundamental for our investigated system; in fact, since the
spatial position at which the biaxial domains can occur is
a priori unknown, the adaptive method proposed is capable
of moving the nodes toward regions where the gradient of
Q is growing, allowing, thus, a greater resolution [32,33].
Moreover, for a given spatial resolution, since the number
of nodes is kept fixed, a smaller number of mesh points are
needed with respect to simulations performed on uniform
grids, resulting in a saving of computational costs.

The paper has the following structure: In Sec. II we provide
the basic details of the Q tensor model used to describe
the dynamical behavior of a nematic phase, as theoretical
details have been thoroughly addressed in Refs. [26,32,33];
in Sec. III we introduce the used computational technique and
the physical parameters used for the simulation. In Sec. IV
we present and discuss our numerical results, and, finally, we
conclude in Sec. V.

II. BASIC THEORY

The order of a nematic liquid crystal texture can be
described by the order tensor

Q =
3∑

i=1

si ui ⊗ ui , (1)

where each ui is an orthogonal unit vector representing an
eigenvector of Q and si are the corresponding eigenvalues. In
the isotropic phase, the calamitic molecules do not present any
orientational order; all the eigenvalues vanish and the optical
behavior is like an isotropic fluid. The uniaxial nematic phase
is described by the eigenvector associated to the maximum
eigenvalue smax, giving the scalar order parameter S =
(3/2)smax, while the remaining two eigenvalues are equal, and
a unique optical axis is present. In the biaxial nematic phase,
all three eigenvalues differ. From Eq. (1) it follows that Q is
symmetric, and it is also imposed to be traceless [13,25]. In
order to describe nematics in biaxial configurations, a complete
representation of Eq. (1) is required, and Q is a tensor field as
the order changes locally from point to point.

The degree of biaxiality is measured using the defini-
tion [19]

β2 = 1 − 6
tr(Q3)2

tr(Q2)3
∈ [0,1]. (2)

When β2 = 0, the nematic texture is uniaxial; instead,
the maximum of biaxiality corresponds to β2 = 1, when the
nematic phase is biaxial. The condition of Q = 0 corresponds

to a local order loss, and, in this case, nematics are in an
isotropic phase.

To model the Q-tensor response of a nematic to an external
field, the minimization of the free energy density functional
F inside the cell containing the liquid crystal is required.
Contributions to F are assumed to originate from bulk only,
since surface terms are neglected because of the fixed boundary
conditions imposed, thus leading to infinite anchoring strength.
Consequently,

F =
∫

V

(Fd + Ft + Fe)dV, (3)

where the integration is performed over the domain volume V

and the thermotropic, electric, and elastic terms, respectively,
Ft , Fe, and Fd , are expressed in powers of Q, assuming their
dependence from small Q distortions. Hence,

Ft = Ft (Q), Fe = Fe(Q,∇Q), Fd = Fd (Q,∇Q), (4)

where

F t = atr(Q2) − 2b

3
tr(Q3) + c

2
(tr(Q2))

2
, (5)

with a = α(T − T ∗) = α�T , α > 0, where T ∗ is the
supercooling temperature [13] and b and c are approximated
as constants and

Fe = −ε0

2
(εi |∇U |2 + εa∇U · Q∇U ) + e∇Q · ∇U, (6)

where ε0 is the vacuum electric permeability and εi and εa

are the isotropic and the anisotropic dielectric susceptibilities
defined as

εi = (ε‖ + 2ε⊥)

3
, εa = (ε‖ − ε⊥)

Seq
, (7)

with ε‖ and ε⊥ dielectric nematic constants respectively
parallel and perpendicular to the molecular axis and where
U is the electric potential. In Eq. (6) the last term accounts for
polarization effects in which

e = e11 + e33

2Seq
(8)

while e11 and e33 are the splay and bend flexoelectric
coefficients, respectively. In Eqs. (7) and (8)

