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We propose a continuum model to describe the molecular alignment in thin nematic shells. By contrast with
previous accounts, the two-dimensional free energy, aimed at describing the physics of thin films of nematics
deposited on curved substrates, is not postulated, but it is deduced from the conventional three-dimensional
theories of nematic liquid crystals. Both the director and the order-tensor theories are taken into account. The
so-obtained surface energies exhibit extra terms compared to earlier models. These terms reflect the coupling of
the shell extrinsic curvature with the nematic order parameters. As expected, the shape of the shell plays a key
role in the equilibrium configurations of nematics coating it.

DOI: 10.1103/PhysRevE.85.061701 PACS number(s): 61.30.Dk, 68.35.Md, 61.30.Jf

I. INTRODUCTION

Nematic liquid crystals are aggregates of rodlike molecules
that tend to align parallel to each other along a given direction
[1]. Due to their easy response to externally applied electric,
magnetic, optical, and surface fields, liquid crystals are of
greatest potential for scientific and technological applications.
Currently there is an increasing interest in soft matter physics
on small spherical colloidal particles or droplets coated with a
thin layer of nematic liquid crystal [2,3]. The hope is to build
mesoatoms with controllable valence [4]. We refer to these
coating layers as nematic shells.

When nematic liquid crystals are constrained to a curved
surface, the geometry induces a distortion in the molecular
orientation. The possibility to have an in-plane order rather
than a spatial distribution of the molecules depends on the
shell thickness [2,5,6]. In ultra-thin shells, the interaction with
the colloid surface enforces a sort of degenerate anchoring,
i.e., the tendency of the molecules to align along any direction
parallel to the surface. Thus, unavoidable defects arise when
nematic order is established on a surface with the topology
of the sphere. The number of defects is a consequence of the
Poincaré-Hopf theorem, which states that any configuration
must have a total topological charge equal to the Euler-
Poincaré characteristic of the surface. For instance, on a sphere
whose characteristic is +2, we can have two diametrically
opposite +1 defects or four +1/2 defects located at the vertices
of a tetrahedron [5]. This tetrahedral defect structure is of
great interest in material science because defects regions can
be functionalized to serve as bonds [4]. This could lead to
tetravalent mesoatoms with sp3-like directional bonding like
carbon. Theoretical studies have emphasized the possibility to
control the location of the defects, and hence the valence of
mesoatoms, by varying the shell geometry [7] or by tuning the
elastic constants of the nematic [8,9].

Most theoretical studies on nematic liquid crystals are
framed within the classical director theory (see, for instance,
Refs. [1,10]). In this setting, the local properties of the nematic
liquid crystal are described through a unit vector, the director,
parallel to the local molecular direction. The equilibrium
configurations of the nematics minimize the Frank’s free

energy, with respect to all configurations that satisfy the
boundary conditions. However, the director description of a
nematic configuration misses a relevant information at the
mesoscopic level: the dispersion of the molecules around the
director. The order-tensor theory, put forward by de Gennes
(see Refs. [1,10]), overcomes this gap by introducing a richer
kinematic description. Within this theory the free energy to
minimize is the Landau–de Gennes free energy.

Theories for two-dimensional nematic order have been
proposed in both director and order-tensor schemes [7,11–15]
and use free energies derived by symmetry arguments or
mesoscopic properties. By contrast, our approach derives the
surface free energy for thin films as limiting cases of the
well-established three-dimensional theories of nematic liquid
crystals. The main concern is how classical theories (Frank
and Landau–de Gennes theories) reduce when the nematic
molecules, confined within a thin region, align in the direction
parallel to the underlying surface. A prominent role is played
by the ratio between the thickness of the shell, denoted by
h, and the minimum radius of curvature of the entire shell,
denoted by �. In fact, the surface versions of Frank and
Landau–de Gennes free energies can be deduced from the
three-dimensional models under the assumption of smallness
of the ratio h/�.

Conversely to existing models, we find that in the two-
dimensional directory theory the twist term does not vanish.
Actually, it expresses the tendency of the molecular axis
to align with the curvature principal directions. Moreover,
our analysis provides a coherent way to obtain the two-
dimensional order-tensor theory. As a result, we retrieve
the quadrupolar coupling between the two-dimensional order
tensor and the curvature tensor already obtained by the authors
of Ref. [15] using mesoscopic arguments.

The paper is organized as follows. In Sec. II we introduce
the mathematical notations and terminology. Sections III and
IV are devoted to obtain surface free energies from Frank
and Landau–de Gennes theories, respectively. Mathematical
topics employed in these sections and some details of the
calculations are reported in the Appendixes. Finally, we draw
our concluding remarks in Sec. V.
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II. GEOMETRICAL PRELIMINARIES

We first introduce the terminology and establish some
preliminary notations. First, three-dimensional vectors are
denoted by lower-case boldface letters, whereas second order
tensors are denoted by upper-case boldface letters. The scalar,
vector, and tensor products between two vectors u and v are
indicated by u · v, u × v, and u ⊗ v, respectively. In cartesian
components, u · v = uivi , (u × v)i = εijkujvk , (u ⊗ v)ij =
uivj , where summation is understood over repeated indices,
and the third-order tensor ε = εijk is the Ricci alternator. The
composition between two second-order tensors A and B is
the tensor C = AB with components Cij = AihBhj . For the
compositions of tensors of different orders, it is agreed that
the lower-order tensor is on the right and all its indexes are
saturated. For instance, the composition between a second-
order tensor A and a vector u gives the vector v = Au with
components vi = Aijuj . Finally, the scalar product between
A and B is the scalar A · B = AijBij , whereas, given the
third-order tensors A and B, we set A · B = AijkBijk and
A · Bt = AijkBikj .

Let us assume that the nematic shell occupies a thin region
V of thickness h around a regular compact surface S. Let νs

be the normal unit vector field to S. We parametrize points in
the bulk through a coordinate set (u,v,ξ ) such that

p(u,v,ξ ) = pS(u,v) + ξνs(u,v), (1)

where pS is the normal projection of p onto S, and |ξ |, with
ξ ∈ [−h/2,h/2], is the distance of p from the same surface.
Such a coordinate set is well defined in a finite neighborhood
of S. More precisely, we introduce the principal curvatures
c1s(pS ) and c2s(pS ) of S at point pS , and assume

h � min
pS∈S

(max{|c1s(pS )|,|c2s(pS )|})−1 = �. (2)

For every fixed ξ ∈ [−h/2,h/2], Eq. (1) defines a parallel
surface Sξ = {pS + ξνs(pS ) : pS ∈ S} at distance |ξ | from
S with the vector field ν : p ∈ Sξ �→ νs(pS ) as unit normal
vector field. In such a way, the unit vector field ν is defined on
the entire region V . The second-order tensor ∇ν is symmetric.
Its eigenvectors are ν (with a null eigenvalue) and the unit
vector fields

ei(p) = eis(pS ) (i = 1,2),

where e1s and e2s represent the tangent principal directions
fields on S. The spatial gradient for each eigenvector is

∇ν = − c1s

1 − ξc1s

e1 ⊗ e1 − c2s

1 − ξc2s

e2 ⊗ e2, (3)

∇e1 = κ1(ξ )e2 ⊗ e1 + κ2(ξ )e2 ⊗ e2 + c1s

1 − ξc1s

ν ⊗ e1, (4)

∇e2 = −κ1(ξ )e1 ⊗ e1−κ2(ξ )e1 ⊗ e2+ c2s

1 − ξc2s

ν ⊗ e2, (5)

where the functions κ1(ξ ) and κ2(ξ ) are given in Appendix
A. We refer the reader to Ref. [16] for a more comprehensive
treatise of the geometry of surfaces.

Let � be a smooth field defined on S. Assume � scalar,
vector, or tensor valued. Then the surface gradient of � is
defined (see Ref. [17]) as

∇s� = (∇�)P,

where P = I − νs ⊗ νs represents the projection onto the
tangent plane of S. The trace of the surface gradient of a
vector field u defines the surface divergence of u: divsu =
tr∇su = ∇su · P, which is a scalar field. On the other hand,
the surface curl of u is defined as twice the skew-simmetric
part of the surface gradient:

curlsu = −ε∇su.

Let n denote a unit vector field defined on V such
that n(p) = n(pS) and n · ν = 0 at each point p. Next, by
introducing the conormal unit vector field t = ν × n, we write
the spatial gradient of n (see Appendix A for calculation
details):

∇n = J−1
ξ

{[
κns

− ξνs · curls(Lns)
]
t ⊗ n

+ [
κts − ξνs · curls(Lts)

]
t ⊗ t

+ (
cns

− ξK
)
ν ⊗ n − τns

ν ⊗ t
}
, (6)

where ns and ts represent the restrictions of n and t on S,
respectively. The tensor L = −∇sνs represents the extrinsic
curvature tensor of S. Its trace gives twice the mean curvature
H , while its second invariant gives the Gaussian curvature
K . The quantities cns

= ns · Lns , τns
= −ts · Lns represent

the normal curvature and the geodesic torsion of the flux
lines of ns on S, respectively. The latter is zero whenever
ns is a principal direction. The quantities κns

and κts denote
the geodesic curvature of the flux lines of ns and ts on S,
respectively [18,19]. The geodesic curvature κns

(respectively,
κts ) measures the deviance of the flux lines of ns (respectively,
ts) from following a geodesic on S. Finally, we have set
Jξ = 1 − 2Hξ + Kξ 2.

The divergence and the curl of n are the trace of ∇n and the
axial-vector associated with twice the skew-symmetric part of
∇n, respectively. Thus, from (6) it follows that

divn = J−1
ξ

[
κts − ξνs · curls(Lts)

]
, (7)

curln = J−1
ξ

{ − τns
n − (

cns
− ξK

)
t

+ [
κns

− ξνs · curls(Lns)
]
ν
}
. (8)

We observe that the normal curvatures, the geodesic torsion,
the geodesic curvatures, and the surface gradients introduced
above are quantities related to the surface S, and, therefore,
they do not depend on ξ . Instead, although n has been supposed
constant along normal directions within the thickness, its
spatial gradient depends on ξ .

Finally, since κns
= ts · (∇sns)ns and κts = ts · (∇sns)ts

(see Ref. [18]), the surface gradient of ns is given by

∇sns = κns
ts ⊗ ns + κts ts ⊗ ts + cns

νs ⊗ ns − τns
νs ⊗ ts ,

and consequently

divsns = κts , curlsns = −τns
ns − cns

ts + κnνs . (9)

Unlike flat surfaces, the surface curl of ns possesses nonvan-
ishing in-plane components.

III. TWO-DIMENSIONAL DIRECTOR THEORY

The classical elastic continuum theory is based on the
pioneering works of Oseen, Zocher, and Frank (OZF) pub-
lished between the 1930s and 1950s. We refer the reader to
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Ref. [10] for a detailed mathematical treatment. The average
alignment of the molecules is represented by a unit vector n,
called the director, where n is physically equivalent to −n. The
expression for the elastic energy density (per unit of volume)
associated with the director distortion consists of four terms:

2wOZF = K1(divn)2 + K2(n · curln)2 + K3|n × curln|2
+ (K2 + K24)div[(∇n)n − (divn)n], (10)

where the constants K1, K2, K3, and K24 are called the
splay, twist, bend, and saddle-splay moduli, respectively. To
ensure a stable undistorted configuration of a nematic liquid
crystal in the absence of external fields or confinements, the
three moduli Ki(i = 1,2,3) must be non-negative, whereas the
elastic saddle-splay constant must obey Ericksen’s inequalities
[6]:

|K24| � K2, K2 + K24 � 2K1.

In the absence of external actions, the equilibrium configura-
tions are stationary points of the total energy

W =
∫

V

wOZF(n,∇n) dV, (11)

according to the boundary conditions. These may consist in
fixing n at the boundary (strong boundary conditions) or
in allowing n to rotate freely (free boundary conditions).
Intermediate situations, known as weak anchoring boundary
conditions, can be envisaged by including an anchoring
energy that penalizes the deviation of the molecules at the
boundary from a given direction. Furthermore, the free energy
density may account for extra terms in order to describe, for
instance, the interaction of the nematic with external electric
or magnetic fields.

Let us introduce the small parameter ε = h/�. The small-
ness of ε on the one hand ensures that the parametrization
(1) is properly defined, and on the other hand, with the aid of
Proposition 2 (see Appendix B), it allows us to approximate
the OZF free energy as follows:

WOZF ≈ WS
OZF = 1

2

∫
S

[k1(divsns)
2 + k2(ns · curlsns)

2

+ k3|ns × curlsns |2]dA, (12)

where ki = hKi (i = 1,2,3). Observe that the saddle-splay
term has disappeared in this approximation since n is assumed
independent of ξ . In fact, from (6) it follows

div[(∇n)n − (divn)n] = tr(∇n)2 − (tr∇n)2 = 0. (13)

Comparing Eqs. (12) and (10) we remark that (1) WS
OZF

involves a surface integral rather than a volume integral, thus
we can refer to WS

OZF as a surface free energy; (2) the surface
elastic constants ki are obtained by multiplying Ki and the
thickness h, and, hence, by virtue of Ericksen’s inequalities,
they must be non-negative; (3) the surface free energy involves
surface differential operators instead of spatial ones.

It is worth mentioning a peculiarity of curved substrates
with respect to planar nematics. Unlike the planar case, the
twist term cannot be a priori neglected. Indeed, as it has been
already observed, curlsns is not orthogonal to ns . In fact, by

using formulas (9), Eq. (12) reduces to

WS
OZF = 1

2

∫
S

[
k1κ

2
ts + k2τ

2
ns

+ k3
(
c2

ns
+ κ2

ns

)]
dA, (14)

which shows that the twist free energy density is proportional
to τ 2

ns
. The latter vanishes if and only if the flux lines of ns

lie along principal directions. Thus, the twist free energy can
be disregarded whenever spherical shells are concerned [9] or
whenever the director lies along meridians or parallels of an
axisymmetric shell [20].