Seq (�T ) = b

4c

(
1 +

√
1 − 24ac

b2

)
(9)

is the equilibrium order parameter for uniaxial systems.
Finally, the elastic contribution to the free energy functional is
given by

Fd = L1

2

(
∂Qij

∂xk

)2

+ L2

2

∂Qij

∂xj

∂Qik

∂xk

+ L6

2
Qlk

∂Qij

∂xl

∂Qij

∂xk

(10)

with

L1 = 1

6S2
eq

(k33 − k11 + 3k22)

L2 = 1

S2
eq

(k11 − k22) (11)

L6 = 1

2S3
eq

(k33 − k11)

and where k11, k22, and k33 are the Frank elastic constants.
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The order tensor can be written in terms of five independent
parameters qi , i ∈[1,5], corresponding to the degrees of
freedom of a rodlike nematic molecule

Q =
⎛
⎝q1 q2 q3

q2 q4 q5

q3 q5 −q1 − q4

⎞
⎠ . (12)

The evolution equations are represented by the generalized
Euler-Lagrange equation giving the partial differential equa-
tions (PDE) system

∂D

∂q̇i

+ ∂F t

∂qi

+ ∂F e

∂qi

+ ∂F d

∂qi

− ∂

∂xj

(
∂F d

∂qi,j

)

− ∂

∂xj

(
∂F e

∂qi,j

)
= 0 i = 1 . . . 5, (13)

which is solved imposing Dirichlet boundary conditions on
the boundary surfaces, together with the governing equation
for the electric potential

∇ · D = ∇ · (−ε0ε∇U + P S) = 0. (14)

In Eq. (14), D is the displacement field, ε is the dielectric
tensor, and P s is the spontaneous polarization vector [37,38]
required to fulfill the Maxwell equations in absence of free
charges.

The system (13), in which summation over repeated indices
is assumed and where the subscript “j” denotes differentiation
with respect to the spatial coordinates x1, x2, and x3, is attained
starting from the balance equation [34,35]

δD + δḞ = 0, (15)

where D is the Rayleigh dissipation function given as

D =
∫

V

DdV =
∫

V

γ trQ̇2dV, (16)

with D dissipation function density and γ related to the
rotational viscosity; further, the backflow is neglected [36], and
the variation of the dissipation function density is expressed
as

∂D

∂q̇i

δq̇i = 2γ tr

(
Q̇

∂Q
∂qi

)
δq̇i . (17)

III. COMPUTATIONAL METHOD AND SETTINGS

In order to solve the PDE system arising from Eqs. (13)
and (14) by FEM, implementing the MMPDE numerical
technique [32,33], the appropriate discretization of the inte-
gration domain is obtained by applying the equidistribution
principle [39,40]. This method allows us to control the mesh
map quality by means of a monitor function [41–43] where
the optimal choice depends on the problem being solved, the
numerical discretization being used, and the norm of the error
that is to be minimized [42], allowing accurate representations
of sharp solution features, such as shocks or defects.

For a one-dimensional problem (1D), let z be the physical
coordinate, specifically, our cell thickness, and u(z,t) a solution
over a physical domain �p = [0,1] of a PDE system, we
then introduce a fixed computational domain �c = [0,1]
with ξ computational coordinate. It follows that a one-to-one

mapping at time t from computational to physical space is
defined by the coordinate transformation from computational
space �c × (0,T ] to physical space �p × (0,T ],

z = z(ξ,t), ξ ∈ �c, t ∈ (0,T], (18)

while the inverse from physical space �p × (0,T ] to compu-
tational space �c × (0,T ] is represented as

ξ = ξ (z,t), z ∈ �p, t ∈ (0,T]. (19)

Imposing a uniform grid on computational space,

ξi = i/N, i = 0,1, . . . ,N (20)

gives a set of nodes on physical space

0 = z0(t) < z1(t) < . . . zN (t) = 1 (21)

corresponding to an equispaced grid in the computational
space. The mesh map quality control is attained by equidis-
tributing a monitor function M(u(z,t)) over the integration
domain [39,41–44]:∫ z(ξ,t)