In light of Eq. (14), we can give the following intuitive in-
terpretation for the shell-nematic interaction. The arrangement
of the molecules on a surface is the result of the competition
between the bend and the splay free energies that try to put the
flux lines of ns and ts along geodesics of S, and the twist term
that tries to align the flux lines of ns with the curvature lines
of S. Furthermore, the term proportional to the square of the
normal curvature expresses the tendency of the flux lines of ns

to align with the principal direction of minimal curvature.
From Eq. (14) it follows that within the one constant

approximation (k1 = k2 = k3 = k), the surface OZF free
energy becomes

WS
OZF = k

2

∫
S

|∇sns |2dA. (15)

A key feature of the free energy (15) is that it differs from
the one used in earlier works [5,11,21]. Indeed, by denoting α

the angle between the principal direction e1s and ns , Eq. (15)
reduces to

WS
OZF = k

2

∫
S

(|∇sα − ω |2 + c2
ns

+ τ 2
ns

)
dA,

where ω represents the spin connection field [22,23]. A glance
at Eq. (21a) of Ref. [22] shows that the terms proportional to
τ 2

ns
and c2

ns
were neglected. Clearly, this mismatch stems from

the fact that free energy density in Eq. (15) is proportional to
the square of the surface gradient of ns rather than proportional
to the square of covariant derivative of ns as it is customary to
assume (see, for instance, Ref. [22] or [21]).

IV. TWO-DIMENSIONAL ORDER-TENSOR THEORY

The director theory describes only states with a single
optical axis. For closed shells whose topology is different
from that of a torus, the tangent vector field n exhibits singular
points, i.e., regions where the local orientational order of the
nematic is undefined. As a result, the shell often incorporates
so-called topological defects. These mathematical singulari-
ties can be avoided by introducing a tensorial-order parameter,
that describes defects as those points in which the nematic
melts into a liquid phase (isotropic states). Hereinafter we
illustrate the geometrical meaning of that order parameter.

We now recall the order-tensor theory for the usual three-
dimensional nematics. Let us suppose that the orientation
of a single molecule is represented by a unit vector m.
Microscopic disorder is taken into account by introducing a
probability measurefp : S2 → R+, such that fp(m) describes
the probability that a molecule placed in p is oriented along m.
The orientation of the molecular axis is described at each point
in space by a point of the unit sphere S2 (or by a unit vector).
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Thus, if 
 is any subset of S2, the probability of finding in p

one molecule oriented within 
 is given by

P {
} =
∫




fp(m)dσ,

where σ denotes the area measure on S2. Nematics posses
a molecular mirror symmetry; i.e., the head and tail of a
molecule can be changed without experiencing any change
in the probability distribution. Thus, the probability measure
is even, fp(m) = fp(−m), and the first moment of the
distribution fp is zero.

The second moment of the distribution is the variance
tensor M = 〈m ⊗ m〉, where the brackets denote averaging
with respect to fp. By definition, M is unit trace symmetric
and semidefinite positive. The spectral decomposition theorem
ensures that M can be put in the diagonal form:

M = λ1e1 ⊗ e1 + λ2e2 ⊗ e2 + λ3e3 ⊗ e3,

and, since the eigenvalues of M sum up to one, its spectrum is
bounded by sp(M) ⊂ [0,1].

Nematic liquid crystals may then exhibit three different
states: isotropic, uniaxial, and biaxial. It is customary to define
these states by using the order tensor Q = M − 1

3 I. Thus, we
can have the following:

(1) The eigenvalues of Q are equal, which implies Qiso = 0;
in this case we label the nematic as isotropic.

(2) At least two eigenvalues are equal, the nematic is called
uniaxial. Simple algebraic manipulation allows us to write

Quni = s
(
u ⊗ u − 1

3 I
)
.

The scalar parameter s ∈ [− 1
2 ,1] is called the degree of

orientation, and the unit vector u is the optical axis. We retrieve
the isotropic phase when s = 0, while the perfect alignment
of the molecules is obtained for s = 1. The case s = − 1

2
represents flat isotropic distributions, in the plane orthogonal
to u.

(3) When the eigenvalues of the order tensor are all
different, the nematic is labeled as biaxial. Then we can write
the general expression for the order tensor

Qbia = s
(
u ⊗ u − 1

3 I
) + λ(e+ ⊗ e+ − e− ⊗ e−),

where λ denotes the degree of biaxiality and s ∈ [− 1
2 ,1] as

above. The sign of λ is unessential, since it involves only
an exchange between e+ and e−. The degree of biaxiality
does always satisfy |λ| � 1

3 (1 − s). Even for biaxial nematic,
s = − 1

2 represents flat (not necessarily isotropic) distributions.
The free energy comprises two terms: the elastic energy

and the Landau–de Gennes potential. Following Ref. [24], the
most general quadratic elastic energy can be written as

Wel(∇Q,Q) =
∫

V

{L1|∇Q|2 + L2(∇Q) · (∇Q)t

+L24div[(∇Q)Q − QdivQ]}dV, (16)

where L1, L2, and L24 are constants. This energy expresses
the tendency of the molecules to arrange parallel one to each
other in a homogeneous state.

The Landau–de Gennes potential WLdG is a temperature-
dependent thermodynamic contribution that takes into account

the material tendency to spontaneously arrange in ordered or
disordered states. Its density is of the form (see Ref. [1])

wLdG(Q) = F (A,B,C) + A

2
trQ2 − B

3
trQ3 + C

4
(trQ2)2,

(17)

where A = A0(T − Tc)/Tc, A0 is a material-dependent pos-
itive constant, T is the absolute temperature, and Tc is a
characteristic temperature; B and C are material-dependent
positive constants and F (A,B,C) is a positive constant that
accounts for the free energy of the isotropic phase. We observe
that F (A,B,C) plays no role in the minimization of the
Landau–de Gennes energy density, and the stationary points
of wLdG correspond to either isotropic tensors or, whenever
B2 − 24AC � 0, uniaxial tensors of the form

Qcr = s̃
(
u ⊗ u − 1

3 I
)
,

with

s̃ = B + √
B2 − 24AC

4C
,

and u ∈ S2. In addition to the supercooling temperature Tc

below which the isotropic state loses its stability, there are
two other characteristic temperatures for wLdG: the nematic-
isotropic transition temperature (1 + B2

27A0C
)Tc at which the

nematic and the isotropic phase have the same energy, and
the superheating temperature (1 + B2

24A0C
)Tc above which the

isotropic phase is the unique stationary point of wLdG. The
resulting seven characteristic temperature regimes for wLdG

are discussed in detail in Ref. [25].

A. Degenerate states

The procedure to derive the two-dimensional free energy
for nematic shells is performed in two subsequent steps:
(a) we have to specialize the free energy to describe degenerate
planar distributions, where the eigenvector of M with null
eigenvalue coincides with ν; then, (b) as for the OZF free
energy, we approximate the three-dimensional free energy
under the assumption of smallness of the parameter ε.