0
M(u(s,t))ds = ξ

∫ 1

0
M(u(s,t))ds. (22)

Differentiating the integral form of the equidistribution
principle, Eq. (22), its differential form is obtained,

M(z(ξ,t))
∂

∂ξ
z(ξ,t) =

∫ 1

0
M(u(s,t))ds = C(t), (23)

representing the mesh equation giving the node coordinates
z(ξ ,t) on which the problem is solved. The latter expression
clearly shows that, in order to keep the distribution of the
monitor function constant over the integration domain, a larger
monitor function value must correspond to a denser mesh.

The choice of the monitor function was addressed to that
tested by Beckett et al. [39], belonging to a method proposed by
Huang et al. [44], since it ensures a good quality control of the
meshes and final convergence of the FEM solution [39,41,42],

M(u(z,t)) =
∫ 1

0

√∣∣∣∣∂u(z,t)

∂z

∣∣∣∣dz +
√∣∣∣∣∂u(z,t)

∂z

∣∣∣∣. (24)

The advantages derived from using this function, as well
the numerical procedure and the algorithm description, have
been thoroughly examined in Refs. [32,33]. Summarizing, we
have a multidimensional time-dependent problem, and the
overall adaptive solution process involves the modelling of
the physical problem with a 1D π cell with infinite anchoring
energy on both plates, to which an electric pulse is applied
perpendicularly. At time t = 0 s, the mesh points are uniformly
distributed over the integration domain, and at the current time
step the five coupled PDE resulting from the Euler-Lagrange
equations (13) and the Maxwell equation for the electric
potential inside the cell (14) are solved, obtaining, at each time
step, six unknown exact solutions u(z,t). The problem then
is tackled with an iterative process involving the following:
(a) generation of the adaptive moving mesh evaluating the
monitor function for the current time step and (b) solution
of Eqs. (13) and (14) for the current mesh and updating the
solution for the next time step.
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The second step is based on relaxation methods [45],
and the computations were carried out using the COMSOL
MULTIPHYSICS finite element package with MATLAB [46]. The
Galerkin’s method associated to a weak formulation of the
residuals of the differential equations [47] allowed us to
overcome the nonlinearity of the problem. Ritz’s method
applied to Eq. (14), instead, allowed us to calculate the
potential distribution.

It is well accepted [19] that, inside a π cell, two topo-
logically different nematic textures are possible: In the first
one, the nematic director is almost parallel to the boundary
plates with a slight splay deformation and, in the second one,
the nematic is almost perpendicular to the plates and presents
a bend deformation which is topologically equivalent to a
twisted configuration, i.e., a nematic texture with a π torsion.
Due to the surface treatment on the internal boundary plates,
the nematic molecules confined between them are aligned on
both surfaces with strong anchoring energy with a fixed pretilt
angle θ . In addition, letting the pretilt angle be oppositely
directed by means of an antiparallel arrangement, an initial
splay configuration of the nematic texture establishes inside
the cell. The spontaneous relaxation from the splay toward
the bend/twisted texture is prevented by the arising energy
barrier which depends on the tilt angle and on the ratio of
elastic moduli. The switching between the two textures is
possible if, breaking the starting nematic texture somewhere, it
is allowed to connect the two topologically different textures.
Among different suitable switching mechanisms [7,24], the
nematic biaxial order reconstruction induced by the electric
field [19–23,26] is a possible one enabling the escape from
topological constraints and overcoming the energy barrier.

The FEM procedure used involves the solution of Eqs. (13)
and (14) at each time step using a quadratic finite element
approximation, replacing in Eqs. (24) the exact solution u(z,t)
with tr(Q2): such a quantity is suitable to monitor order
reconstruction phenomena, since it is the sum of the squared
Q eigenvalues, which rapidly vary when the degree of order is
not constant.

We performed our calculations simulating a cell 1 μm thick,
with asymmetric anchoring conditions of nematic molecules
on the boundary plates, setting the anchoring angles, both
measured with respect to the plates, on the lower boundary
surface to θl = 19◦ and on the upper boundary surface to
θu = 0◦, −1◦, −2◦, −3◦. The electric pulse is applied at t =
0 s, for a duration of 0.25 ms, along the z direction, with
amplitudes from 10 to 14 V/μm. The physical parameters,
used to sample the dynamical evolution of the Q tensor with
a time step size of �t = 0.1 μs, are those already used for
a 5CB nematic liquid crystal [26,32,33], with �T = −1 ◦C
[48]. For a symmetric π cell having θl = 19 and θu =
−19◦ we find an electric order reconstruction threshold Eth =
8 V/μm, in agreement with previous reported theoretical and
experimental values [19,22]. On the other hand, it has been
seen that asymmetric anchoring conditions imposed on a π

cell containing a 5CB nematic LC cause variations in Eth

[28], which need more investigations. We have monitored the
biaxiality arising along the cell thickness, Eq. (2), at the various
electric field amplitudes, discretizing the physical domain with
a mesh of 285 grid points. In addition, assuming nematic
molecules as a purely dielectric material and neglecting ion

effects, for each amplitude of the applied field we have
evaluated also the density of the current flowing across the cell,
a quantity which is very sensitive to changes of the nematic
order [20,28], using the expressions derived in Ref. [19],

J = U

d

d

dt

(
1

ε−1
eff

)
, (25)

and setting �ε = ε‖ − ε⊥

εeff = ε0

(√
2

3
�ε Qzz + εi

)
, ε−1

eff = 1

d

∫ d
2

− d
2

1
εeff

dz. (26)

Equations (26) are a consequence of the one-dimensional
nature of our problem, in which all fields depend only on the
z coordinate.

IV. NUMERICAL RESULTS AND DISCUSSION

Nematic LCs confined in a π cell with strong and
asymmetric anchoring conditions, similarly to the symmetric
case [19,21,32,33,49], can present two topologically different
textures, splay and π bend/twist. The imposed asymmetry as
well the strong anchoring conditions allow us to concentrate
the largest nematic distortion close to the surface where the
nematic molecules have anchoring angles approaching planar
conditions, in our case close to the upper cell surface [28]. The
evolution of the electrically induced distortion is monitored
calculating the local biaxiality arising in a region close to
the upper boundary plate, for different upper pretilt angles
and imposing electric pulses with increasing amplitude. Each
Figs. 1 to 5 shows the induced biaxiality during the application
of electric pulses of amplitudes 10, 11, 12, 13, and 14 V/μm.
Moreover, when going from panel (a) to panel (d), the upper
anchoring angle varies from θu = −3 to θu = 0◦ with step
�θ = 1◦. The vertical and the horizontal axes correspond,
respectively, to the cell thickness in the 0.9 μm � z � 1 μm
range and to the time scale of the solution evolution in the
0 ms � t � 0.1 ms interval. The biaxiality is linearly mapped
in a grey levels scale between the black (zero biaxiality) and
white (maximum biaxiality) colours.

In Fig. 1(a), a t = 0 s, the initial nematic texture is in an
asymmetric splayed configuration and the nematic molecules
next to the upper surface stay almost planar to the plate. After
the application of the electric field of amplitude 10 V/μm, for
t > 0 s, the molecules start to align their director along the field
direction, and a biaxial region of thickness comparable with
the biaxial coherence length ξb starts to grow, connecting the
surface planar nematic texture with the competing vertical bulk
nematic molecules [19,32,33]. The strong induced nematic
distortion relaxes by lowering the nematic order, i.e., the
starting uniaxial phase is lost and it is locally replaced by
growing biaxial domains. At t = 48 μs the induced biaxial
region looks like a crater of a volcano, where the biaxiality is
zero inside and around the crater [4,19]: This is the signature
of the order reconstruction phenomenon; for t > 50 μs the
biaxial wall disappears, meaning that the initial splayed texture
is replaced by a bend. The uniaxial order is restored everywhere
except for a residual biaxiality near the upper surface due to
the strong anchoring energy.
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FIG. 1. Surface contour plots of the biaxial order evolution, close
to the upper boundary plate, for an electric pulse of amplitude
10 V/μm. The vertical and the horizontal axes correspond to the
cell thickness in the 0.9 μm � z � 1 μm range and the time scale of
the solution evolution in the 0 ms � t � 0.1 ms interval, respectively:
(a) θu = −3◦, (b) θu = −2◦, (c) θu = −1◦, and (d) θu = 0◦. The
biaxiality is linearly mapped in a gray scale between the black (zero
biaxiality) and white (maximum biaxiality) colors.