To describe a degenerate anchoring throughout the shell,
let us suppose the nematic molecules are orthogonal to
ν and m(p(u,v,ξ )) = m(pS(u,v)). Since at each point the
probability to find m in the direction ν is zero, it follows
that Mν = 0. This means that no isotropic spatial states are
allowed. Let us introduce n and t the eigenvectors of M
orthogonal to ν. We write the variance tensor in the form [7]

M = 1
2 (I − ν ⊗ ν) + λ (n ⊗ n − t ⊗ t) ,

where λ ∈ [− 1
2 , 1

2 ]. We recognize that two kinds of uniaxial
states are allowed: (1) λ = 0, then ν is the optical axis and
the molecules are randomly distributed orthogonally to ν; and
(2) λ = ± 1

2 and the molecules are perfectly ordered along a
direction orthogonal to ν. The latter case coincides with the
directory theory analyzed in the previous section. Note that the
sign of λ is inessential since, the order tensors associated with
negative values of λ and director n coincide with the order
tensors associated with the positive degree of order −λ and
director t.
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An alternative and equivalent parametrization of the vari-
ance tensor is the following [15]:

M = q (n ⊗ n) + 1
2 (1 − q)(I − ν ⊗ ν), (18)

with q = 2λ ∈ [−1,1].
It is worth noting that this parametrization can be also

obtained from the three-dimensional order parameter M by
imposing s = − 1

2 , by taking u along the normal surface and
by choosing n along one of the two tangential eigenvectors
of M.

B. Elastic energy

Now, let us introduce the traceless tensor Q, associated with
M, in the usual way: Q = M − 1

3 I. With the aim of adapting
the elastic free energy to the case of degenerate states, we
replace Q by Q. Since Q and M (as well as Q and M) differ up
to a constant, we have ∇Q = ∇M; thus, in the elastic energy,
Q can be replaced by M leading to

Wel(ι1,ι2,ι3) =
∫

V

[L1ι1 + L2ι2 + L24(ι2 − ι3)]dV, (19)

where ι1 = |∇M|2, ι2 = (∇M) · (∇M)t , and ι3 = |divM|2 are
scalar invariants of M. On the other hand, by using the
parametrization (18) and with the aid of equations (3)–(5),
the following identities hold:

ι1 = 2q2{(divn)2 + |n × curln|2 + (n · curln)2}
+ 1

2
|∇q|2 + 2J−2

ξ (1 − q)(H − Kξ )
[
(1 − q)H

+ 2qcns
− (1 + q)Kξ

] − J−2
ξ (1 − q2)K, (20a)

ι2 = div

{
1 − q

2Jξ

[
(1 − q)H + 2qcns

− (1 + q)Kξ
]
ν

}
+ J−2

ξ (1 − q)(H − Kξ )
[
(1 − q)H + 2qcns

− (1 + q)Kξ
] + q2[(divn)2 + |n × curln|2] + 1

4
|∇q|2

+ q∇q · [(∇n)n − (divn)n], (20b)

ι3 = q2[(divn)2 + |n × curln|2] + 1

4
|∇q|2

+ J−2
ξ (1 − q)(H − Kξ )

[
(1 − q)H + 2qcns

− (1 + q)Kξ
]

− q∇q · [(∇n)n − (divn)n]. (20c)

As for the director theory, in order to obtain the elastic
surface free energy, we expand the volume free energy as
a power series in the small parameter ε and consider only
the leading-order term. Thus, by means of Proposition 1 in
Appendix B and since Euler’s formulas (A15) lead to H =
1
2 (cns

+ cts ), we obtain

WS
el =

∫
S
l1

[
q2(κ2

ts + κ2
ns

) + 1

4
|∇sq|2 +

(
H + q

cns
− cts

2

)2]
dA

+
∫
S

l2q∇sq · (
κns

ts − κts ns

)
dA

−
∫
S

l3(1 − q2)A −
∫
S

(l1 + l2 − 4l3)q2τ 2
ns

dA, (21)

where l1 = h(2L1 + L2), l2 = h(L2 + 2L24), l3 = h(2L1 +
L2 + L24)/2. In the next section we show that these elastic

constants are subject to restrictions in order to guarantee the
positiveness of the elastic free energy.

In order to interpret the contributions of the different terms,
we first examine the special case where the perfect uniaxial
nematic order (q = 1 everywhere) is enforced on the entire
shell. Equation (21) reduces to

WS
el(q = 1) =

∫
S

[
l1

(
κ2

ts + κ2
ns

+ c2
ns

) − (l1 + l2 − 4l3)τ 2
ns

]
dA,

that represents a Frank-like surface free energy [to be com-
pared with Eq. (14)]. The ratio between the twist and the splay
constants can be tuned acting on the constants li (i = 1,2,3). In
particular, when L2 = 0, then 4l3 = 2l1 + l2, and we retrieve
the one constant approximation of the Frank’s energy (15).

By denoting Ms = q(ns ⊗ ns) + 1
2 (1 − q)P the restriction

of M to S, the following identity holds:

l1

(
H + q

cns
− cts

2

)2

= l1(Ms · L)2; (22)

the right-hand side of this identity is the quadrupolar coupling
between the curvature tensor and the surface-order tensor
derived in Ref. [15] employing quasi-microscopic arguments.
When q is different from zero, this term express the tendency of
ns to align along one of the two principal directions depending
on the sign of the mean curvature.

The energy term proportional to the square of the surface
gradient of q clearly expresses the tendency of the nematic to
arrange in states with constant order parameter. It is worth to
note that, for topological reasons, states with nonzero uniform
q are not always allowed. This is the case of closed surfaces
with the topology of the sphere.

The term proportional to Gaussian curvature K was already
obtained in Ref. [7]. It is a constant term only when q is
homogeneous on a fixed surface, by virtue of Gauss-Bonnet
theorem.

Concerning the second integral of the right-hand side of
Eq. (21), we find the following identity (see Appendix C):∫

S
q(∇sq) · (

κns
ts − κts ns

)
dA

= 1

2

∫
∂S

q2(∇sα − ω ) · dl − 1

2

∫
S

q2KdA, (23)

with α and ω as in previous section. Thus, for closed shells, the
density free-energy density associated with this term is even
proportional to the Gaussian curvature.

To better compare our results with earlier models, we
rewrite Eq. (21) in terms of Ms . By introducing

ι1s = |∇sMs |2, ι2s = (∇sMs) · (∇sMs)
t , ι3s = |divsMs |2,

a straightforward calculation, exploiting identities (B14),
yields

WS
el(ι1s ,ι2s ,ι3s) =

∫
S

[μ1ι1s + μ2ι2s + μ24(ι2s − ι3s)]da,

(24)

where μi = hLi (i = 1,2,24).
By introducing Qs = Ms − 1

2 P = q(ns ⊗ ns − 1
2 P), we

notice that energy (24) reduces to Eq. (6) of Ref. [7] provided
that Ms is replaced by Qs . However, it is worth noting that,
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unlike the usual tensors M and Q, the surface tensors Ms and
Qs differ for a nonconstant tensor field. As a consequence,
Eqs. (24) and (6) of Ref. [7] do not represent the same surface
free energy. Indeed, a direct calculation yields the following
identities:

ι1s = |∇sQs |2 + 2Qs · L2 + 1
2 |L|2,

ι2s = (∇sQs) · (∇sQs)
t + Qs · L2 + 1

4 |L|2,
ι2s − ι3s = (∇sQs) · (∇sQs)

t − |divsQs |2 − 1
2K,

that allows us to state that the elastic energy (24) includes
the one reported in Ref. [7] supplemented by additional terms
describing the coupling of the shell extrinsic curvature with
the nematic ordering. Finally, since

Qs · L2 = 2Hς cos 2α, (25)

where ς = 1
2 (c1 − c2) is the local asphericity, we can conclude

that (24) reduces (up to constant terms) to Eq. (6) of Ref. [7]
if and only if the shell is a minimal surface or spherical.