For θu = −2◦, Fig. 1(b), the volcano-like biaxial region is
not present, but a bulk biaxiality clustered around 38 μs starts
to develop and propagate inside the cell. In fact, the electrically
induced bulk strain is pushed toward the upper surface, and,
at the same time, S becomes strongly inhomogeneous and
a thin biaxial film of thickness comparable with the electric
coherence length ξE grows. For t > 50 μs, the induced nematic
strain is completely absorbed by the upper surface layer: the
distortion energy cost less on that surface layer because the
elastic constants, which are proportional to S2, present lower
values of S.

For θu = −1◦, Fig. 1(c), the biaxial cluster also disappears,
and the biaxiality is almost all concentrated close to the upper
boundary surface; the same behavior occurs for θu = 0◦,
Fig. 1(d). In general, holding the amplitude of the applied
electric field constant and decreasing θu from −3◦ to 0◦, the
electrically induced nematic distortion relaxes by means of
two different mechanisms: a fast one involving the appearance
of the order reconstruction phenomenon [19] and a slow one
involving the motion of the bulk biaxiality toward the low
pretilt surface plate, on which it finally spreads [28]. In fact,
for θu = −3◦, the splay-bend transition presents a complete
order reconstruction evolution similar to what happens within a
symmetric π cell. Otherwise, at lower θu, the induced nematic
strain is absorbed on the upper surface, where the growth of
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FIG. 2. As in Fig. 1 but with an amplitude for the electric pulse
of 11 V/μm.

the surface biaxial layer mediates the competition between
the bulk reorientation due to the high electric field and the
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FIG. 3. As in Fig. 1 but with an amplitude for the electric pulse
of 12 V/μm.
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FIG. 4. As in Fig. 1 but with an amplitude for the electric pulse
of 13 V/μm.

surface local order which cannot change due to the strong
anchoring energy. Applying higher amplitudes of electric
field, the same two different textural switching mechanisms
occur faster and, moreover, it is possible to achieve the order
reconstruction transition closer to the upper surface layer. By
the way, Fig. 4(b) shows what happens when the nematic
distortion is pushed by an applied electric field amplitude
of 13 V/μm toward the upper boundary surface where
θu = −2◦: The nematic phase, under the combined effect of
the planar alignment with strong anchoring energy and the
vertical alignment enforced by the electric field, loses its
natural uniaxial symmetry, showing biaxial features [26,50].
In particular, at t = 95 μs, the surface order reconstruction
occurs which extends for a few microseconds. The same
mechanism occurs at a lower pretilt angle, markedly at θu =
−1◦, increasing the electric field amplitude to 14 V/μm, see
Fig. 5(c), and, looking at the evolution of the nematic director
in the last 10 μm close to the upper boundary plate, can help
to understand the switching mechanism driven by the surface
order reconstruction transition. In fact, the magnifications of
Fig. 6 shows that, at t = 20 μs, Fig. 6(a), the nematic texture is
quite distorted, the biaxiality is already relevant, see Fig. 5(c),
and, when going toward the bulk, the nematic molecules tend to
be aligned along the direction of the electric field. At t = 75 μs,
Fig. 6(b), the molecules lying close to the upper plate approach
a planar uniaxial configuration, while the bulk molecules are in
a vertical configuration. At t = 79 μs, Fig. 6(c), corresponding
to the uniaxial dip inside the surface biaxial wall of Fig. 5(c),
the molecules are in a vertical configuration, except for the
planar uniaxial state close the upper confining plate. Soon after,
at t = 83 μs, Fig. 6(d), the nematic configuration is symmetric
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FIG. 5. As in Fig. 1 but with an amplitude for the electric pulse
of 14 V/μm.

with respect to Fig. 6(b). For t > 100 μs, for instance, at t =
114 μs as in Fig. 6(e), the splay-bend transition of the nematic
texture is completed. The nematic director configuration inside
the whole π cell, instead, is shown in Fig. 7 for t = 0 s (a), for
t = 0.25 ms (b), and after the electric field was switched-off
(c), at t = 0.26ms. It can be seen that the nematic texture
starts from a splay configuration, Fig. 7(a); at the end of
the electric pulse is in a vertical state, Fig. 7(b); while for
t > 0.25 ms, Fig. 7(c), the director suffers a spontaneous
viscoelastic relaxation [26], a behavior which is common to
all the investigated cases. From our computations, it seems
that a lowering of the pretilt angle cause a rise of the electric
amplitude threshold required for the bulk order reconstruction
transition to take place.

FIG. 6. Nematic director evolution in the last 10 μm close to the
upper boundary plate of the π cell subjected to an electric pulse with
amplitude 14 V/μm for a duration of 0.25 ms, and for θu = −2◦, at
different times: (a) 20 μs, (b) 75 μs, (c) 79 μs, (d) 83 μs, (e) 114 μs.
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FIG. 7. Nematic director configuration across the π cell subjected
to an electric pulse with amplitude 14 V/μm for a duration of
0.25 ms, and for θu = −2◦, at different times: (a) 0 s, (b) 0.25 ms,
(c) 0.26 ms.

We observe that the induced nematic distortion is moved,
temporally by the variations of the electric field amplitude and
both spatially and temporally by the variations of the upper
pretilt angle. It is worth noting as at lower pretilt angles, the
order reconstruction is no longer a bulk phenomenon but a
surface one.

Figures 1–5, show that, at a given amplitude of the electric
pulse, biaxiality arises where the nematic distortion, i.e.,
∇Q, is higher, as a consequence of the strong competition
between the vertical alignment due to the electric field and the
planar alignment of the surface nematic layer. The proposed
numerical technique concentrates the mesh points in regions
of high spatial order variability and, at the same time, pulls
them away from regions of low distortion, and, consequently,
it is possible to capture the relevant biaxial features that occur
close to the surface layer [28,32,33].

Very recently, analysis of the current signal coming from
an asymmetric π cell allowed us to distinguish the dynamical
order behavior giving relevant data about the induced biaxiality
and the different relaxation mechanisms [28]. Figures 8–12
show the calculated electric current flowing across the cell
during the application of the above electric field amplitudes,
where curves (a) to (d) refer to the four different pretilt
upper surface angles. In each figure, the first and faster broad
structure is related to the dielectric molecular reorientation
along the field direction, and whatever the amplitude of the
applied electric pulse is, for θu = 0◦, nothing else other than
this peak is present, see Figs. 8(d)–12(d). Applying a pulse with
amplitude 10 V/μm and θu = −3◦, curve 8(a), a distinct peak
is evident at 50 μs which is related to the breaking of the biaxial
wall, see Fig. 1(a) [19,33]. Decreasing the anchoring angle to
θu = −2◦, curve 8(b), apart from the fastest peak, a smooth
and lasting structure is present, partially superimposed on the
tail of the dielectric peak, centred around 45 μs and due to the
slow movement of the planar wall toward the upper surface
layer [28], see also Fig. 1(b). Such a structure is not so evident

FIG. 8. Computation of the electric current density flowing across
the cell in the 0 ms � t � 0.1 ms time interval for an electric pulse
of amplitude 10 V/μm: (a) θu = −3◦, (b) θu = −2◦, (c) θu = −1◦,
and (d) θu = 0◦.