The positiveness of the free energy imposes suitable
restrictions to the free energy coefficients. Following the
approach pursued in Ref. [7], let us decompose the surface
elastic free energy density wS

el as follows:

wS
el = wS

el1 + wS
el2 + wS

el3, (26)

with

wS
el1 = l1

[
q2

(
κ2

ts + κ2
ns

) + 1

4
|∇sq|2

]
+ l2q

(
κns

ts − κts ns

) · ∇sq, (27a)

wS
el2 = l1

4

[
(1 + q)2c2

ns
+ 2(1 − q2)cns

cts + (1 − q)2c2
ts

]
− l3(1 − q2)cns

cts , (27b)

wS
el3 = [l3 − (l1 + l2 − 3l3)q2]τ 2

ns
, (27c)

where the identity K = cns
cts − τ 2

ns
has been used. Then we

recognize that wS
el1 = v1 · A1v1 and wS

el2 = v2 · A2v2, with

A1 =

⎛
⎜⎜⎜⎝

l1 l2/2 0 0

l2/2 l1/4 0 0

0 0 l1 −l2/2

0 0 −l2/2 l1/4

⎞
⎟⎟⎟⎠ ,

A2 = 1

4

(
l1 l1 − 2l3

l1 − 2l3 l1

)
,

v1 := (
qκns

,∇sq · ts ,qκts ,∇sq · ns

)
,

v2 := [
(1 + q)cns

,(1 − q)cts

]
.

λ2

λ1

A

B C

D
S2

S3

S1

− 1 1 2

− 2

− 1

1

FIG. 1. We have set λ1 = L2/L1, λ2 = L24/L1. S1 is the region
in which the elastic energy density in Eq. (16) is nonnegative (see
Ref. [24]). S1 ∪ S2 represent the domain in which the surface elastic
free energy in Ref. [7] is non-negative. S1 ∪ S2 ∪ S3 is the region
where inequalities (28) hold. A ≡ (−3/2,1/2), B ≡ (−1,1), C ≡
(1,1), D ≡ (6/5,4/5).

Hence, it can be easily proved that wS
el � 0 if and only

if

l1 � 0, |l2| � l1, 0 � l3 � l1, l1 + l2 � 4l3,

or, equivalently,

μ1 � 0, 2μ1 + μ2 � 0, (28a)

|μ24| � 2μ1 + μ2, |μ2 + 2μ24| � 2μ1 + μ2. (28b)

By assuming L1 > 0 and introducing the ratios λ1 =
μ2/μ1 and λ2 = μ24/μ1, the admissible region in the (λ1,λ2)
plane in which the surface elastic energy density (21) is
positive semidefinite is sketched in Fig. 1. It is worth noting
that the domain in which the elastic free energy density (26) is
positive semidefinite contains the domain of nonnegativeness
of the surface energy density introduced in Ref. [7]. This in
turn contains the domain of nonnegativeness of the elastic
energy density (16).

C. Landau–de Gennes potential

Let us consider the Landau–de Gennes free energy
density (17), where Q = Q. A straightforward calculation
gives

tr(Q
2
) = 1

6 + 1
2q2, tr(Q

3
) = − 1

36 + 1
4q2.

Following the same arguments given in Appendix B, we
readily derive the surface Landau–de Gennes free energy

WLdG ≈ WS
LdG =

∫
S

(
d + a

4
q2 + c

8
q4

)
dA for ε � 1,
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where

d = h

[
F (A,B,C) + A

12
+ B

108
+ C

144

]
,

a = a0
T − T ∗

c

Tc

, a0 = hA0,

c = h
C

2
, T ∗

c =
(

1 + B

3A0
− C

6A0

)
Tc.

We then obtain a Landau–de Gennes potential with two
constants in which the cubic term vanishes. An analogous
expression is proposed in Refs. [7,15]. It is worth noting that
homogenous states with q �= 0 are allowed only on surfaces
with zero Euler-Poincaré chracteristic. In fact, only in this
case does it make sense to define a critical temperature that
generally depends on the shell curvature. For instance, in the
case of a cylindrical shell of radius R, the elastic free energy
produces terms proportional to q/R2 and q2/R2 that can be
viewed as effective contributions to the Landau–de Gennes
potential.

V. CONCLUDING REMARKS

We have deduced the two-dimensional versions of Frank
and Landau–de Gennes free energies needed to treat the
equilibrium of thin nematic films, coating curved surfaces.
These models have been obtained as limiting cases of the
respective three-dimensional models. The formalism proposed
applies to rigid shells as well as to flexible surfaces with
two-dimensional nematic order. Obviously, in the latter case
additional energy terms are required to describe the elasticity
of the shell. The problem of equilibrium can be framed in the
general variational scheme proposed in Ref. [26]. However,
the resulting equations for this complex problem are strongly
nonlinear and demand a numerical treatment.

Our rigorous procedure predicts the existence of new terms
in the free energy, with respect to earlier models. The physical
interpretation of these extra terms is widely discussed in
Secs. III and IV. The key results of our analysis are as follows:

(1) In the context of the director theory for curved nematic
thin films, the twist free energy does not vanish. This free
energy, coupled with the term proportional to c2

ns
, expresses

the tendency of the molecules to align along the principal
direction of the surface with minimal (in modulus) curvature.
Thus, the extrinsic geometry of the shell influences the
molecular alignment in agreement with the results announced
in Ref. [27]. In a forthcoming work, we show how the twist
term influences the stability of a nematic on a cylindrical
surface.

(2) In the context of Landau–de Gennes theory, we establish
a coherent framework to develop a two-dimensional order-
tensor theory. As a result, we obtain the coupling term
(22). This term has been already proposed in Ref. [15], but
it required an additional phenomenological constant in the
model. By contrast, since we deduce that the coefficient of this
energy is the elastic constant l1, no further phenomenological
constants should be introduced. Finally, we notice that, within
the model proposed in Ref. [7], the quadrupolar coupling (22)
does not appear.

Our approach offers the twofold advantage of being based
on well-established theories and, at same time, to avoid the

proliferation of phenomenological coefficients in the free
energy expression. Therefore, our models describe in an eco-
nomical and exhaustive manner the equilibrium configuration
of in-plane curved nematics. Obviously, our procedure can
be extended to more complicated models as that proposed in
Ref. [24].

We believe that the results outlined in this paper are the basis
to study the arrangement of two-dimensional curved nematics.
We envisage a series of future studies to establish the influence
of external actions (temperature, electric, or magnetic fields),
of the shell geometry, and of the material coefficients on the
nematic shell texture.
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APPENDIX A: DERIVATION OF THE SPATIAL
GRADIENTS OF ν, e1, e2, AND n

Let ϕ = ϕ(u,v) an orthogonal parametrization of S such
that

ϕ,u

|ϕ,u|
= e1s and

ϕ,v

|ϕ,v|
= e2s .

Then, for any fixed ξ ∈ [−h/2,h/2], ϕξ = ϕ(u,v) + ξνs(u,v)
is an orthogonal parametrization of Sξ such that

ϕξ,u = (1 − ξc1s)ϕ,u and ϕξ,v = (1 − ξc2s)ϕ,v.