for θu = −1◦ since it becomes totally superimposed on the tail
of the dielectric peak, Figure 8(c). Increasing the amplitude of
the electric field up to 14 V/μm, Figs. 9–12, all the structures,
including the first peak, become faster [33]. In addition, with
θu = −2◦ and a pulse amplitude of 13 V/μm, the smooth cur-
rent structure become less evident, Fig. 11(b), and, increasing
the amplitude to 14 V/μm, Fig. 12(b), it is suddenly replaced
by a sharper and faster one characterizing the order recon-
struction transition, see Fig. 5(b). The current computations
in Figs. 11 and 12 reveal slight topological variations not
captured by the biaxiality and reflect the biaxial evolution seen
in Figs. 4 and 5, except for the surface order reconstruction
transition observed in Figs. 4(b) and 5(c): In these cases
the nematic distortion becomes progressively confined in a
very few nematic layers close to the upper boundary surface
where the biaxiality is nearly constant and the uniaxial order is
slowly varying over a wide time interval. Given that the current
flowing between the plates is proportional to a time derivative
of the order tensor Q [19], it follows that the contribution to the
current coming from the upper boundary region is negligible if
compared to the contribution coming from the bulk region, and,
consequently, no related structure are expected to be visible in
the current computations.

If the amplitude of the applied field is kept below 13 V/μm,
the biaxiality velocity increases according to decreasing

FIG. 9. As in Fig. 6 but with an amplitude for the electric pulse
of 11 V/μm.
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FIG. 10. As in Fig. 6 but with an amplitude for the electric pulse
of 12 V/μm.

upper anchoring angles, see Figs. 8–10. From amplitudes of
13 V/μm onward, the order dynamics is definitively faster
for bulk order reconstruction phenomena than for surface
biaxial ones, see Figs. 4(b) and 5(c), with no need for a
fast bulk transition. It follows that surface and bulk order
reconstruction do not coexist, at least in the range of the
investigated electric field amplitudes. On the other hand,
properly combining electric field amplitudes with the upper
anchoring angles, a confining and a squeezing of the order
reconstruction into the surface biaxial wall can be obtained,
similarly to what was observed in nanoconfined nematic liquid
crystals, either mechanically [24], in which the confinement
induces a two-dimensional stretching of a defect structure,
or electrically [26], in which a defect core stretches along a
confining surface, increasing the biaxiality of the surface layer.

The outcomes of our numerical simulations are properly
framed within the phase diagram of Fig. 13, where, on the
horizontal axis, the investigated electric pulse amplitudes E

are shown, and, on the vertical axis, the anchoring angles
θu imposed on the upper boundary plate of the cell are
shown. Several computations have been performed to search
for the phase boundaries in the (E, θu) plane delimiting
domains where the nematic texture follows different switching
mechanisms. For each point in the plane we classify the cor-
responding texture as bulk switching (BS), surface switching
(SS), or no switching (NS): Triangles, circles, and squares

FIG. 11. As in Fig. 6 but with an amplitude for the electric pulse
of 13 V/μm.

FIG. 12. As in Fig. 6 but with an amplitude for the electric pulse
of 14 V/μm.

mark the phase boundaries, respectively, among NS-BS, NS-
SS, and SS-BS phase domains. This results in a partition
of the (E, θu) plane in three regions, within each homogeneous
textures concerning their switching regime are mapped. The
three boundary curves converge toward a region where, due to
the competition between the two switching mechanisms, it is
not possible to unambiguously assign a switching regime to
the nematic texture. In such a region the phase diagram has
been sampled with steps �E = 0.05 V/μm, �θu = 0.05◦, and,
therefore, the extrapolated triple point coordinates are (E)T =
12. 575 V/μm ± 0.025 V/μm and (θu)T = 2.025◦ ± 0.025◦.