As consequences of assumption (2), {e1,e2}, with

e1(p) : = ϕξ,u

|ϕξ,u|
= ϕ,u

|ϕ,u|
= e1s(pS ) ∀p ∈ V, (A1a)

e2(p) : = ϕξ,v

|ϕξ,v|
= ϕ,v

|ϕ,v|
= e2s(pS ) ∀p ∈ V, (A1b)

is a local orthonormal basis of the space of tangent vectors
X(Sξ ), whereas

ν(p) := ϕξ,u × ϕξ,v

|ϕξ,u × ϕξ,v|
= ϕ,u × ϕ,v

|ϕ,u × ϕ,v|
= νs(pS ) ∀p ∈ V

(A2)

is the unit normal vector field on Sξ . We now introduce the
following quantities:

eξ = −νs ,u · ϕξ,u = c1s(1 − ξc1s)ϕ,u · ϕ,u = c1s(1 − ξc1s)E,

fξ = −νs ,u · ϕξ,v = 0 = −νs ,v · ϕξ,u,

gξ = −νs ,v · ϕξ,v = c2s(1 − ξc2s)ϕ,v · ϕ,v = c2s(1 − ξc2s)G,

Eξ = ϕξ,u · ϕξ,u = (1 − ξc1s)
2ϕ,u · ϕ,u = (1 − ξc1s)

2E,

Fξ = ϕξ,u · ϕξ,v = (1 − ξc1s)(1 − ξc2s)ϕ,u · ϕ,v = 0,

Gξ = ϕξ,v · ϕξ,v = (1 − ξc2s)
2ϕ,v · ϕ,v = (1 − ξc2s)

2G,

where E = ϕ,u · ϕ,u and G = ϕ,v · ϕ,v .
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We first derive the gradient of ν. From Eq. (A2) it follows
that

(∇ν)ν = 0, (A3)

and, since it is a unit vector field,

ν · (∇ν)ei = 0 ∀i = 1,2.

Moreover, for any fixed ξ , −∇ν restricted to the space of
tangent vectors X(Sξ ) represents the extrinsic curvature tensor
of Sξ . Therefore, following do Carmo [16]:

e1 · (∇ν)e1 = −fξFξ − eξGξ

EξGξ − F 2
ξ

= − c1s

1 − ξc1s

, (A4a)

e1 · (∇ν)e2 = −gξFξ − fξGξ

EξGξ − F 2
ξ

= 0, (A4b)

e2 · (∇ν)e1 = −eξFξ − fξEξ

EξGξ − F 2
ξ

= 0, (A4c)

e2 · (∇ν)e2 = −fξFξ − gξEξ

EξGξ − F 2
ξ

= − c2s

1 − ξc2s

, (A4d)

by which we deduce that e1 and e2 are the tangent principal
directions on Sξ . Finally, (A3) and (A4) yield (3). Let us now
calculate ∇ei (i = 1,2). From Eqs. (A1) and since ei (i = 1,2)
are unit vector fields, we deduce that

(∇ei)ν = 0 = (∇ei)
T ei ∀i = 1,2. (A5)

Next, since {e1,e2,ν} is a local orthonormal basis

(∇ei)
T ej = −(∇ej )T ei ∀i,j = 1,2, i �= j, (A6)

ν · (∇ei)ej = −ej · (∇ν)T ei = δij

ci

1 − ξci

∀i,j = 1,2,

(A7)

where δij denotes the Kronecker symbol. By means
of Eq. (A6),

e2 · (∇e1)e1 = −e1 · (∇e2)e1 = κ1(ξ ), (A8a)

e2 · (∇e1)e2 = −e1 · (∇e2)e2 = κ2(ξ ), (A8b)

where κ1(ξ ) and κ2(ξ ) are the geodesic curvatures of the lines
of curvature on Sξ . Hence, by following Ref. [16] and since
the surface gradient of a scalar-valued function f defined in a
neighborhood of S may be written as

∇sf = f,u√
E

e1s + f,v√
G

e2s , (A9)

the geodesic curvatures of the lines of curvature on Sξ are
found to be

κ1(ξ ) = − Eξ,v

2Eξ

√
Gξ

= − E,v

2(1 − ξc2s)E
√

G

+ ξc1,v

(1 − ξc1s)(1 − ξc2s)
√

G

= κ1s

1 − ξc2s

+ ξ∇sc1s · e2s

(1 − ξc1s)(1 − ξc2s)
, (A10a)

κ2(ξ ) = Gξ,u

2Gξ

√
Eξ

= G,u

2(1 − ξc1s)G
√

E

− ξc2,u

(1 − ξc1s)(1 − ξc2s)
√

E

= κ2s

1 − ξc1s

− ξ∇sc2s · e1s

(1 − ξc1s)(1 − ξc2s)
, (A10b)

where

κ1s = − E,v

2E
√

G
and κ2s = G,u

2G
√

E

are the geodesic curvatures of the lines of curvature on S.
Therefore, (A5)–(A10) give (4) and (5).

We are now in position to derive the gradient of the director
field n. Since n is a unit vector field that does not vary with ξ

and is pointwise orthogonal to ν, we get

(∇n)ν = 0 = (∇n)T n. (A11)

Next, we introduce the angle α that n form with e1 so that we
may write

n = cos αe1 + sin αe2, (A12a)

t = − sin αe1 + cos αe2, (A12b)

and

∇n = − sin αe1 ⊗ ∇α + cos α∇e1 + cos αe2 ⊗ ∇α

+ sin α∇e2. (A13)

Since n and e1 does not depend on ξ , the scalar field α also
satisfies the equality α(p) = α(pS ) for all p ∈ V . Therefore,
in view of Eq. (A9) the spatial gradient of the scalar field α is

∇α = α,u

(1 − ξc1s)
√

E
e1 + α,v

(1 − ξc2s)
√

G
e2

= ∇sα · e1s

1 − ξc1s

e1 + ∇sα · e2s

1 − ξc2s

e2.

Thus,

ν · (∇n)n = −n · (∇ν)n = c1s cos2 α + c2s sin2 α − ξc1sc2s

(1 − ξc1s)(1 − ξc2s)
= cns

− ξK

1 − 2ξH + ξ 2K
, (A14a)

ν · (∇n)t = −n · (∇ν)t = (c2s − c1s) sin α cos α

(1 − ξc1s)(1 − ξc2s)
= − τns

1 − 2ξH + ξ 2K
, (A14b)

t · (∇n)n = (∇sα · e1s) cos α + (∇sα · e2s) sin α + κ1s cos α + κ2s sin α

(1 − ξc1s)(1 − ξc2s)

− ξ
c1sκ1s cos α + c2sκ2s sin α + ∇sc2s · e1s sin α − ∇sc1s · e2s cos α

(1 − ξc1s)(1 − ξc2s)
− ξ

c2s cos α∇sα · e1s + c1s sin α∇sα · e2s

(1 − ξc1s)(1 − ξc2s)
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= ∇sα · ns + κ1s cos α + κ2s sin α − ξdivs(c2s sin αe1s − c1s cos αe2s)

1 − 2Hξ + Kξ 2
= κns

− ξνs · curls(Lns)

1 − 2Hξ + Kξ 2
, (A14c)

t · (∇n)t = −(∇sα · e1s) sin α + (∇sα · e2s) cos α − κ1s sin α + κ2s cos α

(1 − ξc1s)(1 − ξc2s)