We remark that the points corresponding to the biaxiality
maps shown in Figs. 4(b) and 5(d) are placed, respectively,
on the SS-BS and NS-SS boundary lines. In fact, a closer
inspection reveals that, in Fig. 4(b), in addition to the surface
order reconstruction transition, inside the bulk biaxial cluster
a dip starts to form, which is the signature of an incipient bulk
order reconstruction. On the other hand, inside the biaxial wall
of Fig. 5(d), a weak uniaxial line can be detected, which is, in

FIG. 13. Phase diagram in the plane (E, θu) for the occurrence
of the bulk switching (BS), surface switching (SS), or no switching
(NS) in the nematic texture. On the horizontal axis are reported the
amplitudes of the applied electric pulse, while on the vertical axis
are represented the anchoring angles imposed on the upper boundary
plate of the π cell. For each simulation, the switching mechanism
shown by the nematic texture has been referred to BS, SS, and
NS. Triangles, circles, and squares represent the phase boundaries
between the three switching regimes in the plane (E, θu). The triple
point coordinates are (E)T = 12. 575 V/μm + 0.025 V/μm, and
(θu)T = 2.025◦ + 0.025◦.
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turn, the signature of an incipient surface order reconstruction
transition extending for several microseconds.

V. CONCLUSIONS

In this work we presented a moving mesh partial differential
equations finite element method simulation applied to a
dynamical Q-tensor model for the study of nematic liquid
crystals confined in a π cell with asymmetric anchoring
conditions. The parameters have been set in order to simulate
different realistic asymmetric configurations of a π cell
containing nematic material.

We computed the evolution of both the biaxiality and
the current flowing across the cell after the application of
electric fields with variable amplitudes. Selecting properly
the amplitudes of the electric pulse and the geometric
constraints at the boundary surfaces, either bulk or surface
order reconstruction transition can occur. In fact, by applying
a strong electric field and varying the pretilt upper angle,
we can observe different mechanisms capable of relaxing the
electrically induced nematic strain. In the first one, if the upper
angle is not planar, the energy of the biaxial wall is released in a
short time, building a well-defined electric peak corresponding
to the well-known order reconstruction phenomenon, whereas,
if the upper angle is approximately planar, the distortion energy
is released more slowly during the motion of the biaxial
wall toward the surface plate, with a wider electric signal.
In addition, once the slow biaxial wall reaches the bounding
plate and spreads over it, for strong-enough electric fields a
surface order reconstruction transition occurs. Such behavior
is not obvious and is reminiscent of surface defect spreading

in hybrid homeotropic-planar cells in the presence of a strong
electric field [26] or under nanoconfinement [24]. Moreover,
at a given anchoring angle, the velocity of the biaxial features
increases according to the amplitude of the applied electric
pulse, while, at a given pulse amplitude, such velocity increases
according to the decreasing anchoring angles. Nevertheless,
at higher amplitudes of applied fields, two velocity rates
are detected, respectively, below and above the bulk order
reconstruction transition threshold. The above considerations
suggest a possible way to drive, spatially and/or temporally,
the biaxial phenomena arising inside the cell, a feature which
could be important for application purposes.

The computed phase diagram allows us to map the
nematic textures into regions characterized by their switching
mechanism, against applied voltages on the cell plates and
pretilt angles on the upper boundary surface.

The combined study of the temporal evolution of both the
biaxiality and the current flow inside the π cell turns out
to be a powerful method to investigate biaxial phenomena
induced by fast electric distortion. The advantage is enhanced
by the numerical method used to allow detailed computations
of the Q-tensor dynamics inside the asymmetric cell: In fact,
the grid points are driven inside the computational domain by
∇Q, which, in turn, grows according to the nematic distortion
induced by the variable asymmetry. Our computational method
allows an overall saving of computational effort with respect
to the use of uniform grids, gaining new insights in the study
of highly frustrated nematic molecules, a scenario mimicking
realistic conditions. Work is in progress to numerically inves-
tigate the order dynamics in π cells under various geometrical
and electrical conditions.
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