− ξ
−c1sκ1s sin α + c2sκ2s cos α + ∇sc2s · e1s cos α + ∇sc1s · e2s sin α

(1 − ξc1s)(1 − ξc2s)
+ ξ

c2s sin α∇sα · e1s − c1s cos α∇sα · e2s

(1 − ξc1s)(1 − ξc2s)

= ∇sα · ts − κ1s sin α + κ2s cos α − ξdivs(c2s cos αe1s + c1s sin αe2s)

1 − 2Hξ + Kξ 2
= κts − ξνs · curls(Lts)

1 − 2Hξ + Kξ 2
, (A14d)

where ns = cos αe1s + sin αe2s and ts = νs × ns are the restrictions of n and t on S, respectively, and L = c1se1s ⊗ e1s +
c2se2s ⊗ e2s is the extrinsic curvature tensor on S. The quantities

cns
= c1s cos2 α + c2s sin2 α, (A15a)

cts = c1s sin2 α + c2s cos2 α (A15b)

are the normal curvatures of the flux lines of ns and ts , respectively, whereas

τns
= (c1s − c2s) sin α cos α

is the geodesic torsion of the flux lines of ns . In deriving (A14c) and (A14d) we have made use of the Lioville’s formula (see
Ref. [16], p. 253) for the calculation of the geodesic curvatures κns

and κts , i.e.,

κns
= ∇sα · ns + κ1s cos α + κ2s sin α, κts = ∇sα · ts − κ1s sin α + κ2s cos α,

and have employed the identity

divs(νs × u) = −νs · curlsu (A16)

that holds true for any smooth field u defined on S. We may then conclude that (A11)–(A14) yield (6).

APPENDIX B: DERIVATION OF W S
OZF AND W S

el

In this section we derive the approximations of the energies (10) and (16) that are valid for a homogeneous nematic whenever
ε � 1.

Proposition 1. Let n and q be smooth fields defined on V . Assume n to be a unit vector field such that

n(p) · ν(p) = 0 ∀p ∈ V and n[pS + ξνs(pS )] = n(pS ) ∀pS ∈ S, ∀ξ ∈ [−h/2,h/2],

and q a scalar-valued field such that

q[pS + ξνs(pS )] = q(pS ) ∈ [−1,1] ∀pS ∈ S, ∀ξ ∈ [−h/2,h/2].

Then, denoting by vol(V ) the volume of V ,

lim
ε→0

∫
V

ι1

vol(V )
dV =

∫
S

q2[(divsns)2 + |ns × curlsns |2 + (curlsns · ns)2]

area(S)
dA

+
∫
S

|∇sq|2
2 + 2(1 − q)H

[
(1 − q)H + 2qcns

] − (1 − q2)K

area(S)
dA, (B1a)

lim
ε→0

∫
V

ι2

vol(V )
dV =

∫
S

q2[(divsns)2 + |ns × curlsns |2]

area(S)
dA

+
∫
S

|∇sq|2
4 − q∇sq · [

(curlsns · νs)ts − (divsns)ns

] + (1 − q)H [(1 − q)H + 2qcns
]

area(S)
dA, (B1b)

lim
ε→0

∫
V

ι2 − ι3

vol(V )
dV =

∫
S

2q∇sq · [(curlsns · νs)ts − (divsns)ns]

area(S)
dA −

∫
S

(1 − q2)

2area(S)
A. (B1c)

Proof. We observe that

vol(V ) = h

[
area(S) + h2

12

∫
S

A

]
. (B2)
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With the aid of Eq. (7),

∫
V

q2(divn)2

vol(V )
dV

=
∫ h/2

−h/2
dξ

∫
Sξ

q2
[
κts − ξνs · curls(Lts)

]2

J 2
ξ vol(V )

dA

=
∫ h/2

−h/2
dξ

∫
S

q2
[
κts − ξνs · curls(Lts)

]2

Jξ vol(V )
dA

=
∫
S

{∫ h/2

−h/2

q2
[
κts − ξνs · curls(Lts)

]2

Jξ vol(V )
dξ

}
dA. (B3)

Since q, κts , and νs · curls(Lts) do not depend on ξ , by means
of Eq. (B2) we deduce that

∫ h/2

−h/2

q2
[
κts − ξνs · curls(Lts)

]2

Jξh
[
area(S) + h2

12

∫
S A

] dξ → q2κ2
ts

area(S)

uniformly in S as ε → 0. Therefore, recalling (9)1,

lim
ε→0

∫
V

q2(divn)2

vol(V )
dV =

∫
S

q2(divsns)2

area(S)
dA. (B4)

We now use Eq. (8) to obtain

∫
V

q2(curln · n)2

vol(V )
dV =

∫
S

dA

∫ h/2

−h/2

q2τ 2
ns

Jξ vol(V )
dξ

and∫
V

q2|n × curln|2
vol(V )

dV

=
∫
S

dA

∫ h/2

−h/2

q2
(
cns

−Kξ
)2+[

κns
−ξνs · curls(Lns)

]2

Jξ vol(V )
dξ.

(B5)

Considering that q, cns
, τns

, κns
, and νs · curls(Lns) do not

depend on ξ , by means of Eq. (B2), we have

∫ h/2

−h/2

q2τ 2
ns

Jξh
[
area(S) + h2

12

∫
S A

] dξ → q2τ 2
ns

area(S)

uniformly in S as ε → 0 and

∫ h/2

−h/2
q2

(
cns

− Kξ
)2 + [

κns
− ξνs · curls(Lns)

]2

Jξh
[
area(S) + h2

12

∫
S A

] dξ

→ q2
(
c2

ns
+ κ2

ns

)
area(S)

(B6)

uniformly in S as ε → 0. Thus, from Eq. (9) we deduce that

lim
ε→0

∫
V

q2(n · curln)2

vol(V )
dV =

∫
S

q2(ns · curlsns)2

area(S)
dA (B7)

and

lim
ε→0

∫
V

q2|n × curln|2
vol(V )

dV =
∫
S

q2|ns × curlsns |2
area(S)

dA. (B8)

By following the same arguments which lead to Eqs. (B4)–
(B8) and by taking into account that

∇q = ∇sq · e1s

1 − ξc1s

e1 + ∇sq · e2s

1 − ξc2s

e2,

one can easily prove that

lim
ε→0

∫
V

|∇q|2
vol(V )

dV =
∫
S

|∇sq|2
area(S)

dA, (B9a)

lim
ε→0

∫
V

(1 − q)(H − Kξ )

J 2
ξ vol(V )

[
(1 − q)H + 2qcns

− (1 + q)Kξ
]

=
∫
S

(1 − q)H

area(S)

[
(1 − q)H + 2qcns

]
dA, (B9b)

lim
ε→0

∫
V

(1 − q2)K

J 2
ξ vol(V )

dV =
∫
S

(1 − q2)K

area(S)
dA, (B9c)

lim
ε→0

∫
V

q∇q · [(∇n)n − (divn)n]

vol(V )
dV

=
∫
S

q∇sq · [(curlsns · νs)ts − (divsns)ns]

area(S)
dA. (B9d)

Now, let us assume now that S is a regular surface whose
boundary ∂S is a regular curve, and let τ be the tangent unit
vector field to ∂S. Then the normal unit vector field to the
surface

Sl := {p∂S + ξνs(p∂S ) : p∂S ∈ ∂S,ξ ∈ [−h/2,h/2]}
is

N = (τ − ξLτ ) × ν

|(τ − ξLτ ) × ν| .

Therefore, by means of the divergence theorem we deduce that∫
V

div
{
J−1

ξ (1 − q)
[
(1 − q)H + 2qcns

− (1 + q)Kξ
]
ν
}
dV

=
∫
Sh/2

(1−q)J−1
h/2

[
(1 − q)H +2qcns

− (1 + q)K
h

2

]
dA

−
∫
S−h/2

(1 − q)J−1
−h/2

[
(1 − q)H + 2qcns

+ (1 + q)K
h

2

]
dA +

∫
Sl

J−1
ξ (1 − q)[(1 − q)H

+ 2qcns
− (1 + q)Kξ ]ν · N dA

=
∫
S

(1 − q)

[
(1 − q)H + 2qcns

− (1 + q)K
h

2

]
dA

−
∫
S

(1 − q)

[
(1 − q)H + 2qcns

+ (1 + q)K
h

2

]
dA

= −
∫
S

h(1 − q2)A. (B10)
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By means of Eq. (B2) we may conclude that

lim
ε→0

∫
V

div

{
(1 − q)

Jξ vol(V )

[
(1 − q)H + 2qcns

− (1 + q)Kξ
]
ν

}
dV

= − lim
ε→0

∫
S

(1 − q2)K

area(S) + h2

12

∫
S A

dA

= −
∫
S

(1 − q2)K

\,area(S)
dA. (B11)

We arrive at (B11) also whenever S is a geometrically closed
surface, i.e., ∂S = ∅.

Finally, Eqs. (B1) immediately follows from Eqs. (20) and
(B4)–(B11).

From Eq. (B2) it follows that

lim
ε→0

vol(V ) = harea(S). (B12)

As an immediate consequence of Proposition 1 and (B12),
for ε � 1 we have

Wel = vol(V )
∫

V

L1ι1 + L2ι2 + L24(ι2 − ι3)

vol(V )
dV ≈ WS

el,

(B13)

with WS
el as in Eq. (21). Finally, with the aid of the following

identities:

ι1s = 2q2
(
c2

ns
+ τ 2

ns
+ κ2

ns
+ κ2

ts

) + 1
2 |∇sq|2 + 2q(1 − q)

× (
c2

ns
+ τ 2

ns

) + (1 − q)2(2H 2 − K), (B14a)

ι2s = ι3s + 2q∇sq · (
κns

ts − κts ns

) − 1
2 (1 − q2)K, (B14b)

ι3s = q2
(
κ2

ns
+ κ2

ts

) + 1
4 |∇sq|2 + (L · Ms)2

− q∇sq · (
κns

ts − κts ns

)
, (B14c)

surface free energy (21) can be recast in the form (24).
On taking q ≡ 1 in Eqs. (B4)–(B8) we have the following.
Proposition 2. Let n be a smooth unit vector field defined

on V such that

n(p) · ν(p) = 0 ∀p ∈ V

and

n(pS + ξνs) = n(pS ) ∀pS ∈ S, ∀ξ ∈ [−h/2,h/2].

Then

lim
ε→0

∫
V

(divn)2

vol(V )
dV =

∫
S

(divsns)2

area(S)
dA,

lim
ε→0

∫
V

(n · curln)2

vol(V )
dV =

∫
S

(ns · curlsns)2

area(S)
dA,

lim
ε→0

∫
V

|n × curln|2
vol(V )

dV =
∫
S

|ns × curlsns |2
area(S)

dA.

Therefore, from Eq. (13), Proposition 2 and (B12), it
follows that

WOZF = vol(V )

×
∫

V

K1(divn)2 + K2(n · curln)2 + K3|n × curln|2
vol(V )

dV

≈ WS
OZF

for ε � 1, with WS
OZF as in Eq. (14).

APPENDIX C: GEOMETRICAL IDENTITIES

Let us consider the orthogonal parametrization of S
introduced in Appendix A and set

x1 = u, x2 = v,

g1 = ϕ,u =
√

Ee1s , g2 = ϕ,v =
√

Ge2s .

The metric tensor induced onS by the Euclidean metric tensor,
written with respect to the system of local coordinates (x1,x2),
is

g = Edx1 ⊗ dx1 + Gdx2 ⊗ dx2.

The Levi-Cività connection associated with the metric g is
defined by the Christoffel symbols

�1
11 = E,u

2E
, �2

11 = −E,v

2G
= E√

G
κ1s , (C1a)

�1
12 = �1

21 = E,v

2E
= −

√
Gκ1s , (C1b)

�2
12 = �2

21 = G,u

2G
=

√
Eκ2s , (C1c)

�1
22 = −G,u

2E
= − G√

E
κ2s , �2

22 = G,v

2G
. (C1d)

Then, the (0,4) curvature tensor of S has components

Rβγδρ = gρμ

(
∂�

μ
βδ

∂xγ

− ∂�
μ
γ δ

∂xβ

+ �λ
βδ�

μ
γλ − �

μ
βλ�

λ
γ δ

)

= −EG
(∇sκ2s · e1s − ∇sκ1s · e2s + κ2

1s + κ2
2s

)
εβγ εδρ

= EG (νs · curlsω)εβγ εδρ (β,γ,δ,ρ,μ,λ = 1,2),

(C2)

where εβγ = δ1βδ2γ − δ1γ δ2β is the antisymmetric symbol and
ω = −(κ1se1s + κ2se2s) is the vector that parameterizes the
spin connection 
βγδ (see Ref. [23]), that is,


βγδ = eγ · (Deδ)eβ = ωβεγ δ (β,γ,δ = 1,2),

where D = P∇s is the usual covariant derivative (see
Ref. [17]). It is well known that the Gaussian curvature of
a surface equals the scalar curvature (see Ref. [28]). Therefore

K = 1

2

∑
β �=γ

Rβγβγ

det g
= νs · curlsω. (C3)

By means of Eq. (C3) we can prove identity (23). We
first observe that κns

ns + κts ts = ∇sα − ω, by which κns
ts −

κts ns = νs × (∇sα − ω), with α as in Sec. III. Next, we recall
the identity

νs · curls(∇sf ) = 0, (C4)

that is valid for any smooth scalar field f defined on S. Then,
applying the surface divergence theorem and identities (A16),

061701-11



GAETANO NAPOLI AND LUIGI VERGORI PHYSICAL REVIEW E 85, 061701 (2012)

(C3) and (C4) lead to∫
S

q(∇sq) · (
κns

t − κts n
)
dA = 1

2

∫
S

divs[q
2νs × (∇sα − ω)] dA − 1

2

∫
S

q2divs[νs × (∇sα − ω )] dA

= 1

2

∫
∂S

q2[νs × (∇sα − ω )] · k dl + 1

2

∫
S

q2νs · curls(∇sα − ω ) dA

= 1

2

∫
∂S

q2(∇sα − ω ) · dl − 1

2

∫
S

q2K dA, (C5)

where k is the outward normal to the boundary ∂S lying on the tangent plane. Finally, combining (B14b) and (C5) yields∫
S

(ι2s − ι3s) dA =
∫

∂S
q2(∇sα − ω ) · dl −

∫
S

trM2
sK dA.
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